diff options
Diffstat (limited to 'tools/llvm2cpp/CppWriter.cpp')
-rw-r--r-- | tools/llvm2cpp/CppWriter.cpp | 1413 |
1 files changed, 265 insertions, 1148 deletions
diff --git a/tools/llvm2cpp/CppWriter.cpp b/tools/llvm2cpp/CppWriter.cpp index 0f28e30e16..bd49a07937 100644 --- a/tools/llvm2cpp/CppWriter.cpp +++ b/tools/llvm2cpp/CppWriter.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file was developed by Reid Spencer and is distributed under the +// University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -30,582 +30,12 @@ using namespace llvm; namespace { -/// This class provides computation of slot numbers for LLVM Assembly writing. -/// @brief LLVM Assembly Writing Slot Computation. -class SlotMachine { - -/// @name Types -/// @{ -public: - - /// @brief A mapping of Values to slot numbers - typedef std::map<const Value*, unsigned> ValueMap; - typedef std::map<const Type*, unsigned> TypeMap; - - /// @brief A plane with next slot number and ValueMap - struct ValuePlane { - unsigned next_slot; ///< The next slot number to use - ValueMap map; ///< The map of Value* -> unsigned - ValuePlane() { next_slot = 0; } ///< Make sure we start at 0 - }; - - struct TypePlane { - unsigned next_slot; - TypeMap map; - TypePlane() { next_slot = 0; } - void clear() { map.clear(); next_slot = 0; } - }; - - /// @brief The map of planes by Type - typedef std::map<const Type*, ValuePlane> TypedPlanes; - -/// @} -/// @name Constructors -/// @{ -public: - /// @brief Construct from a module - SlotMachine(const Module *M ); - -/// @} -/// @name Accessors -/// @{ -public: - /// Return the slot number of the specified value in it's type - /// plane. Its an error to ask for something not in the SlotMachine. - /// Its an error to ask for a Type* - int getSlot(const Value *V); - int getSlot(const Type*Ty); - - /// Determine if a Value has a slot or not - bool hasSlot(const Value* V); - bool hasSlot(const Type* Ty); - -/// @} -/// @name Mutators -/// @{ -public: - /// If you'd like to deal with a function instead of just a module, use - /// this method to get its data into the SlotMachine. - void incorporateFunction(const Function *F) { - TheFunction = F; - FunctionProcessed = false; - } - - /// After calling incorporateFunction, use this method to remove the - /// most recently incorporated function from the SlotMachine. This - /// will reset the state of the machine back to just the module contents. - void purgeFunction(); - -/// @} -/// @name Implementation Details -/// @{ -private: - /// Values can be crammed into here at will. If they haven't - /// been inserted already, they get inserted, otherwise they are ignored. - /// Either way, the slot number for the Value* is returned. - unsigned createSlot(const Value *V); - unsigned createSlot(const Type* Ty); - - /// Insert a value into the value table. Return the slot number - /// that it now occupies. BadThings(TM) will happen if you insert a - /// Value that's already been inserted. - unsigned insertValue( const Value *V ); - unsigned insertValue( const Type* Ty); - - /// Add all of the module level global variables (and their initializers) - /// and function declarations, but not the contents of those functions. - void processModule(); - - /// Add all of the functions arguments, basic blocks, and instructions - void processFunction(); - - SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT - void operator=(const SlotMachine &); // DO NOT IMPLEMENT - -/// @} -/// @name Data -/// @{ -public: - - /// @brief The module for which we are holding slot numbers - const Module* TheModule; - - /// @brief The function for which we are holding slot numbers - const Function* TheFunction; - bool FunctionProcessed; - - /// @brief The TypePlanes map for the module level data - TypedPlanes mMap; - TypePlane mTypes; - - /// @brief The TypePlanes map for the function level data - TypedPlanes fMap; - TypePlane fTypes; - -/// @} - -}; - typedef std::vector<const Type*> TypeList; typedef std::map<const Type*,std::string> TypeMap; typedef std::map<const Value*,std::string> ValueMap; -void WriteAsOperandInternal(std::ostream &Out, const Value *V, - bool PrintName, TypeMap &TypeTable, - SlotMachine *Machine); - -void WriteAsOperandInternal(std::ostream &Out, const Type *T, - bool PrintName, TypeMap& TypeTable, - SlotMachine *Machine); - -const Module *getModuleFromVal(const Value *V) { - if (const Argument *MA = dyn_cast<Argument>(V)) - return MA->getParent() ? MA->getParent()->getParent() : 0; - else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) - return BB->getParent() ? BB->getParent()->getParent() : 0; - else if (const Instruction *I = dyn_cast<Instruction>(V)) { - const Function *M = I->getParent() ? I->getParent()->getParent() : 0; - return M ? M->getParent() : 0; - } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) - return GV->getParent(); - return 0; -} - -// getLLVMName - Turn the specified string into an 'LLVM name', which is either -// prefixed with % (if the string only contains simple characters) or is -// surrounded with ""'s (if it has special chars in it). -std::string getLLVMName(const std::string &Name, - bool prefixName = true) { - assert(!Name.empty() && "Cannot get empty name!"); - - // First character cannot start with a number... - if (Name[0] >= '0' && Name[0] <= '9') - return "\"" + Name + "\""; - - // Scan to see if we have any characters that are not on the "white list" - for (unsigned i = 0, e = Name.size(); i != e; ++i) { - char C = Name[i]; - assert(C != '"' && "Illegal character in LLVM value name!"); - if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') && - C != '-' && C != '.' && C != '_') - return "\"" + Name + "\""; - } - - // If we get here, then the identifier is legal to use as a "VarID". - if (prefixName) - return "%"+Name; - else - return Name; -} - - -/// fillTypeNameTable - If the module has a symbol table, take all global types -/// and stuff their names into the TypeNames map. -/// -void fillTypeNameTable(const Module *M, TypeMap& TypeNames) { - if (!M) return; - const SymbolTable &ST = M->getSymbolTable(); - SymbolTable::type_const_iterator TI = ST.type_begin(); - for (; TI != ST.type_end(); ++TI ) { - // As a heuristic, don't insert pointer to primitive types, because - // they are used too often to have a single useful name. - // - const Type *Ty = cast<Type>(TI->second); - if (!isa<PointerType>(Ty) || - !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() || - isa<OpaqueType>(cast<PointerType>(Ty)->getElementType())) - TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first))); - } -} - -void calcTypeName(const Type *Ty, - std::vector<const Type *> &TypeStack, - TypeMap& TypeNames, - std::string & Result){ - if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) { - Result += Ty->getDescription(); // Base case - return; - } - - // Check to see if the type is named. - TypeMap::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) { - Result += I->second; - return; - } - - if (isa<OpaqueType>(Ty)) { - Result += "opaque"; - return; - } - - // Check to see if the Type is already on the stack... - unsigned Slot = 0, CurSize = TypeStack.size(); - while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type - - // This is another base case for the recursion. In this case, we know - // that we have looped back to a type that we have previously visited. - // Generate the appropriate upreference to handle this. - if (Slot < CurSize) { - Result += "\\" + utostr(CurSize-Slot); // Here's the upreference - return; - } - - TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. - - switch (Ty->getTypeID()) { - case Type::FunctionTyID: { - const FunctionType *FTy = cast<FunctionType>(Ty); - calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); - Result += " ("; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - Result += ", "; - calcTypeName(*I, TypeStack, TypeNames, Result); - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) Result += ", "; - Result += "..."; - } - Result += ")"; - break; - } - case Type::StructTyID: { - const StructType *STy = cast<StructType>(Ty); - Result += "{ "; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - if (I != STy->element_begin()) - Result += ", "; - calcTypeName(*I, TypeStack, TypeNames, Result); - } - Result += " }"; - break; - } - case Type::PointerTyID: - calcTypeName(cast<PointerType>(Ty)->getElementType(), - TypeStack, TypeNames, Result); - Result += "*"; - break; - case Type::ArrayTyID: { - const ArrayType *ATy = cast<ArrayType>(Ty); - Result += "[" + utostr(ATy->getNumElements()) + " x "; - calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); - Result += "]"; - break; - } - case Type::PackedTyID: { - const PackedType *PTy = cast<PackedType>(Ty); - Result += "<" + utostr(PTy->getNumElements()) + " x "; - calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); - Result += ">"; - break; - } - case Type::OpaqueTyID: - Result += "opaque"; - break; - default: - Result += "<unrecognized-type>"; - } - - TypeStack.pop_back(); // Remove self from stack... - return; -} - - -/// printTypeInt - The internal guts of printing out a type that has a -/// potentially named portion. -/// -std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){ - // Primitive types always print out their description, regardless of whether - // they have been named or not. - // - if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) - return Out << Ty->getDescription(); - - // Check to see if the type is named. - TypeMap::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) return Out << I->second; - - // Otherwise we have a type that has not been named but is a derived type. - // Carefully recurse the type hierarchy to print out any contained symbolic - // names. - // - std::vector<const Type *> TypeStack; - std::string TypeName; - calcTypeName(Ty, TypeStack, TypeNames, TypeName); - TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use - return (Out << TypeName); -} - - -/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic -/// type, iff there is an entry in the modules symbol table for the specified -/// type or one of it's component types. This is slower than a simple x << Type -/// -std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty, - const Module *M) { - Out << ' '; - - // If they want us to print out a type, attempt to make it symbolic if there - // is a symbol table in the module... - if (M) { - TypeMap TypeNames; - fillTypeNameTable(M, TypeNames); - - return printTypeInt(Out, Ty, TypeNames); - } else { - return Out << Ty->getDescription(); - } -} - -// PrintEscapedString - Print each character of the specified string, escaping -// it if it is not printable or if it is an escape char. -void PrintEscapedString(const std::string &Str, std::ostream &Out) { - for (unsigned i = 0, e = Str.size(); i != e; ++i) { - unsigned char C = Str[i]; - if (isprint(C) && C != '"' && C != '\\') { - Out << C; - } else { - Out << '\\' - << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) - << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); - } - } -} - -/// @brief Internal constant writer. -void WriteConstantInternal(std::ostream &Out, const Constant *CV, - bool PrintName, - TypeMap& TypeTable, - SlotMachine *Machine) { - const int IndentSize = 4; - static std::string Indent = "\n"; - if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { - Out << (CB == ConstantBool::True ? "true" : "false"); - } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) { - Out << CI->getValue(); - } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) { - Out << CI->getValue(); - } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { - // We would like to output the FP constant value in exponential notation, - // but we cannot do this if doing so will lose precision. Check here to - // make sure that we only output it in exponential format if we can parse - // the value back and get the same value. - // - std::string StrVal = ftostr(CFP->getValue()); - - // Check to make sure that the stringized number is not some string like - // "Inf" or NaN, that atof will accept, but the lexer will not. Check that - // the string matches the "[-+]?[0-9]" regex. - // - if ((StrVal[0] >= '0' && StrVal[0] <= '9') || - ((StrVal[0] == '-' || StrVal[0] == '+') && - (StrVal[1] >= '0' && StrVal[1] <= '9'))) - // Reparse stringized version! - if (atof(StrVal.c_str()) == CFP->getValue()) { - Out << StrVal; - return; - } - - // Otherwise we could not reparse it to exactly the same value, so we must - // output the string in hexadecimal format! - assert(sizeof(double) == sizeof(uint64_t) && - "assuming that double is 64 bits!"); - Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())); - - } else if (isa<ConstantAggregateZero>(CV)) { - Out << "zeroinitializer"; - } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { - // As a special case, print the array as a string if it is an array of - // ubytes or an array of sbytes with positive values. - // - const Type *ETy = CA->getType()->getElementType(); - if (CA->isString()) { - Out << "c\""; - PrintEscapedString(CA->getAsString(), Out); - Out << "\""; - - } else { // Cannot output in string format... - Out << '['; - if (CA->getNumOperands()) { - Out << ' '; - printTypeInt(Out, ETy, TypeTable); - WriteAsOperandInternal(Out, CA->getOperand(0), - PrintName, TypeTable, Machine); - for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { - Out << ", "; - printTypeInt(Out, ETy, TypeTable); - WriteAsOperandInternal(Out, CA->getOperand(i), PrintName, - TypeTable, Machine); - } - } - Out << " ]"; - } - } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { - Out << '{'; - unsigned N = CS->getNumOperands(); - if (N) { - if (N > 2) { - Indent += std::string(IndentSize, ' '); - Out << Indent; - } else { - Out << ' '; - } - printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); - - WriteAsOperandInternal(Out, CS->getOperand(0), - PrintName, TypeTable, Machine); - - for (unsigned i = 1; i < N; i++) { - Out << ", "; - if (N > 2) Out << Indent; - printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); - - WriteAsOperandInternal(Out, CS->getOperand(i), - PrintName, TypeTable, Machine); - } - if (N > 2) Indent.resize(Indent.size() - IndentSize); - } - - Out << " }"; - } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) { - const Type *ETy = CP->getType()->getElementType(); - assert(CP->getNumOperands() > 0 && - "Number of operands for a PackedConst must be > 0"); - Out << '<'; - Out << ' '; - printTypeInt(Out, ETy, TypeTable); - WriteAsOperandInternal(Out, CP->getOperand(0), - PrintName, TypeTable, Machine); - for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { - Out << ", "; - printTypeInt(Out, ETy, TypeTable); - WriteAsOperandInternal(Out, CP->getOperand(i), PrintName, - TypeTable, Machine); - } - Out << " >"; - } else if (isa<ConstantPointerNull>(CV)) { - Out << "null"; - - } else if (isa<UndefValue>(CV)) { - Out << "undef"; - - } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { - Out << CE->getOpcodeName() << " ("; - - for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { - printTypeInt(Out, (*OI)->getType(), TypeTable); - WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); - if (OI+1 != CE->op_end()) - Out << ", "; - } - - if (CE->getOpcode() == Instruction::Cast) { - Out << " to "; - printTypeInt(Out, CE->getType(), TypeTable); - } - Out << ')'; - - } else { - Out << "<placeholder or erroneous Constant>"; - } -} - - -/// WriteAsOperand - Write the name of the specified value out to the specified -/// ostream. This can be useful when you just want to print int %reg126, not -/// the whole instruction that generated it. -/// -void WriteAsOperandInternal(std::ostream &Out, const Value *V, - bool PrintName, TypeMap& TypeTable, - SlotMachine *Machine) { - Out << ' '; - if ((PrintName || isa<GlobalValue>(V)) && V->hasName()) - Out << getLLVMName(V->getName()); - else { - const Constant *CV = dyn_cast<Constant>(V); - if (CV && !isa<GlobalValue>(CV)) { - WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine); - } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { - Out << "asm "; - if (IA->hasSideEffects()) - Out << "sideeffect "; - Out << '"'; - PrintEscapedString(IA->getAsmString(), Out); - Out << "\", \""; - PrintEscapedString(IA->getConstraintString(), Out); - Out << '"'; - } else { - int Slot = Machine->getSlot(V); - if (Slot != -1) - Out << '%' << Slot; - else - Out << "<badref>"; - } - } -} - -/// WriteAsOperand - Write the name of the specified value out to the specified -/// ostream. This can be useful when you just want to print int %reg126, not -/// the whole instruction that generated it. -/// -std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, - bool PrintType, bool PrintName, - const Module *Context) { - TypeMap TypeNames; - if (Context == 0) Context = getModuleFromVal(V); - - if (Context) - fillTypeNameTable(Context, TypeNames); - - if (PrintType) - printTypeInt(Out, V->getType(), TypeNames); - - WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0); - return Out; -} - -/// WriteAsOperandInternal - Write the name of the specified value out to -/// the specified ostream. This can be useful when you just want to print -/// int %reg126, not the whole instruction that generated it. -/// -void WriteAsOperandInternal(std::ostream &Out, const Type *T, - bool PrintName, TypeMap& TypeTable, - SlotMachine *Machine) { - Out << ' '; - int Slot = Machine->getSlot(T); - if (Slot != -1) - Out << '%' << Slot; - else - Out << "<badref>"; -} - -/// WriteAsOperand - Write the name of the specified value out to the specified -/// ostream. This can be useful when you just want to print int %reg126, not -/// the whole instruction that generated it. -/// -std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty, - bool PrintType, bool PrintName, - const Module *Context) { - TypeMap TypeNames; - assert(Context != 0 && "Can't write types as operand without module context"); - - fillTypeNameTable(Context, TypeNames); - - // if (PrintType) - // printTypeInt(Out, V->getType(), TypeNames); - - printTypeInt(Out, Ty, TypeNames); - - WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0); - return Out; -} - class CppWriter { std::ostream &Out; - SlotMachine &Machine; const Module *TheModule; unsigned long uniqueNum; TypeMap TypeNames; @@ -614,53 +44,25 @@ class CppWriter { TypeList TypeStack; public: - inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M) - : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(), + inline CppWriter(std::ostream &o, const Module *M) + : Out(o), TheModule(M), uniqueNum(0), TypeNames(), ValueNames(), UnresolvedTypes(), TypeStack() { } - inline void write(const Module *M) { printModule(M); } - inline void write(const GlobalVariable *G) { printGlobal(G); } - inline void write(const Function *F) { printFunction(F); } - inline void write(const BasicBlock *BB) { printBasicBlock(BB); } - inline void write(const Instruction *I) { printInstruction(*I); } - inline void write(const Constant *CPV) { printConstant(CPV); } - inline void write(const Type *Ty) { printType(Ty); } - - void writeOperand(const Value *Op, bool PrintType, bool PrintName = true); - const Module* getModule() { return TheModule; } -private: void printModule(const Module *M); + +private: void printTypes(const Module* M); void printConstants(const Module* M); void printConstant(const Constant *CPV); void printGlobal(const GlobalVariable *GV); void printFunction(const Function *F); - void printArgument(const Argument *FA); - void printBasicBlock(const BasicBlock *BB); - void printInstruction(const Instruction &I); + void printInstruction(const Instruction *I, const std::string& bbname); void printSymbolTable(const SymbolTable &ST); void printLinkageType(GlobalValue::LinkageTypes LT); void printCallingConv(unsigned cc); - - // printType - Go to extreme measures to attempt to print out a short, - // symbolic version of a type name. - // - std::ostream &printType(const Type *Ty) { - return printTypeInt(Out, Ty, TypeNames); - } - - // printTypeAtLeastOneLevel - Print out one level of the possibly complex type - // without considering any symbolic types that we may have equal to it. - // - std::ostream &printTypeAtLeastOneLevel(const Type *Ty); - - // printInfoComment - Print a little comment after the instruction indicating - // which slot it occupies. - void printInfoComment(const Value &V); - std::string getCppName(const Type* val); std::string getCppName(const Value* val); inline void printCppName(const Value* val); @@ -668,8 +70,25 @@ private: bool isOnStack(const Type*) const; inline void printTypeDef(const Type* Ty); bool printTypeDefInternal(const Type* Ty); + void printEscapedString(const std::string& str); }; +// printEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +void +CppWriter::printEscapedString(const std::string &Str) { + for (unsigned i = 0, e = Str.size(); i != e; ++i) { + unsigned char C = Str[i]; + if (isprint(C) && C != '"' && C != '\\') { + Out << C; + } else { + Out << '\\' + << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) + << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); + } + } +} + std::string CppWriter::getCppName(const Value* val) { std::string name; @@ -707,13 +126,13 @@ CppWriter::getCppName(const Value* val) { void CppWriter::printCppName(const Value* val) { - PrintEscapedString(getCppName(val),Out); + printEscapedString(getCppName(val)); } void CppWriter::printCppName(const Type* Ty) { - PrintEscapedString(getCppName(Ty),Out); + printEscapedString(getCppName(Ty)); } // Gets the C++ name for a type. Returns true if we already saw the type, @@ -785,67 +204,13 @@ CppWriter::getCppName(const Type* Ty) return TypeNames[Ty] = name; } -/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type -/// without considering any symbolic types that we may have equal to it. -/// -std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) { - if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) { - printType(FTy->getReturnType()) << " ("; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - Out << ", "; - printType(*I); - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) Out << ", "; - Out << "..."; - } - Out << ')'; - } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { - Out << "{ "; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - if (I != STy->element_begin()) - Out << ", "; - printType(*I); - } - Out << " }"; - } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { - printType(PTy->getElementType()) << '*'; - } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - Out << '[' << ATy->getNumElements() << " x "; - printType(ATy->getElementType()) << ']'; - } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) { - Out << '<' << PTy->getNumElements() << " x "; - printType(PTy->getElementType()) << '>'; - } - else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) { - Out << "opaque"; - } else { - if (!Ty->isPrimitiveType()) - Out << "<unknown derived type>"; - printType(Ty); - } - return Out; -} - - -void CppWriter::writeOperand(const Value *Operand, bool PrintType, - bool PrintName) { - if (Operand != 0) { - if (PrintType) { Out << ' '; printType(Operand->getType()); } - WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine); - } else { - Out << "<null operand!>"; - } -} - - void CppWriter::printModule(const Module *M) { Out << "\n// Module Construction\n"; Out << "Module* mod = new Module(\""; - PrintEscapedString(M->getModuleIdentifier(),Out); + if (M->getModuleIdentifier() == "-") + printEscapedString("<stdin>"); + else + printEscapedString(M->getModuleIdentifier()); Out << "\");\n"; Out << "mod->setEndianness("; switch (M->getEndianness()) { @@ -864,7 +229,7 @@ void CppWriter::printModule(const Module *M) { if (!M->getModuleInlineAsm().empty()) { Out << "mod->setModuleInlineAsm(\""; - PrintEscapedString(M->getModuleInlineAsm(),Out); + printEscapedString(M->getModuleInlineAsm()); Out << "\");\n"; } @@ -945,13 +310,13 @@ void CppWriter::printGlobal(const GlobalVariable *GV) { Out << "0"; } Out << ",\n /*Name=*/\""; - PrintEscapedString(GV->getName(),Out); + printEscapedString(GV->getName()); Out << "\",\n mod);\n"; if (GV->hasSection()) { printCppName(GV); Out << "->setSection(\""; - PrintEscapedString(GV->getSection(),Out); + printEscapedString(GV->getSection()); Out << "\");\n"; } if (GV->getAlignment()) { @@ -993,10 +358,9 @@ CppWriter::printTypeDef(const Type* Ty) { case Type::OpaqueTyID: Out << "OpaqueType"; break; default: Out << "NoSuchDerivedType"; break; } - Out << ">(" << I->second << "_fwd.get());\n"; + Out << ">(" << I->second << "_fwd.get());\n\n"; UnresolvedTypes.erase(I); } - Out << "\n"; } bool @@ -1129,6 +493,7 @@ CppWriter::printTypeDefInternal(const Type* Ty) { // Pop us off the type stack TypeStack.pop_back(); + Out << "\n"; // We weren't a recursive type return false; @@ -1169,51 +534,37 @@ CppWriter::printTypes(const Module* M) { void CppWriter::printConstants(const Module* M) { - const SymbolTable& ST = M->getSymbolTable(); - - // Print the constants, in type plane order. - for (SymbolTable::plane_const_iterator PI = ST.plane_begin(); - PI != ST.plane_end(); ++PI ) { - SymbolTable::value_const_iterator VI = ST.value_begin(PI->first); - SymbolTable::value_const_iterator VE = ST.value_end(PI->first); - - for (; VI != VE; ++VI) { - const Value* V = VI->second; - const Constant *CPV = dyn_cast<Constant>(V) ; - if (CPV && !isa<GlobalValue>(V)) { - printConstant(CPV); - } - } - } - // Add all of the global variables to the value table... for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) if (I->hasInitializer()) printConstant(I->getInitializer()); -} -// printSymbolTable - Run through symbol table looking for constants -// and types. Emit their declarations. -void CppWriter::printSymbolTable(const SymbolTable &ST) { - - // Print the types. - for (SymbolTable::type_const_iterator TI = ST.type_begin(); - TI != ST.type_end(); ++TI ) { - Out << "\t" << getLLVMName(TI->first) << " = type "; - - // Make sure we print out at least one level of the type structure, so - // that we do not get %FILE = type %FILE - // - printTypeAtLeastOneLevel(TI->second) << "\n"; + // Traverse the LLVM functions looking for constants + for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); + FI != FE; ++FI) { + // Add all of the basic blocks and instructions + for (Function::const_iterator BB = FI->begin(), + E = FI->end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; + ++I) { + for (unsigned i = 0; i < I->getNumOperands(); ++i) { + if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) { + printConstant(C); + } + } + } + } } - } - -/// printConstant - Print out a constant pool entry... -/// +// printConstant - Print out a constant pool entry... void CppWriter::printConstant(const Constant *CV) { + // First, if the constant is in the constant list then we've printed it + // already and we shouldn't reprint it. + if (ValueNames.find(CV) != ValueNames.end()) + return; + const int IndentSize = 2; static std::string Indent = "\n"; std::string constName(getCppName(CV)); @@ -1223,6 +574,10 @@ void CppWriter::printConstant(const Constant *CV) { << typeName << ");\n"; return; } + if (isa<GlobalValue>(CV)) { + // Skip variables and functions, we emit them elsewhere + return; + } if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { Out << "Constant* " << constName << " = ConstantBool::get(" << (CB == ConstantBool::True ? "true" : "false") @@ -1267,9 +622,9 @@ void CppWriter::printConstant(const Constant *CV) { "assuming that double is 64 bits!"); Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");"; } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { - if (CA->isString()) { + if (CA->isString() && CA->getType()->getElementType() == Type::SByteTy) { Out << "Constant* " << constName << " = ConstantArray::get(\""; - PrintEscapedString(CA->getAsString(),Out); + printEscapedString(CA->getAsString()); Out << "\");"; } else { Out << "std::vector<Constant*> " << constName << "_elems;\n"; @@ -1304,25 +659,55 @@ void CppWriter::printConstant(const Constant *CV) { << typeName << ", " << constName << "_elems);"; } else if (isa<UndefValue>(CV)) { Out << "Constant* " << constName << " = UndefValue::get(" - << typeName << ");\n"; + << typeName << ");"; } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { - Out << CE->getOpcodeName() << " ("; - - for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { - //printTypeInt(Out, (*OI)->getType(), TypeTable); - //WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); - if (OI+1 != CE->op_end()) - Out << ", "; - } - - if (CE->getOpcode() == Instruction::Cast) { - Out << " to "; - // printTypeInt(Out, CE->getType(), TypeTable); + if (CE->getOpcode() == Instruction::GetElementPtr) { + Out << "std::vector<Constant*> " << constName << "_indices;\n"; + for (unsigned i = 1; i < CE->getNumOperands(); ++i ) { + Out << constName << "_indices.push_back(" + << getCppName(CE->getOperand(i)) << ");\n"; + } + Out << "Constant* " << constName << " = new GetElementPtrInst(" + << getCppName(CE->getOperand(0)) << ", " << constName << "_indices"; + } else if (CE->getOpcode() == Instruction::Cast) { + Out << "Constant* " << constName << " = ConstantExpr::getCast("; + Out << getCppName(CE->getOperand(0)) << ", " << getCppName(CE->getType()) + << ");"; + } else { + Out << "Constant* " << constName << " = ConstantExpr::"; + switch (CE->getOpcode()) { + case Instruction::Add: Out << "getAdd"; break; + case Instruction::Sub: Out << "getSub"; break; + case Instruction::Mul: Out << "getMul"; break; + case Instruction::Div: Out << "getDiv"; break; + case Instruction::Rem: Out << "getRem"; break; + case Instruction::And: Out << "getAnd"; break; + case Instruction::Or: Out << "getOr"; break; + case Instruction::Xor: Out << "getXor"; break; + case Instruction::SetEQ: Out << "getSetEQ"; break; + case Instruction::SetNE: Out << "getSetNE"; break; + case Instruction::SetLE: Out << "getSetLE"; break; + case Instruction::SetGE: Out << "getSetGE"; break; + case Instruction::SetLT: Out << "getSetLT"; break; + case Instruction::SetGT: Out << "getSetGT"; break; + case Instruction::Shl: Out << "getShl"; break; + case Instruction::Shr: Out << "getShr"; break; + case Instruction::Select: Out << "getSelect"; break; + case Instruction::ExtractElement: Out << "getExtractElement"; break; + case Instruction::InsertElement: Out << "getInsertElement"; break; + case Instruction::ShuffleVector: Out << "getShuffleVector"; break; + default: + assert(!"Invalid constant expression"); + break; + } + Out << getCppName(CE->getOperand(0)); + for (unsigned i = 1; i < CE->getNumOperands(); ++i) + Out << ", " << getCppName(CE->getOperand(i)); + Out << ");"; } - Out << ')'; - } else { - Out << "<placeholder or erroneous Constant>"; + assert(!"Bad Constant"); + Out << "Constant* " << constName << " = 0; "; } Out << "\n"; } @@ -1336,7 +721,7 @@ void CppWriter::printFunction(const Function *F) { printCppName(F); Out << " = new Function(" << funcTypeName << ", " ; printLinkageType(F->getLinkage()); - Out << ", \"" << F->getName() << "\", mod);\n"; + Out << ",\n \"" << F->getName() << "\", mod);\n"; printCppName(F); Out << "->setCallingConv("; printCallingConv(F->getCallingConv()); @@ -1350,101 +735,170 @@ void CppWriter::printFunction(const Function *F) { Out << "->setAlignment(" << F->getAlignment() << ");\n"; } - Machine.incorporateFunction(F); - if (!F->isExternal()) { - Out << "{"; + Out << "{\n"; + // Create all the argument values + for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); + AI != AE; ++AI) { + Out << " Argument* " << getCppName(AI) << " = new Argument(" + << getCppName(AI->getType()) << ", \""; + printEscapedString(AI->getName()); + Out << "\", " << getCppName(F) << ");\n"; + } + // Create all the basic blocks + for (Function::const_iterator BI = F->begin(), BE = F->end(); + BI != BE; ++BI) { + std::string bbname(getCppName(BI)); + Out << " BasicBlock* " << bbname << " = new BasicBlock(\""; + if (BI->hasName()) + printEscapedString(BI->getName()); + Out << "\"," << getCppName(BI->getParent()) << ",0);\n"; + } // Output all of its basic blocks... for the function - for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) - printBasicBlock(I); + for (Function::const_iterator BI = F->begin(), BE = F->end(); + BI != BE; ++BI) { + // Output all of the instructions in the basic block... + Out << " {\n"; + for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); + I != E; ++I) { + std::string bbname(getCppName(BI)); + printInstruction(I,bbname); + } + Out << " }\n"; + } Out << "}\n"; } - - Machine.purgeFunction(); } -/// printArgument - This member is called for every argument that is passed into -/// the function. Simply print it out -/// -void CppWriter::printArgument(const Argument *Arg) { - // Insert commas as we go... the first arg doesn't get a comma - if (Arg != Arg->getParent()->arg_begin()) Out << ", "; - - // Output type... - printType(Arg->getType()); - - // Output name, if available... - if (Arg->hasName()) - Out << ' ' << getLLVMName(Arg->getName()); -} - -/// printBasicBlock - This member is called for each basic block in a method. -/// -void CppWriter::printBasicBlock(const BasicBlock *BB) { - if (BB->hasName()) { // Print out the label if it exists... - Out << "\n" << getLLVMName(BB->getName(), false) << ':'; - } else if (!BB->use_empty()) { // Don't print block # of no uses... - Out << "\n; <label>:"; - int Slot = Machine.getSlot(BB); - if (Slot != -1) - Out << Slot; - else - Out << "<badref>"; - } - - if (BB->getParent() == 0) - Out << "\t\t; Error: Block without parent!"; - else { - if (BB != &BB->getParent()->front()) { // Not the entry block? - // Output predecessors for the block... - Out << "\t\t;"; - pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB); - - if (PI == PE) { - Out << " No predecessors!"; +// printInstruction - This member is called for each Instruction in a function. +void +CppWriter::printInstruction(const Instruction *I, const std::string& bbname) +{ + std::string iName(getCppName(I)); + + switch (I->getOpcode()) { + case Instruction::Ret: { + const ReturnInst* ret = cast<ReturnInst>(I); + Out << " ReturnInst* " << iName << " = new ReturnInst("; + if (ret->getReturnValue()) + Out << getCppName(ret->getReturnValue()) << ", "; + Out << bbname << ");"; + break; + } + case Instruction::Br: { + const BranchInst* br = cast<BranchInst>(I); + Out << " BranchInst* " << iName << " = new BranchInst(" ; + if (br->getNumOperands() == 3 ) { + Out << getCppName(br->getOperand(0)) << ", " + << getCppName(br->getOperand(1)) << ", " + << getCppName(br->getOperand(2)) << ", "; + + } else if (br->getNumOperands() == 1) { + Out << getCppName(br->getOperand(0)) << ", "; + } else { + assert(!"branch with 2 operands?"); + } + Out << bbname << ");"; + break; + } + case Instruction::Switch: + case Instruction::Invoke: + case Instruction::Unwind: + case Instruction::Unreachable: + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::Div: + case Instruction::Rem: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::SetEQ: + case Instruction::SetNE: + case Instruction::SetLE: + case Instruction::SetGE: + case Instruction::SetLT: + case Instruction::SetGT: + break; + case Instruction::Malloc: { + const MallocInst* mallocI = cast<MallocInst>(I); + Out << " MallocInst* " << iName << " = new MallocInst(" + << getCppName(mallocI->getAllocatedType()) << ", "; + if (mallocI->isArrayAllocation()) + Out << getCppName(mallocI->getArraySize()) << ", "; + Out << "\""; + printEscapedString(mallocI->getName()); + Out << "\", " << bbname << ");"; + if (mallocI->getAlignment()) + Out << "\n " << iName << "->setAlignment(" + << mallocI->getAlignment() << ");"; + break; + } + case Instruction::Free: + case Instruction::Alloca: { + const AllocaInst* allocaI = cast<AllocaInst>(I); + Out << " AllocaInst* " << iName << " = new AllocaInst(" + << getCppName(allocaI->getAllocatedType()) << ", "; + if (allocaI->isArrayAllocation()) + Out << getCppName(allocaI->getArraySize()) << ", "; + Out << "\""; + printEscapedString(allocaI->getName()); + Out << "\", " << bbname << ");"; + if (allocaI->getAlignment()) + Out << "\n " << iName << "->setAlignment(" + << allocaI->getAlignment() << ");"; + break; + } + case Instruction::Load: + break; + case Instruction::Store: { + const StoreInst* store = cast<StoreInst>(I); + Out << " StoreInst* " << iName << " = new StoreInst(" + << getCppName(store->getOperand(0)) << ", " + << getCppName(store->getOperand(1)) << ", " << bbname << ");\n"; + if (store->isVolatile()) + Out << "iName->setVolatile(true);"; + break; + } + case Instruction::GetElementPtr: { + const GetElementPtrInst* gep = cast<GetElementPtrInst>(I); + if (gep->getNumOperands() <= 2) { + Out << " GetElementPtrInst* " << iName << " = new GetElementPtrInst(" + << getCppName(gep->getOperand(0)); + if (gep->getNumOperands() == 2) + Out << ", " << getCppName(gep->getOperand(1)); + Out << ", " << bbname; } else { - Out << " preds ="; - writeOperand(*PI, false, true); - for (++PI; PI != PE; ++PI) { - Out << ','; - writeOperand(*PI, false, true); + Out << " std::vector<Value*> " << iName << "_indices;\n"; + for (unsigned i = 1; i < gep->getNumOperands(); ++i ) { + Out << " " << iName << "_indices.push_back(" + << getCppName(gep->getOperand(i)) << ");\n"; } + Out << " Instruction* " << iName << " = new GetElementPtrInst(" + << getCppName(gep->getOperand(0)) << ", " << iName << "_indices"; } + Out << ", \""; + printEscapedString(gep->getName()); + Out << "\", " << bbname << ");"; + break; } + case Instruction::PHI: + case Instruction::Cast: + case Instruction::Call: + case Instruction::Shl: + case Instruction::Shr: + case Instruction::Select: + case Instruction::UserOp1: + case Instruction::UserOp2: + case Instruction::VAArg: + case Instruction::ExtractElement: + case Instruction::InsertElement: + case Instruction::ShuffleVector: + break; } - Out << "\n"; - // Output all of the instructions in the basic block... - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) - printInstruction(*I); -} - - -/// printInfoComment - Print a little comment after the instruction indicating -/// which slot it occupies. -/// -void CppWriter::printInfoComment(const Value &V) { - if (V.getType() != Type::VoidTy) { - Out << "\t\t; <"; - printType(V.getType()) << '>'; - - if (!V.hasName()) { - int SlotNum = Machine.getSlot(&V); - if (SlotNum == -1) - Out << ":<badref>"; - else - Out << ':' << SlotNum; // Print out the def slot taken. - } - Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses - } -} - -/// printInstruction - This member is called for each Instruction in a function.. -/// -void CppWriter::printInstruction(const Instruction &I) { - Out << "\t"; - +/* // Print out name if it exists... if (I.hasName()) Out << getLLVMName(I.getName()) << " = "; @@ -1621,346 +1075,8 @@ void CppWriter::printInstruction(const Instruction &I) { } } - printInfoComment(I); Out << "\n"; -} - - -//===----------------------------------------------------------------------===// -// External Interface declarations -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -//===-- SlotMachine Implementation -//===----------------------------------------------------------------------===// - -#if 0 -#define SC_DEBUG(X) std::cerr << X -#else -#define SC_DEBUG(X) -#endif - -// Module level constructor. Causes the contents of the Module (sans functions) -// to be added to the slot table. -SlotMachine::SlotMachine(const Module *M) - : TheModule(M) ///< Saved for lazy initialization. - , mMap() - , mTypes() - , fMap() - , fTypes() -{ - assert(M != 0 && "Invalid Module"); - processModule(); -} - -// Iterate through all the global variables, functions, and global -// variable initializers and create slots for them. -void SlotMachine::processModule() { - // Add all of the global variables to the value table... - for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); - I != E; ++I) - createSlot(I); - - // Add all the functions to the table - for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); - FI != FE; ++FI) { - createSlot(FI); - // Add all the function arguments - for(Function::const_arg_iterator AI = FI->arg_begin(), - AE = FI->arg_end(); AI != AE; ++AI) - createSlot(AI); - - // Add all of the basic blocks and instructions - for (Function::const_iterator BB = FI->begin(), - E = FI->end(); BB != E; ++BB) { - createSlot(BB); - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; - ++I) { - createSlot(I); - } - } - } -} - -// Process the arguments, basic blocks, and instructions of a function. -void SlotMachine::processFunction() { - -} - -// Clean up after incorporating a function. This is the only way -// to get out of the function incorporation state that affects the -// getSlot/createSlot lock. Function incorporation state is indicated -// by TheFunction != 0. -void SlotMachine::purgeFunction() { - SC_DEBUG("begin purgeFunction!\n"); - fMap.clear(); // Simply discard the function level map - fTypes.clear(); - TheFunction = 0; - FunctionProcessed = false; - SC_DEBUG("end purgeFunction!\n"); -} - -/// Get the slot number for a value. This function will assert if you -/// ask for a Value that hasn't previously been inserted with createSlot. -/// Types are forbidden because Type does not inherit from Value (any more). -int SlotMachine::getSlot(const Value *V) { - assert( V && "Can't get slot for null Value" ); - assert(!isa<Constant>(V) || isa<GlobalValue>(V) && - "Can't insert a non-GlobalValue Constant into SlotMachine"); - - // Get the type of the value - const Type* VTy = V->getType(); - - // Find the type plane in the module map - TypedPlanes::const_iterator MI = mMap.find(VTy); - - if ( TheFunction ) { - // Lookup the type in the function map too - TypedPlanes::const_iterator FI = fMap.find(VTy); - // If there is a corresponding type plane in the function map - if ( FI != fMap.end() ) { - // Lookup the Value in the function map - ValueMap::const_iterator FVI = FI->second.map.find(V); - // If the value doesn't exist in the function map - if ( FVI == FI->second.map.end() ) { - // Look up the value in the module map. - if (MI == mMap.end()) return -1; - ValueMap::const_iterator MVI = MI->second.map.find(V); - // If we didn't find it, it wasn't inserted - if (MVI == MI->second.map.end()) return -1; - assert( MVI != MI->second.map.end() && "Value not found"); - // We found it only at the module level - return MVI->second; - - // else the value exists in the function map - } else { - // Return the slot number as the module's contribution to - // the type plane plus the index in the function's contribution - // to the type plane. - if (MI != mMap.end()) - return MI->second.next_slot + FVI->second; - else - return FVI->second; - } - } - } - - // N.B. Can get here only if either !TheFunction or the function doesn't - // have a corresponding type plane for the Value - - // Make sure the type plane exists - if (MI == mMap.end()) return -1; - // Lookup the value in the module's map - ValueMap::const_iterator MVI = MI->second.map.find(V); - // Make sure we found it. - if (MVI == MI->second.map.end()) return -1; - // Return it. - return MVI->second; -} - -/// Get the slot number for a type. This function will assert if you -/// ask for a Type that hasn't previously been inserted with createSlot. -int SlotMachine::getSlot(const Type *Ty) { - assert( Ty && "Can't get slot for null Type" ); - - if ( TheFunction ) { - // Lookup the Type in the function map - TypeMap::const_iterator FTI = fTypes.map.find(Ty); - // If the Type doesn't exist in the function map - if ( FTI == fTypes.map.end() ) { - TypeMap::const_iterator MTI = mTypes.map.find(Ty); - // If we didn't find it, it wasn't inserted - if (MTI == mTypes.map.end()) - return -1; - // We found it only at the module level - return MTI->second; - - // else the value exists in the function map - } else { - // Return the slot number as the module's contribution to - // the type plane plus the index in the function's contribution - // to the type plane. - return mTypes.next_slot + FTI->second; - } - } - - // N.B. Can get here only if !TheFunction - - // Lookup the value in the module's map - TypeMap::const_iterator MTI = mTypes.map.find(Ty); - // Make sure we found it. - if (MTI == mTypes.map.end()) return -1; - // Return it. - return MTI->second; -} - -// Create a new slot, or return the existing slot if it is already -// inserted. Note that the logic here parallels getSlot but instead -// of asserting when the Value* isn't found, it inserts the value. -unsigned SlotMachine::createSlot(const Value *V) { - assert( V && "Can't insert a null Value to SlotMachine"); - assert(!isa<Constant>(V) || isa<GlobalValue>(V) && - "Can't insert a non-GlobalValue Constant into SlotMachine"); - - const Type* VTy = V->getType(); - - // Just ignore void typed things - if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value! - - // Look up the type plane for the Value's type from the module map - TypedPlanes::const_iterator MI = mMap.find(VTy); - - if ( TheFunction ) { - // Get the type plane for the Value's type from the function map - TypedPlanes::const_iterator FI = fMap.find(VTy); - // If there is a corresponding type plane in the function map - if ( FI != fMap.end() ) { - // Lookup the Value in the function map - ValueMap::const_iterator FVI = FI->second.map.find(V); - // If the value doesn't exist in the function map - if ( FVI == FI->second.map.end() ) { - // If there is no corresponding type plane in the module map - if ( MI == mMap.end() ) - return insertValue(V); - // Look up the value in the module map - ValueMap::const_iterator MVI = MI->second.map.find(V); - // If we didn't find it, it wasn't inserted - if ( MVI == MI->second.map.end() ) - return insertValue(V); - else - // We found it only at the module level - return MVI->second; - - // else the value exists in the function map - } else { - if ( MI == mMap.end() ) - return FVI->second; - else - // Return the slot number as the module's contribution to - // the type plane plus the index in the function's contribution - // to the type plane. - return MI->second.next_slot + FVI->second; - } - - // else there is not a corresponding type plane in the function map - } else { - // If the type plane doesn't exists at the module level - if ( MI == mMap.end() ) { - return insertValue(V); - // else type plane exists at the module level, examine it - } else { - // Look up the value in the module's map - ValueMap::const_iterator MVI = MI->second.map.find(V); - // If we didn't find it there either - if ( MVI == MI->second.map.end() ) - // Return the slot number as the module's contribution to - // the type plane plus the index of the function map insertion. - return MI->second.next_slot + insertValue(V); - else - return MVI->second; - } - } - } - - // N.B. Can only get here if !TheFunction - - // If the module map's type plane is not for the Value's type - if ( MI != mMap.end() ) { - // Lookup the value in the module's map - ValueMap::const_iterator MVI = MI->second.map.find(V); - if ( MVI != MI->second.map.end() ) - return MVI->second; - } - - return insertValue(V); -} - -// Create a new slot, or return the existing slot if it is already -// inserted. Note that the logic here parallels getSlot but instead -// of asserting when the Value* isn't found, it inserts the value. -unsigned SlotMachine::createSlot(const Type *Ty) { - assert( Ty && "Can't insert a null Type to SlotMachine"); - - if ( TheFunction ) { - // Lookup the Type in the function map - TypeMap::const_iterator FTI = fTypes.map.find(Ty); - // If the type doesn't exist in the function map - if ( FTI == fTypes.map.end() ) { - // Look up the type in the module map - TypeMap::const_iterator MTI = mTypes.map.find(Ty); - // If we didn't find it, it wasn't inserted - if ( MTI == mTypes.map.end() ) - return insertValue(Ty); - else - // We found it only at the module level - return MTI->second; - - // else the value exists in the function map - } else { - // Return the slot number as the module's contribution to - // the type plane plus the index in the function's contribution - // to the type plane. - return mTypes.next_slot + FTI->second; - } - } - - // N.B. Can only get here if !TheFunction - - // Lookup the type in the module's map - TypeMap::const_iterator MTI = mTypes.map.find(Ty); - if ( MTI != mTypes.map.end() ) - return MTI->second; - - return insertValue(Ty); -} - -// Low level insert function. Minimal checking is done. This -// function is just for the convenience of createSlot (above). -unsigned SlotMachine::insertValue(const Value *V ) { - assert(V && "Can't insert a null Value into SlotMachine!"); - assert(!isa<Constant>(V) || isa<GlobalValue>(V) && - "Can't insert a non-GlobalValue Constant into SlotMachine"); - - // If this value does not contribute to a plane (is void) - // or if the value already has a name then ignore it. - if (V->getType() == Type::VoidTy || V->hasName() ) { - SC_DEBUG("ignored value " << *V << "\n"); - return 0; // FIXME: Wrong return value - } - - const Type *VTy = V->getType(); - unsigned DestSlot = 0; - - if ( TheFunction ) { - TypedPlanes::iterator I = fMap.find( VTy ); - if ( I == fMap.end() ) - I = fMap.insert(std::make_pair(VTy,ValuePlane())).first; - DestSlot = I->second.map[V] = I->second.next_slot++; - } else { - TypedPlanes::iterator I = mMap.find( VTy ); - if ( I == mMap.end() ) - I = mMap.insert(std::make_pair(VTy,ValuePlane())).first; - DestSlot = I->second.map[V] = I->second.next_slot++; - } - - SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" << - DestSlot << " ["); - // G = Global, C = Constant, T = Type, F = Function, o = other - SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' : - (isa<Constant>(V) ? 'C' : 'o')))); - SC_DEBUG("]\n"); - return DestSlot; -} - -// Low level insert function. Minimal checking is done. This -// function is just for the convenience of createSlot (above). -unsigned SlotMachine::insertValue(const Type *Ty ) { - assert(Ty && "Can't insert a null Type into SlotMachine!"); - - unsigned DestSlot = fTypes.map[Ty] = fTypes.next_slot++; - SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n"); - return DestSlot; +*/ } } // end anonymous llvm @@ -1987,15 +1103,16 @@ void WriteModuleToCppFile(Module* mod, std::ostream& o) { o << "int main(int argc, char**argv) {\n"; o << " Module* Mod = makeLLVMModule();\n"; o << " verifyModule(*Mod, PrintMessageAction);\n"; + o << " std::cerr.flush();\n"; + o << " std::cout.flush();\n"; o << " PassManager PM;\n"; o << " PM.add(new PrintModulePass(&std::cout));\n"; o << " PM.run(*Mod);\n"; o << " return 0;\n"; o << "}\n\n"; o << "Module* makeLLVMModule() {\n"; - SlotMachine SlotTable(mod); - CppWriter W(o, SlotTable, mod); - W.write(mod); + CppWriter W(o, mod); + W.printModule(mod); o << "return mod;\n"; o << "}\n"; } |