diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Target/SparcV9/SparcV9CodeEmitter.cpp | 377 | ||||
-rw-r--r-- | lib/Target/SparcV9/SparcV9CodeEmitter.h | 5 |
2 files changed, 169 insertions, 213 deletions
diff --git a/lib/Target/SparcV9/SparcV9CodeEmitter.cpp b/lib/Target/SparcV9/SparcV9CodeEmitter.cpp index d08ffa4a89..3f77d0e916 100644 --- a/lib/Target/SparcV9/SparcV9CodeEmitter.cpp +++ b/lib/Target/SparcV9/SparcV9CodeEmitter.cpp @@ -34,18 +34,34 @@ namespace { SparcV9CodeEmitter &SparcV9; MachineCodeEmitter &MCE; - // LazyCodeGenMap - Keep track of call sites for functions that are to be - // lazily resolved. + /// LazyCodeGenMap - Keep track of call sites for functions that are to be + /// lazily resolved. + /// std::map<uint64_t, Function*> LazyCodeGenMap; - // LazyResolverMap - Keep track of the lazy resolver created for a - // particular function so that we can reuse them if necessary. + /// LazyResolverMap - Keep track of the lazy resolver created for a + /// particular function so that we can reuse them if necessary. + /// std::map<Function*, uint64_t> LazyResolverMap; + + public: + enum CallType { ShortCall, FarCall }; + + private: + /// We need to keep track of whether we used a simple call or a far call + /// (many instructions) in sequence. This means we need to keep track of + /// what type of stub we generate. + static std::map<uint64_t, CallType> LazyCallFlavor; + public: JITResolver(SparcV9CodeEmitter &V9, MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {} uint64_t getLazyResolver(Function *F); uint64_t addFunctionReference(uint64_t Address, Function *F); + void deleteFunctionReference(uint64_t Address); + void addCallFlavor(uint64_t Address, CallType Flavor) { + LazyCallFlavor[Address] = Flavor; + } // Utility functions for accessing data from static callback uint64_t getCurrentPCValue() { @@ -65,6 +81,7 @@ namespace { }; JITResolver *TheJITResolver; + std::map<uint64_t, JITResolver::CallType> JITResolver::LazyCallFlavor; } /// addFunctionReference - This method is called when we need to emit the @@ -73,10 +90,21 @@ namespace { /// keep track of where we are. /// uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) { - LazyCodeGenMap[Address] = F; + LazyCodeGenMap[Address] = F; return (intptr_t)&JITResolver::CompilationCallback; } +/// deleteFunctionReference - If we are emitting a far call, we already added a +/// reference to the function, but it is now incorrect, since the address to the +/// JIT resolver is too far away to be a simple call instruction. This is used +/// to remove the address from the map. +/// +void JITResolver::deleteFunctionReference(uint64_t Address) { + std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(Address); + assert(I != LazyCodeGenMap.end() && "Not in map!"); + LazyCodeGenMap.erase(I); +} + uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) { std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); assert(I != LazyCodeGenMap.end() && "Not in map!"); @@ -102,80 +130,42 @@ uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) { i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0; - // - // Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2 - // - - // stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp - MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX); - delete STX; - Addr += 4; - - // stx %i2, [%sp + 2127] ;; save %i2 to the stack - STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX); - delete STX; - Addr += 4; - - // - // Get address to branch into %i2, using %i1 as a temporary - // + MachineInstr* BinaryCode[] = { + // + // Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2 + // + // stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp + BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119), + // stx %i2, [%sp + 2127] ;; save %i2 to the stack + BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127), + // + // Get address to branch into %i2, using %i1 as a temporary + // + // sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1 + BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1), + // or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1 + BuildMI(V9::ORi, 3).addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1), + // sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word + BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1), + // sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg + BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2), + // or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2 + BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2), + // or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2 + BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2), + // ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72 + BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1), + // jmpl %i2, %g0, %g0 ;; indirect branch on %i2 + BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0), + // ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80 + BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2) + }; - // sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1 - MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH); - delete SH; - Addr += 4; - - // or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1 - MachineInstr *OR = BuildMI(V9::ORi, 3) - .addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); - delete OR; - Addr += 4; - - // sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word - MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SL); - delete SL; - Addr += 4; - - // sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg - SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH); - delete SH; - Addr += 4; - - // or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2 - OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); - delete OR; - Addr += 4; - - // or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2 - OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); - delete OR; - Addr += 4; - - // ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72 - MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX); - delete LDX; - Addr += 4; - - // jmpl %i2, %g0, %g0 ;; indirect branch on %i2 - MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*J); - delete J; - Addr += 4; - - // ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80 - LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2); - *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX); - delete LDX; - Addr += 4; + for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { + *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*BinaryCode[i]); + delete BinaryCode[i]; + Addr += 4; + } return Addr; } @@ -184,86 +174,57 @@ void JITResolver::CompilationCallback() { uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0); int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom); DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n"); - - // Rewrite the call target... so that we don't fault every time we execute - // the call. -#if 0 - int64_t RealCallTarget = (int64_t) - ((NewVal - TheJITResolver->getCurrentPCValue()) >> 4); - if (RealCallTarget >= (1<<22) || RealCallTarget <= -(1<<22)) { - std::cerr << "Address out of bounds for 22bit BA: " << RealCallTarget<<"\n"; - abort(); - } +#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) + register int64_t returnAddr; + __asm__ __volatile__ ("add %%i7, %%g0, %0" : "=r" (returnAddr) : ); + DEBUG(std::cerr << "Read i7 (return addr) = " + << std::hex << returnAddr << ", value: " + << std::hex << *(unsigned*)returnAddr << "\n"); #endif - //uint64_t CurrPC = TheJITResolver->getCurrentPCValue(); - // we will insert 9 instructions before we do the actual jump - //int64_t NewTarget = (NewVal - 9*4 - InstAddr) >> 2; - - static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2, - i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6, - o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0; - - // Subtract 4 to overwrite the 'save' that's there now - uint64_t InstAddr = CameFrom-4; - - InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr); - - // CODE SHOULD NEVER GO PAST THIS LOAD!! The real function should return to - // the original caller, not here!! - - // FIXME: add call 0 to make sure?!? - - // =============== THE REAL STUB ENDS HERE ========================= - - // What follows below is one-time restore code, because this callback may be - // changing registers in unpredictible ways. However, since it is executed - // only once per function (after the function is resolved, the callback is no - // longer in the path), this has to be done only once. + // Rewrite the call target so that we don't fault every time we execute it. // - // Thus, it is after the regular stub code. The call back returns to THIS - // point, but every other call to the target function will execute the code - // above. Hence, this code is one-time use. - - uint64_t OneTimeRestore = InstAddr; - // restore %g0, 0, %g0 - //MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0) - // .addMReg(g0, MOTy::Def); - //*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*R); - //delete R; - - // FIXME: BuildMI() above crashes. Encode the instruction directly. - // restore %g0, 0, %g0 - *((unsigned*)(intptr_t)InstAddr) = 0x81e82000U; - InstAddr += 4; + static const unsigned o6 = SparcIntRegClass::o6; - InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr); + // Subtract enough to overwrite up to the 'save' instruction + // This depends on whether we made a short call (1 instruction) to the + // farCall (10 instructions) + uint64_t Offset = (LazyCallFlavor[CameFrom] == ShortCall) ? 4 : 40; + uint64_t CodeBegin = CameFrom - Offset; + + // Make sure that what we're about to overwrite is indeed "save" + MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); + unsigned SaveInst = TheJITResolver->getBinaryCodeForInstr(*SV); + delete SV; + unsigned CodeInMem = *(unsigned*)(intptr_t)CodeBegin; + assert(CodeInMem == SaveInst && "About to overwrite smthg not a save instr!"); + DEBUG(std::cerr << "Emitting a far jump to 0x" << std::hex << Target << "\n"); + TheJITResolver->insertFarJumpAtAddr(Target, CodeBegin); // FIXME: if the target function is close enough to fit into the 19bit disp of // BA, we should use this version, as its much cheaper to generate. - /* - MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(RealCallTarget); - *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*MI); - delete MI; - InstAddr += 4; - - // Add another NOP - MachineInstr *Nop = BuildMI(V9::NOP, 0); - *((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*Nop); - delete Nop; +#if 0 + uint64_t InstAddr = CodeBegin; + // ba <target> + MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(Target); + *((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*MI); InstAddr += 4; + delete MI; - MachineInstr *BA = BuildMI(V9::BA, 1).addSImm(RealCallTarget-2); - *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*BA); - delete BA; - */ + // nop + MI = BuildMI(V9::NOP, 0); + *((unsigned*)(intptr_t))=TheJITResolver->getBinaryCodeForInstr(*Nop); + delete MI; +#endif - // Change the return address to reexecute the call instruction... + // Change the return address to reexecute the restore, then the jump // The return address is really %o7, but will disappear after this function // returns, and the register windows are rotated away. #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) - __asm__ __volatile__ ("or %%g0, %0, %%i7" : : "r" (OneTimeRestore-8)); + __asm__ __volatile__ ("sub %%i7, %0, %%i7" : : "r" (Offset+12)); + DEBUG(std::cerr << "Callback setting return addr to " + << std::hex << (CameFrom-Offset-12) << "\n"); #endif } @@ -274,12 +235,19 @@ void JITResolver::CompilationCallback() { /// directly. /// uint64_t JITResolver::emitStubForFunction(Function *F) { - MCE.startFunctionStub(*F, 6); + MCE.startFunctionStub(*F, 20); DEBUG(std::cerr << "Emitting stub at addr: 0x" << std::hex << MCE.getCurrentPCValue() << "\n"); - unsigned o6 = SparcIntRegClass::o6; + unsigned o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0; + + // restore %g0, 0, %g0 + MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0) + .addMReg(g0, MOTy::Def); + SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*R)); + delete R; + // save %sp, -192, %sp MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV)); @@ -288,8 +256,12 @@ uint64_t JITResolver::emitStubForFunction(Function *F) { int64_t CurrPC = MCE.getCurrentPCValue(); int64_t Addr = (int64_t)addFunctionReference(CurrPC, F); int64_t CallTarget = (Addr-CurrPC) >> 2; - if (CallTarget >= (1 << 30) || CallTarget <= -(1 << 30)) { - SparcV9.emitFarCall(Addr); + //if (CallTarget >= (1 << 29) || CallTarget <= -(1 << 29)) { + // Since this is a far call, the actual address of the call is shifted + // by the number of instructions it takes to calculate the exact address + deleteFunctionReference(CurrPC); + SparcV9.emitFarCall(Addr, F); +#if 0 } else { // call CallTarget ;; invoke the callback MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget); @@ -300,10 +272,13 @@ uint64_t JITResolver::emitStubForFunction(Function *F) { MachineInstr *Nop = BuildMI(V9::NOP, 0); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop)); delete Nop; + + addCallFlavor(CurrPC, ShortCall); } +#endif SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub - return (intptr_t)MCE.finishFunctionStub(*F); + return (intptr_t)MCE.finishFunctionStub(*F)+4; /* 1 instr past the restore */ } @@ -391,74 +366,54 @@ SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, // WARNING: if the call used the delay slot to do meaningful work, that's not // being accounted for, and the behavior will be incorrect!! -inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target) { +inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target, Function *F) { static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2, i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6, o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0; - // - // Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2 - // - - // stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp - MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119); - emitWord(getBinaryCodeForInstr(*STX)); - delete STX; - - // stx %i2, [%sp + 2127] ;; save %i2 to the stack - STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127); - emitWord(getBinaryCodeForInstr(*STX)); - delete STX; + MachineInstr* BinaryCode[] = { + // + // Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2 + // + // stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp + BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119), + // stx %i2, [%sp + 2127] ;; save %i2 to the stack + BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127), + // + // Get address to branch into %i2, using %i1 as a temporary + // + // sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1 + BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1), + // or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1 + BuildMI(V9::ORi, 3).addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1), + // sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word + BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1), + // sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg + BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2), + // or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2 + BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2), + // or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2 + BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2), + // ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72 + BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1), + // jmpl %i2, %g0, %o7 ;; indirect call on %i2 + BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(o7), + // ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80 + BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2) + }; - // - // Get address to branch into %i2, using %i1 as a temporary - // + for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { + // This is where we save the return address in the LazyResolverMap!! + if (i == 9 && F != 0) { // Do this right before the JMPL + uint64_t CurrPC = MCE.getCurrentPCValue(); + TheJITResolver->addFunctionReference(CurrPC, F); + // Remember that this is a far call, to subtract appropriate offset later + TheJITResolver->addCallFlavor(CurrPC, JITResolver::FarCall); + } - // sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1 - MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1); - emitWord(getBinaryCodeForInstr(*SH)); - delete SH; - - // or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1 - MachineInstr *OR = BuildMI(V9::ORi, 3) - .addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1); - emitWord(getBinaryCodeForInstr(*OR)); - delete OR; - - // sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word - MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1); - emitWord(getBinaryCodeForInstr(*SL)); - delete SL; - - // sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg - SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2); - emitWord(getBinaryCodeForInstr(*SH)); - delete SH; - - // or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2 - OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2); - emitWord(getBinaryCodeForInstr(*OR)); - delete OR; - - // or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2 - OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2); - emitWord(getBinaryCodeForInstr(*OR)); - delete OR; - - // ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72 - MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1); - emitWord(getBinaryCodeForInstr(*LDX)); - delete LDX; - - // jmpl %i2, %g0, %o7 ;; indirect call on %i2 - MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(o7); - emitWord(getBinaryCodeForInstr(*J)); - delete J; - - // ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80 - LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2); - emitWord(getBinaryCodeForInstr(*LDX)); - delete LDX; + emitWord(getBinaryCodeForInstr(*BinaryCode[i])); + delete BinaryCode[i]; + } } diff --git a/lib/Target/SparcV9/SparcV9CodeEmitter.h b/lib/Target/SparcV9/SparcV9CodeEmitter.h index b1c01910f6..8b73aa4499 100644 --- a/lib/Target/SparcV9/SparcV9CodeEmitter.h +++ b/lib/Target/SparcV9/SparcV9CodeEmitter.h @@ -50,8 +50,9 @@ public: /// emitFarCall - produces a code sequence to make a call to a destination /// that does not fit in the 30 bits that a call instruction allows. - /// - void emitFarCall(uint64_t Addr); + /// If the function F is non-null, this also saves the return address in + /// the LazyResolver map of the JITResolver. + void emitFarCall(uint64_t Addr, Function *F = 0); private: /// getMachineOpValue - |