aboutsummaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/Analysis/ScalarEvolution.cpp171
1 files changed, 145 insertions, 26 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index e0ac56c65e..2da8e6fbd6 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -4658,7 +4658,8 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
/// specified type, assuming that all operands were constants.
static bool CanConstantFold(const Instruction *I) {
if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
- isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
+ isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
+ isa<LoadInst>(I))
return true;
if (const CallInst *CI = dyn_cast<CallInst>(I))
@@ -4751,13 +4752,19 @@ static Constant *EvaluateExpression(Value *V, const Loop *L,
const TargetData *TD) {
// Convenient constant check, but redundant for recursive calls.
if (Constant *C = dyn_cast<Constant>(V)) return C;
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return 0;
- Instruction *I = cast<Instruction>(V);
if (Constant *C = Vals.lookup(I)) return C;
- assert(!isa<PHINode>(I) && "loop header phis should be mapped to constant");
- assert(canConstantEvolve(I, L) && "cannot evaluate expression in this loop");
- (void)L;
+ // An instruction inside the loop depends on a value outside the loop that we
+ // weren't given a mapping for, or a value such as a call inside the loop.
+ if (!canConstantEvolve(I, L)) return 0;
+
+ // An unmapped PHI can be due to a branch or another loop inside this loop,
+ // or due to this not being the initial iteration through a loop where we
+ // couldn't compute the evolution of this particular PHI last time.
+ if (isa<PHINode>(I)) return 0;
std::vector<Constant*> Operands(I->getNumOperands());
@@ -4774,9 +4781,13 @@ static Constant *EvaluateExpression(Value *V, const Loop *L,
Operands[i] = C;
}
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+ if (CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Operands[1], TD);
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!LI->isVolatile())
+ return ConstantFoldLoadFromConstPtr(Operands[0], TD);
+ }
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
}
@@ -4798,23 +4809,26 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
- // FIXME: Nick's fix for PR11034 will seed constants for multiple header phis.
DenseMap<Instruction *, Constant *> CurrentIterVals;
+ BasicBlock *Header = L->getHeader();
+ assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
// Since the loop is canonicalized, the PHI node must have two entries. One
// entry must be a constant (coming in from outside of the loop), and the
// second must be derived from the same PHI.
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- Constant *StartCST =
- dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0)
- return RetVal = 0; // Must be a constant.
- CurrentIterVals[PN] = StartCST;
+ PHINode *PHI = 0;
+ for (BasicBlock::iterator I = Header->begin();
+ (PHI = dyn_cast<PHINode>(I)); ++I) {
+ Constant *StartCST =
+ dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
+ if (StartCST == 0) continue;
+ CurrentIterVals[PHI] = StartCST;
+ }
+ if (!CurrentIterVals.count(PN))
+ return RetVal = 0;
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
- if (getConstantEvolvingPHI(BEValue, L) != PN &&
- !isa<Constant>(BEValue))
- return RetVal = 0; // Not derived from same PHI.
// Execute the loop symbolically to determine the exit value.
if (BEs.getActiveBits() >= 32)
@@ -4826,15 +4840,29 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
if (IterationNum == NumIterations)
return RetVal = CurrentIterVals[PN]; // Got exit value!
- // Compute the value of the PHI node for the next iteration.
+ // Compute the value of the PHIs for the next iteration.
// EvaluateExpression adds non-phi values to the CurrentIterVals map.
+ DenseMap<Instruction *, Constant *> NextIterVals;
Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
if (NextPHI == CurrentIterVals[PN])
return RetVal = NextPHI; // Stopped evolving!
if (NextPHI == 0)
return 0; // Couldn't evaluate!
- DenseMap<Instruction *, Constant *> NextIterVals;
NextIterVals[PN] = NextPHI;
+
+ // Also evaluate the other PHI nodes. However, we don't get to stop if we
+ // cease to be able to evaluate one of them or if they stop evolving,
+ // because that doesn't necessarily prevent us from computing PN.
+ for (DenseMap<Instruction *, Constant *>::const_iterator
+ I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
+ PHINode *PHI = dyn_cast<PHINode>(I->first);
+ if (!PHI || PHI == PN) continue;
+ Constant *&NextPHI = NextIterVals[PHI];
+ if (NextPHI) continue; // Already computed!
+
+ Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
+ NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
+ }
CurrentIterVals.swap(NextIterVals);
}
}
@@ -4844,9 +4872,9 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
/// try to evaluate a few iterations of the loop until we get the exit
/// condition gets a value of ExitWhen (true or false). If we cannot
/// evaluate the trip count of the loop, return getCouldNotCompute().
-const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
- Value *Cond,
- bool ExitWhen) {
+const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
+ Value *Cond,
+ bool ExitWhen) {
PHINode *PN = getConstantEvolvingPHI(Cond, L);
if (PN == 0) return getCouldNotCompute();
@@ -4921,6 +4949,98 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
return C;
}
+/// This builds up a Constant using the ConstantExpr interface. That way, we
+/// will return Constants for objects which aren't represented by a
+/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
+/// Returns NULL if the SCEV isn't representable as a Constant.
+static Constant *BuildConstantFromSCEV(const SCEV *V) {
+ switch (V->getSCEVType()) {
+ default: // TODO: smax, umax.
+ case scCouldNotCompute:
+ case scAddRecExpr:
+ break;
+ case scConstant:
+ return cast<SCEVConstant>(V)->getValue();
+ case scUnknown:
+ return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
+ case scSignExtend: {
+ const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
+ return ConstantExpr::getSExt(CastOp, SS->getType());
+ break;
+ }
+ case scZeroExtend: {
+ const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
+ return ConstantExpr::getZExt(CastOp, SZ->getType());
+ break;
+ }
+ case scTruncate: {
+ const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
+ return ConstantExpr::getTrunc(CastOp, ST->getType());
+ break;
+ }
+ case scAddExpr: {
+ const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
+ if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
+ if (C->getType()->isPointerTy())
+ C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
+ for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
+ Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
+ if (!C2) return 0;
+
+ // First pointer!
+ if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
+ std::swap(C, C2);
+ // The offsets have been converted to bytes. We can add bytes to an
+ // i8* by GEP with the byte count in the first index.
+ C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
+ }
+
+ // Don't bother trying to sum two pointers. We probably can't
+ // statically compute a load that results from it anyway.
+ if (C2->getType()->isPointerTy())
+ return 0;
+
+ if (C->getType()->isPointerTy()) {
+ if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
+ C2 = ConstantExpr::getIntegerCast(
+ C2, Type::getInt32Ty(C->getContext()), true);
+ C = ConstantExpr::getGetElementPtr(C, C2);
+ } else
+ C = ConstantExpr::getAdd(C, C2);
+ }
+ return C;
+ }
+ break;
+ }
+ case scMulExpr: {
+ const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
+ if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
+ // Don't bother with pointers at all.
+ if (C->getType()->isPointerTy()) return 0;
+ for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
+ Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
+ if (!C2 || C2->getType()->isPointerTy()) return 0;
+ C = ConstantExpr::getMul(C, C2);
+ }
+ return C;
+ }
+ break;
+ }
+ case scUDivExpr: {
+ const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
+ if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
+ if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
+ if (LHS->getType() == RHS->getType())
+ return ConstantExpr::getUDiv(LHS, RHS);
+ break;
+ }
+ }
+ return 0;
+}
+
const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
if (isa<SCEVConstant>(V)) return V;
@@ -4973,11 +5093,7 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
const SCEV *OpV = getSCEVAtScope(OrigV, L);
MadeImprovement |= OrigV != OpV;
- Constant *C = 0;
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
- C = SC->getValue();
- if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
- C = dyn_cast<Constant>(SU->getValue());
+ Constant *C = BuildConstantFromSCEV(OpV);
if (!C) return V;
if (C->getType() != Op->getType())
C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
@@ -4993,7 +5109,10 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Operands[0], Operands[1], TD);
- else
+ else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!LI->isVolatile())
+ C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
+ } else
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Operands, TD);
if (!C) return V;