diff options
Diffstat (limited to 'lib/Transforms/Utils/UnrollLoop.cpp')
-rw-r--r-- | lib/Transforms/Utils/UnrollLoop.cpp | 372 |
1 files changed, 0 insertions, 372 deletions
diff --git a/lib/Transforms/Utils/UnrollLoop.cpp b/lib/Transforms/Utils/UnrollLoop.cpp deleted file mode 100644 index 4d838b50e3..0000000000 --- a/lib/Transforms/Utils/UnrollLoop.cpp +++ /dev/null @@ -1,372 +0,0 @@ -//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements some loop unrolling utilities. It does not define any -// actual pass or policy, but provides a single function to perform loop -// unrolling. -// -// It works best when loops have been canonicalized by the -indvars pass, -// allowing it to determine the trip counts of loops easily. -// -// The process of unrolling can produce extraneous basic blocks linked with -// unconditional branches. This will be corrected in the future. -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "loop-unroll" -#include "llvm/Transforms/Utils/UnrollLoop.h" -#include "llvm/BasicBlock.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/Local.h" -#include <cstdio> - -using namespace llvm; - -// TODO: Should these be here or in LoopUnroll? -STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); -STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); - -/// RemapInstruction - Convert the instruction operands from referencing the -/// current values into those specified by ValueMap. -static inline void RemapInstruction(Instruction *I, - DenseMap<const Value *, Value*> &ValueMap) { - for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { - Value *Op = I->getOperand(op); - DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op); - if (It != ValueMap.end()) Op = It->second; - I->setOperand(op, Op); - } -} - -/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it -/// only has one predecessor, and that predecessor only has one successor. -/// The LoopInfo Analysis that is passed will be kept consistent. -/// Returns the new combined block. -static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { - // Merge basic blocks into their predecessor if there is only one distinct - // pred, and if there is only one distinct successor of the predecessor, and - // if there are no PHI nodes. - BasicBlock *OnlyPred = BB->getSinglePredecessor(); - if (!OnlyPred) return 0; - - if (OnlyPred->getTerminator()->getNumSuccessors() != 1) - return 0; - - DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred); - - // Resolve any PHI nodes at the start of the block. They are all - // guaranteed to have exactly one entry if they exist, unless there are - // multiple duplicate (but guaranteed to be equal) entries for the - // incoming edges. This occurs when there are multiple edges from - // OnlyPred to OnlySucc. - FoldSingleEntryPHINodes(BB); - - // Delete the unconditional branch from the predecessor... - OnlyPred->getInstList().pop_back(); - - // Move all definitions in the successor to the predecessor... - OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); - - // Make all PHI nodes that referred to BB now refer to Pred as their - // source... - BB->replaceAllUsesWith(OnlyPred); - - std::string OldName = BB->getName(); - - // Erase basic block from the function... - LI->removeBlock(BB); - BB->eraseFromParent(); - - // Inherit predecessor's name if it exists... - if (!OldName.empty() && !OnlyPred->hasName()) - OnlyPred->setName(OldName); - - return OnlyPred; -} - -/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true -/// if unrolling was succesful, or false if the loop was unmodified. Unrolling -/// can only fail when the loop's latch block is not terminated by a conditional -/// branch instruction. However, if the trip count (and multiple) are not known, -/// loop unrolling will mostly produce more code that is no faster. -/// -/// The LoopInfo Analysis that is passed will be kept consistent. -/// -/// If a LoopPassManager is passed in, and the loop is fully removed, it will be -/// removed from the LoopPassManager as well. LPM can also be NULL. -bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) { - assert(L->isLCSSAForm()); - - BasicBlock *Header = L->getHeader(); - BasicBlock *LatchBlock = L->getLoopLatch(); - BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); - - if (!BI || BI->isUnconditional()) { - // The loop-rotate pass can be helpful to avoid this in many cases. - DEBUG(errs() << - " Can't unroll; loop not terminated by a conditional branch.\n"); - return false; - } - - // Find trip count - unsigned TripCount = L->getSmallConstantTripCount(); - // Find trip multiple if count is not available - unsigned TripMultiple = 1; - if (TripCount == 0) - TripMultiple = L->getSmallConstantTripMultiple(); - - if (TripCount != 0) - DEBUG(errs() << " Trip Count = " << TripCount << "\n"); - if (TripMultiple != 1) - DEBUG(errs() << " Trip Multiple = " << TripMultiple << "\n"); - - // Effectively "DCE" unrolled iterations that are beyond the tripcount - // and will never be executed. - if (TripCount != 0 && Count > TripCount) - Count = TripCount; - - assert(Count > 0); - assert(TripMultiple > 0); - assert(TripCount == 0 || TripCount % TripMultiple == 0); - - // Are we eliminating the loop control altogether? - bool CompletelyUnroll = Count == TripCount; - - // If we know the trip count, we know the multiple... - unsigned BreakoutTrip = 0; - if (TripCount != 0) { - BreakoutTrip = TripCount % Count; - TripMultiple = 0; - } else { - // Figure out what multiple to use. - BreakoutTrip = TripMultiple = - (unsigned)GreatestCommonDivisor64(Count, TripMultiple); - } - - if (CompletelyUnroll) { - DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName() - << " with trip count " << TripCount << "!\n"); - } else { - DEBUG(errs() << "UNROLLING loop %" << Header->getName() - << " by " << Count); - if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { - DEBUG(errs() << " with a breakout at trip " << BreakoutTrip); - } else if (TripMultiple != 1) { - DEBUG(errs() << " with " << TripMultiple << " trips per branch"); - } - DEBUG(errs() << "!\n"); - } - - std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); - - bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); - BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); - - // For the first iteration of the loop, we should use the precloned values for - // PHI nodes. Insert associations now. - typedef DenseMap<const Value*, Value*> ValueMapTy; - ValueMapTy LastValueMap; - std::vector<PHINode*> OrigPHINode; - for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { - PHINode *PN = cast<PHINode>(I); - OrigPHINode.push_back(PN); - if (Instruction *I = - dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock))) - if (L->contains(I->getParent())) - LastValueMap[I] = I; - } - - std::vector<BasicBlock*> Headers; - std::vector<BasicBlock*> Latches; - Headers.push_back(Header); - Latches.push_back(LatchBlock); - - for (unsigned It = 1; It != Count; ++It) { - char SuffixBuffer[100]; - sprintf(SuffixBuffer, ".%d", It); - - std::vector<BasicBlock*> NewBlocks; - - for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(), - E = LoopBlocks.end(); BB != E; ++BB) { - ValueMapTy ValueMap; - BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer); - Header->getParent()->getBasicBlockList().push_back(New); - - // Loop over all of the PHI nodes in the block, changing them to use the - // incoming values from the previous block. - if (*BB == Header) - for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { - PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]); - Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); - if (Instruction *InValI = dyn_cast<Instruction>(InVal)) - if (It > 1 && L->contains(InValI->getParent())) - InVal = LastValueMap[InValI]; - ValueMap[OrigPHINode[i]] = InVal; - New->getInstList().erase(NewPHI); - } - - // Update our running map of newest clones - LastValueMap[*BB] = New; - for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end(); - VI != VE; ++VI) - LastValueMap[VI->first] = VI->second; - - L->addBasicBlockToLoop(New, LI->getBase()); - - // Add phi entries for newly created values to all exit blocks except - // the successor of the latch block. The successor of the exit block will - // be updated specially after unrolling all the way. - if (*BB != LatchBlock) - for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); - UI != UE;) { - Instruction *UseInst = cast<Instruction>(*UI); - ++UI; - if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) { - PHINode *phi = cast<PHINode>(UseInst); - Value *Incoming = phi->getIncomingValueForBlock(*BB); - phi->addIncoming(Incoming, New); - } - } - - // Keep track of new headers and latches as we create them, so that - // we can insert the proper branches later. - if (*BB == Header) - Headers.push_back(New); - if (*BB == LatchBlock) { - Latches.push_back(New); - - // Also, clear out the new latch's back edge so that it doesn't look - // like a new loop, so that it's amenable to being merged with adjacent - // blocks later on. - TerminatorInst *Term = New->getTerminator(); - assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); - assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); - Term->setSuccessor(!ContinueOnTrue, NULL); - } - - NewBlocks.push_back(New); - } - - // Remap all instructions in the most recent iteration - for (unsigned i = 0; i < NewBlocks.size(); ++i) - for (BasicBlock::iterator I = NewBlocks[i]->begin(), - E = NewBlocks[i]->end(); I != E; ++I) - RemapInstruction(I, LastValueMap); - } - - // The latch block exits the loop. If there are any PHI nodes in the - // successor blocks, update them to use the appropriate values computed as the - // last iteration of the loop. - if (Count != 1) { - SmallPtrSet<PHINode*, 8> Users; - for (Value::use_iterator UI = LatchBlock->use_begin(), - UE = LatchBlock->use_end(); UI != UE; ++UI) - if (PHINode *phi = dyn_cast<PHINode>(*UI)) - Users.insert(phi); - - BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]); - for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end(); - SI != SE; ++SI) { - PHINode *PN = *SI; - Value *InVal = PN->removeIncomingValue(LatchBlock, false); - // If this value was defined in the loop, take the value defined by the - // last iteration of the loop. - if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { - if (L->contains(InValI->getParent())) - InVal = LastValueMap[InVal]; - } - PN->addIncoming(InVal, LastIterationBB); - } - } - - // Now, if we're doing complete unrolling, loop over the PHI nodes in the - // original block, setting them to their incoming values. - if (CompletelyUnroll) { - BasicBlock *Preheader = L->getLoopPreheader(); - for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { - PHINode *PN = OrigPHINode[i]; - PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); - Header->getInstList().erase(PN); - } - } - - // Now that all the basic blocks for the unrolled iterations are in place, - // set up the branches to connect them. - for (unsigned i = 0, e = Latches.size(); i != e; ++i) { - // The original branch was replicated in each unrolled iteration. - BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); - - // The branch destination. - unsigned j = (i + 1) % e; - BasicBlock *Dest = Headers[j]; - bool NeedConditional = true; - - // For a complete unroll, make the last iteration end with a branch - // to the exit block. - if (CompletelyUnroll && j == 0) { - Dest = LoopExit; - NeedConditional = false; - } - - // If we know the trip count or a multiple of it, we can safely use an - // unconditional branch for some iterations. - if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { - NeedConditional = false; - } - - if (NeedConditional) { - // Update the conditional branch's successor for the following - // iteration. - Term->setSuccessor(!ContinueOnTrue, Dest); - } else { - Term->setUnconditionalDest(Dest); - // Merge adjacent basic blocks, if possible. - if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) { - std::replace(Latches.begin(), Latches.end(), Dest, Fold); - std::replace(Headers.begin(), Headers.end(), Dest, Fold); - } - } - } - - // At this point, the code is well formed. We now do a quick sweep over the - // inserted code, doing constant propagation and dead code elimination as we - // go. - const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); - for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), - BBE = NewLoopBlocks.end(); BB != BBE; ++BB) - for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { - Instruction *Inst = I++; - - if (isInstructionTriviallyDead(Inst)) - (*BB)->getInstList().erase(Inst); - else if (Constant *C = ConstantFoldInstruction(Inst, - Header->getContext())) { - Inst->replaceAllUsesWith(C); - (*BB)->getInstList().erase(Inst); - } - } - - NumCompletelyUnrolled += CompletelyUnroll; - ++NumUnrolled; - // Remove the loop from the LoopPassManager if it's completely removed. - if (CompletelyUnroll && LPM != NULL) - LPM->deleteLoopFromQueue(L); - - // If we didn't completely unroll the loop, it should still be in LCSSA form. - if (!CompletelyUnroll) - assert(L->isLCSSAForm()); - - return true; -} |