aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/LoopSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Utils/LoopSimplify.cpp')
-rw-r--r--lib/Transforms/Utils/LoopSimplify.cpp855
1 files changed, 855 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/LoopSimplify.cpp b/lib/Transforms/Utils/LoopSimplify.cpp
new file mode 100644
index 0000000000..2df10ce92f
--- /dev/null
+++ b/lib/Transforms/Utils/LoopSimplify.cpp
@@ -0,0 +1,855 @@
+//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs several transformations to transform natural loops into a
+// simpler form, which makes subsequent analyses and transformations simpler and
+// more effective.
+//
+// Loop pre-header insertion guarantees that there is a single, non-critical
+// entry edge from outside of the loop to the loop header. This simplifies a
+// number of analyses and transformations, such as LICM.
+//
+// Loop exit-block insertion guarantees that all exit blocks from the loop
+// (blocks which are outside of the loop that have predecessors inside of the
+// loop) only have predecessors from inside of the loop (and are thus dominated
+// by the loop header). This simplifies transformations such as store-sinking
+// that are built into LICM.
+//
+// This pass also guarantees that loops will have exactly one backedge.
+//
+// Note that the simplifycfg pass will clean up blocks which are split out but
+// end up being unnecessary, so usage of this pass should not pessimize
+// generated code.
+//
+// This pass obviously modifies the CFG, but updates loop information and
+// dominator information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constant.h"
+#include "llvm/Instructions.h"
+#include "llvm/Function.h"
+#include "llvm/Type.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+using namespace llvm;
+
+namespace {
+ Statistic<>
+ NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
+ Statistic<>
+ NumNested("loopsimplify", "Number of nested loops split out");
+
+ struct LoopSimplify : public FunctionPass {
+ // AA - If we have an alias analysis object to update, this is it, otherwise
+ // this is null.
+ AliasAnalysis *AA;
+
+ virtual bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ // We need loop information to identify the loops...
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<DominatorSet>();
+ AU.addRequired<DominatorTree>();
+
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominatorSet>();
+ AU.addPreserved<ImmediateDominators>();
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<DominanceFrontier>();
+ AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
+ }
+ private:
+ bool ProcessLoop(Loop *L);
+ BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
+ const std::vector<BasicBlock*> &Preds);
+ BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
+ void InsertPreheaderForLoop(Loop *L);
+ Loop *SeparateNestedLoop(Loop *L);
+ void InsertUniqueBackedgeBlock(Loop *L);
+
+ void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
+ std::vector<BasicBlock*> &PredBlocks);
+ };
+
+ RegisterOpt<LoopSimplify>
+ X("loopsimplify", "Canonicalize natural loops", true);
+}
+
+// Publically exposed interface to pass...
+const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
+FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
+
+/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
+/// it in any convenient order) inserting preheaders...
+///
+bool LoopSimplify::runOnFunction(Function &F) {
+ bool Changed = false;
+ LoopInfo &LI = getAnalysis<LoopInfo>();
+ AA = getAnalysisToUpdate<AliasAnalysis>();
+
+ for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
+ Changed |= ProcessLoop(*I);
+
+ return Changed;
+}
+
+
+/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
+/// all loops have preheaders.
+///
+bool LoopSimplify::ProcessLoop(Loop *L) {
+ bool Changed = false;
+
+ // Check to see that no blocks (other than the header) in the loop have
+ // predecessors that are not in the loop. This is not valid for natural
+ // loops, but can occur if the blocks are unreachable. Since they are
+ // unreachable we can just shamelessly destroy their terminators to make them
+ // not branch into the loop!
+ assert(L->getBlocks()[0] == L->getHeader() &&
+ "Header isn't first block in loop?");
+ for (unsigned i = 1, e = L->getBlocks().size(); i != e; ++i) {
+ BasicBlock *LoopBB = L->getBlocks()[i];
+ Retry:
+ for (pred_iterator PI = pred_begin(LoopBB), E = pred_end(LoopBB);
+ PI != E; ++PI)
+ if (!L->contains(*PI)) {
+ // This predecessor is not in the loop. Kill its terminator!
+ BasicBlock *DeadBlock = *PI;
+ for (succ_iterator SI = succ_begin(DeadBlock), E = succ_end(DeadBlock);
+ SI != E; ++SI)
+ (*SI)->removePredecessor(DeadBlock); // Remove PHI node entries
+
+ // Delete the dead terminator.
+ if (AA) AA->deleteValue(&DeadBlock->back());
+ DeadBlock->getInstList().pop_back();
+
+ Value *RetVal = 0;
+ if (LoopBB->getParent()->getReturnType() != Type::VoidTy)
+ RetVal = Constant::getNullValue(LoopBB->getParent()->getReturnType());
+ new ReturnInst(RetVal, DeadBlock);
+ goto Retry; // We just invalidated the pred_iterator. Retry.
+ }
+ }
+
+ // Does the loop already have a preheader? If so, don't modify the loop...
+ if (L->getLoopPreheader() == 0) {
+ InsertPreheaderForLoop(L);
+ NumInserted++;
+ Changed = true;
+ }
+
+ // Next, check to make sure that all exit nodes of the loop only have
+ // predecessors that are inside of the loop. This check guarantees that the
+ // loop preheader/header will dominate the exit blocks. If the exit block has
+ // predecessors from outside of the loop, split the edge now.
+ std::vector<BasicBlock*> ExitBlocks;
+ L->getExitBlocks(ExitBlocks);
+
+ SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
+ for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
+ E = ExitBlockSet.end(); I != E; ++I) {
+ BasicBlock *ExitBlock = *I;
+ for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
+ PI != PE; ++PI)
+ if (!L->contains(*PI)) {
+ RewriteLoopExitBlock(L, ExitBlock);
+ NumInserted++;
+ Changed = true;
+ break;
+ }
+ }
+
+ // If the header has more than two predecessors at this point (from the
+ // preheader and from multiple backedges), we must adjust the loop.
+ if (L->getNumBackEdges() != 1) {
+ // If this is really a nested loop, rip it out into a child loop.
+ if (Loop *NL = SeparateNestedLoop(L)) {
+ ++NumNested;
+ // This is a big restructuring change, reprocess the whole loop.
+ ProcessLoop(NL);
+ return true;
+ }
+
+ InsertUniqueBackedgeBlock(L);
+ NumInserted++;
+ Changed = true;
+ }
+
+ // Scan over the PHI nodes in the loop header. Since they now have only two
+ // incoming values (the loop is canonicalized), we may have simplified the PHI
+ // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
+ PHINode *PN;
+ DominatorSet &DS = getAnalysis<DominatorSet>();
+ for (BasicBlock::iterator I = L->getHeader()->begin();
+ (PN = dyn_cast<PHINode>(I++)); )
+ if (Value *V = PN->hasConstantValue()) {
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ }
+
+ for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+ Changed |= ProcessLoop(*I);
+
+ return Changed;
+}
+
+/// SplitBlockPredecessors - Split the specified block into two blocks. We want
+/// to move the predecessors specified in the Preds list to point to the new
+/// block, leaving the remaining predecessors pointing to BB. This method
+/// updates the SSA PHINode's, but no other analyses.
+///
+BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
+ const char *Suffix,
+ const std::vector<BasicBlock*> &Preds) {
+
+ // Create new basic block, insert right before the original block...
+ BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
+
+ // The preheader first gets an unconditional branch to the loop header...
+ BranchInst *BI = new BranchInst(BB, NewBB);
+
+ // For every PHI node in the block, insert a PHI node into NewBB where the
+ // incoming values from the out of loop edges are moved to NewBB. We have two
+ // possible cases here. If the loop is dead, we just insert dummy entries
+ // into the PHI nodes for the new edge. If the loop is not dead, we move the
+ // incoming edges in BB into new PHI nodes in NewBB.
+ //
+ if (!Preds.empty()) { // Is the loop not obviously dead?
+ // Check to see if the values being merged into the new block need PHI
+ // nodes. If so, insert them.
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
+ PHINode *PN = cast<PHINode>(I);
+ ++I;
+
+ // Check to see if all of the values coming in are the same. If so, we
+ // don't need to create a new PHI node.
+ Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
+ for (unsigned i = 1, e = Preds.size(); i != e; ++i)
+ if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
+ InVal = 0;
+ break;
+ }
+
+ // If the values coming into the block are not the same, we need a PHI.
+ if (InVal == 0) {
+ // Create the new PHI node, insert it into NewBB at the end of the block
+ PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
+ if (AA) AA->copyValue(PN, NewPHI);
+
+ // Move all of the edges from blocks outside the loop to the new PHI
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ Value *V = PN->removeIncomingValue(Preds[i], false);
+ NewPHI->addIncoming(V, Preds[i]);
+ }
+ InVal = NewPHI;
+ } else {
+ // Remove all of the edges coming into the PHI nodes from outside of the
+ // block.
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i)
+ PN->removeIncomingValue(Preds[i], false);
+ }
+
+ // Add an incoming value to the PHI node in the loop for the preheader
+ // edge.
+ PN->addIncoming(InVal, NewBB);
+
+ // Can we eliminate this phi node now?
+ if (Value *V = PN->hasConstantValue(true)) {
+ if (!isa<Instruction>(V) ||
+ getAnalysis<DominatorSet>().dominates(cast<Instruction>(V), PN)) {
+ PN->replaceAllUsesWith(V);
+ if (AA) AA->deleteValue(PN);
+ BB->getInstList().erase(PN);
+ }
+ }
+ }
+
+ // Now that the PHI nodes are updated, actually move the edges from
+ // Preds to point to NewBB instead of BB.
+ //
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ TerminatorInst *TI = Preds[i]->getTerminator();
+ for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
+ if (TI->getSuccessor(s) == BB)
+ TI->setSuccessor(s, NewBB);
+ }
+
+ } else { // Otherwise the loop is dead...
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ // Insert dummy values as the incoming value...
+ PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
+ }
+ }
+ return NewBB;
+}
+
+/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
+/// preheader, this method is called to insert one. This method has two phases:
+/// preheader insertion and analysis updating.
+///
+void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
+ BasicBlock *Header = L->getHeader();
+
+ // Compute the set of predecessors of the loop that are not in the loop.
+ std::vector<BasicBlock*> OutsideBlocks;
+ for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
+ PI != PE; ++PI)
+ if (!L->contains(*PI)) // Coming in from outside the loop?
+ OutsideBlocks.push_back(*PI); // Keep track of it...
+
+ // Split out the loop pre-header
+ BasicBlock *NewBB =
+ SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
+
+ //===--------------------------------------------------------------------===//
+ // Update analysis results now that we have performed the transformation
+ //
+
+ // We know that we have loop information to update... update it now.
+ if (Loop *Parent = L->getParentLoop())
+ Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
+
+ DominatorSet &DS = getAnalysis<DominatorSet>(); // Update dominator info
+ DominatorTree &DT = getAnalysis<DominatorTree>();
+
+
+ // Update the dominator tree information.
+ // The immediate dominator of the preheader is the immediate dominator of
+ // the old header.
+ DominatorTree::Node *PHDomTreeNode =
+ DT.createNewNode(NewBB, DT.getNode(Header)->getIDom());
+
+ // Change the header node so that PNHode is the new immediate dominator
+ DT.changeImmediateDominator(DT.getNode(Header), PHDomTreeNode);
+
+ {
+ // The blocks that dominate NewBB are the blocks that dominate Header,
+ // minus Header, plus NewBB.
+ DominatorSet::DomSetType DomSet = DS.getDominators(Header);
+ DomSet.erase(Header); // Header does not dominate us...
+ DS.addBasicBlock(NewBB, DomSet);
+
+ // The newly created basic block dominates all nodes dominated by Header.
+ for (df_iterator<DominatorTree::Node*> DFI = df_begin(PHDomTreeNode),
+ E = df_end(PHDomTreeNode); DFI != E; ++DFI)
+ DS.addDominator((*DFI)->getBlock(), NewBB);
+ }
+
+ // Update immediate dominator information if we have it...
+ if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
+ // Whatever i-dominated the header node now immediately dominates NewBB
+ ID->addNewBlock(NewBB, ID->get(Header));
+
+ // The preheader now is the immediate dominator for the header node...
+ ID->setImmediateDominator(Header, NewBB);
+ }
+
+ // Update dominance frontier information...
+ if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
+ // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
+ // everything that Header does, and it strictly dominates Header in
+ // addition.
+ assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
+ DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
+ NewDFSet.erase(Header);
+ DF->addBasicBlock(NewBB, NewDFSet);
+
+ // Now we must loop over all of the dominance frontiers in the function,
+ // replacing occurrences of Header with NewBB in some cases. If a block
+ // dominates a (now) predecessor of NewBB, but did not strictly dominate
+ // Header, it will have Header in it's DF set, but should now have NewBB in
+ // its set.
+ for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
+ // Get all of the dominators of the predecessor...
+ const DominatorSet::DomSetType &PredDoms =
+ DS.getDominators(OutsideBlocks[i]);
+ for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
+ PDE = PredDoms.end(); PDI != PDE; ++PDI) {
+ BasicBlock *PredDom = *PDI;
+ // If the loop header is in DF(PredDom), then PredDom didn't dominate
+ // the header but did dominate a predecessor outside of the loop. Now
+ // we change this entry to include the preheader in the DF instead of
+ // the header.
+ DominanceFrontier::iterator DFI = DF->find(PredDom);
+ assert(DFI != DF->end() && "No dominance frontier for node?");
+ if (DFI->second.count(Header)) {
+ DF->removeFromFrontier(DFI, Header);
+ DF->addToFrontier(DFI, NewBB);
+ }
+ }
+ }
+ }
+}
+
+/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
+/// blocks. This method is used to split exit blocks that have predecessors
+/// outside of the loop.
+BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
+ DominatorSet &DS = getAnalysis<DominatorSet>();
+
+ std::vector<BasicBlock*> LoopBlocks;
+ for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
+ if (L->contains(*I))
+ LoopBlocks.push_back(*I);
+
+ assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
+ BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
+
+ // Update Loop Information - we know that the new block will be in the parent
+ // loop of L.
+ if (Loop *Parent = L->getParentLoop())
+ Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
+
+ // Update dominator information (set, immdom, domtree, and domfrontier)
+ UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
+ return NewBB;
+}
+
+/// AddBlockAndPredsToSet - Add the specified block, and all of its
+/// predecessors, to the specified set, if it's not already in there. Stop
+/// predecessor traversal when we reach StopBlock.
+static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
+ std::set<BasicBlock*> &Blocks) {
+ if (!Blocks.insert(BB).second) return; // already processed.
+ if (BB == StopBlock) return; // Stop here!
+
+ for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
+ AddBlockAndPredsToSet(*I, StopBlock, Blocks);
+}
+
+/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
+/// PHI node that tells us how to partition the loops.
+static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorSet &DS,
+ AliasAnalysis *AA) {
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
+ PHINode *PN = cast<PHINode>(I);
+ ++I;
+ if (Value *V = PN->hasConstantValue())
+ if (!isa<Instruction>(V) || DS.dominates(cast<Instruction>(V), PN)) {
+ // This is a degenerate PHI already, don't modify it!
+ PN->replaceAllUsesWith(V);
+ if (AA) AA->deleteValue(PN);
+ PN->eraseFromParent();
+ continue;
+ }
+
+ // Scan this PHI node looking for a use of the PHI node by itself.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == PN &&
+ L->contains(PN->getIncomingBlock(i)))
+ // We found something tasty to remove.
+ return PN;
+ }
+ return 0;
+}
+
+/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
+/// them out into a nested loop. This is important for code that looks like
+/// this:
+///
+/// Loop:
+/// ...
+/// br cond, Loop, Next
+/// ...
+/// br cond2, Loop, Out
+///
+/// To identify this common case, we look at the PHI nodes in the header of the
+/// loop. PHI nodes with unchanging values on one backedge correspond to values
+/// that change in the "outer" loop, but not in the "inner" loop.
+///
+/// If we are able to separate out a loop, return the new outer loop that was
+/// created.
+///
+Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
+ PHINode *PN = FindPHIToPartitionLoops(L, getAnalysis<DominatorSet>(), AA);
+ if (PN == 0) return 0; // No known way to partition.
+
+ // Pull out all predecessors that have varying values in the loop. This
+ // handles the case when a PHI node has multiple instances of itself as
+ // arguments.
+ std::vector<BasicBlock*> OuterLoopPreds;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) != PN ||
+ !L->contains(PN->getIncomingBlock(i)))
+ OuterLoopPreds.push_back(PN->getIncomingBlock(i));
+
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
+
+ // Update dominator information (set, immdom, domtree, and domfrontier)
+ UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
+
+ // Create the new outer loop.
+ Loop *NewOuter = new Loop();
+
+ LoopInfo &LI = getAnalysis<LoopInfo>();
+
+ // Change the parent loop to use the outer loop as its child now.
+ if (Loop *Parent = L->getParentLoop())
+ Parent->replaceChildLoopWith(L, NewOuter);
+ else
+ LI.changeTopLevelLoop(L, NewOuter);
+
+ // This block is going to be our new header block: add it to this loop and all
+ // parent loops.
+ NewOuter->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
+
+ // L is now a subloop of our outer loop.
+ NewOuter->addChildLoop(L);
+
+ for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
+ NewOuter->addBlockEntry(L->getBlocks()[i]);
+
+ // Determine which blocks should stay in L and which should be moved out to
+ // the Outer loop now.
+ DominatorSet &DS = getAnalysis<DominatorSet>();
+ std::set<BasicBlock*> BlocksInL;
+ for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
+ if (DS.dominates(Header, *PI))
+ AddBlockAndPredsToSet(*PI, Header, BlocksInL);
+
+
+ // Scan all of the loop children of L, moving them to OuterLoop if they are
+ // not part of the inner loop.
+ for (Loop::iterator I = L->begin(); I != L->end(); )
+ if (BlocksInL.count((*I)->getHeader()))
+ ++I; // Loop remains in L
+ else
+ NewOuter->addChildLoop(L->removeChildLoop(I));
+
+ // Now that we know which blocks are in L and which need to be moved to
+ // OuterLoop, move any blocks that need it.
+ for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
+ BasicBlock *BB = L->getBlocks()[i];
+ if (!BlocksInL.count(BB)) {
+ // Move this block to the parent, updating the exit blocks sets
+ L->removeBlockFromLoop(BB);
+ if (LI[BB] == L)
+ LI.changeLoopFor(BB, NewOuter);
+ --i;
+ }
+ }
+
+ return NewOuter;
+}
+
+
+
+/// InsertUniqueBackedgeBlock - This method is called when the specified loop
+/// has more than one backedge in it. If this occurs, revector all of these
+/// backedges to target a new basic block and have that block branch to the loop
+/// header. This ensures that loops have exactly one backedge.
+///
+void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
+ assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
+
+ // Get information about the loop
+ BasicBlock *Preheader = L->getLoopPreheader();
+ BasicBlock *Header = L->getHeader();
+ Function *F = Header->getParent();
+
+ // Figure out which basic blocks contain back-edges to the loop header.
+ std::vector<BasicBlock*> BackedgeBlocks;
+ for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
+ if (*I != Preheader) BackedgeBlocks.push_back(*I);
+
+ // Create and insert the new backedge block...
+ BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
+ BranchInst *BETerminator = new BranchInst(Header, BEBlock);
+
+ // Move the new backedge block to right after the last backedge block.
+ Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
+ F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
+
+ // Now that the block has been inserted into the function, create PHI nodes in
+ // the backedge block which correspond to any PHI nodes in the header block.
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
+ BETerminator);
+ NewPN->reserveOperandSpace(BackedgeBlocks.size());
+ if (AA) AA->copyValue(PN, NewPN);
+
+ // Loop over the PHI node, moving all entries except the one for the
+ // preheader over to the new PHI node.
+ unsigned PreheaderIdx = ~0U;
+ bool HasUniqueIncomingValue = true;
+ Value *UniqueValue = 0;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *IBB = PN->getIncomingBlock(i);
+ Value *IV = PN->getIncomingValue(i);
+ if (IBB == Preheader) {
+ PreheaderIdx = i;
+ } else {
+ NewPN->addIncoming(IV, IBB);
+ if (HasUniqueIncomingValue) {
+ if (UniqueValue == 0)
+ UniqueValue = IV;
+ else if (UniqueValue != IV)
+ HasUniqueIncomingValue = false;
+ }
+ }
+ }
+
+ // Delete all of the incoming values from the old PN except the preheader's
+ assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
+ if (PreheaderIdx != 0) {
+ PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
+ PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
+ }
+ // Nuke all entries except the zero'th.
+ for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
+ PN->removeIncomingValue(e-i, false);
+
+ // Finally, add the newly constructed PHI node as the entry for the BEBlock.
+ PN->addIncoming(NewPN, BEBlock);
+
+ // As an optimization, if all incoming values in the new PhiNode (which is a
+ // subset of the incoming values of the old PHI node) have the same value,
+ // eliminate the PHI Node.
+ if (HasUniqueIncomingValue) {
+ NewPN->replaceAllUsesWith(UniqueValue);
+ if (AA) AA->deleteValue(NewPN);
+ BEBlock->getInstList().erase(NewPN);
+ }
+ }
+
+ // Now that all of the PHI nodes have been inserted and adjusted, modify the
+ // backedge blocks to just to the BEBlock instead of the header.
+ for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
+ TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
+ for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
+ if (TI->getSuccessor(Op) == Header)
+ TI->setSuccessor(Op, BEBlock);
+ }
+
+ //===--- Update all analyses which we must preserve now -----------------===//
+
+ // Update Loop Information - we know that this block is now in the current
+ // loop and all parent loops.
+ L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
+
+ // Update dominator information (set, immdom, domtree, and domfrontier)
+ UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
+}
+
+/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
+/// different kinds of dominator information (dominator sets, immediate
+/// dominators, dominator trees, and dominance frontiers) after a new block has
+/// been added to the CFG.
+///
+/// This only supports the case when an existing block (known as "NewBBSucc"),
+/// had some of its predecessors factored into a new basic block. This
+/// transformation inserts a new basic block ("NewBB"), with a single
+/// unconditional branch to NewBBSucc, and moves some predecessors of
+/// "NewBBSucc" to now branch to NewBB. These predecessors are listed in
+/// PredBlocks, even though they are the same as
+/// pred_begin(NewBB)/pred_end(NewBB).
+///
+void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
+ std::vector<BasicBlock*> &PredBlocks) {
+ assert(!PredBlocks.empty() && "No predblocks??");
+ assert(succ_begin(NewBB) != succ_end(NewBB) &&
+ ++succ_begin(NewBB) == succ_end(NewBB) &&
+ "NewBB should have a single successor!");
+ BasicBlock *NewBBSucc = *succ_begin(NewBB);
+ DominatorSet &DS = getAnalysis<DominatorSet>();
+
+ // Update dominator information... The blocks that dominate NewBB are the
+ // intersection of the dominators of predecessors, plus the block itself.
+ //
+ DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
+ for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
+ set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
+ NewBBDomSet.insert(NewBB); // All blocks dominate themselves...
+ DS.addBasicBlock(NewBB, NewBBDomSet);
+
+ // The newly inserted basic block will dominate existing basic blocks iff the
+ // PredBlocks dominate all of the non-pred blocks. If all predblocks dominate
+ // the non-pred blocks, then they all must be the same block!
+ //
+ bool NewBBDominatesNewBBSucc = true;
+ {
+ BasicBlock *OnePred = PredBlocks[0];
+ for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
+ if (PredBlocks[i] != OnePred) {
+ NewBBDominatesNewBBSucc = false;
+ break;
+ }
+
+ if (NewBBDominatesNewBBSucc)
+ for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
+ PI != E; ++PI)
+ if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
+ NewBBDominatesNewBBSucc = false;
+ break;
+ }
+ }
+
+ // The other scenario where the new block can dominate its successors are when
+ // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
+ // already.
+ if (!NewBBDominatesNewBBSucc) {
+ NewBBDominatesNewBBSucc = true;
+ for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
+ PI != E; ++PI)
+ if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
+ NewBBDominatesNewBBSucc = false;
+ break;
+ }
+ }
+
+ // If NewBB dominates some blocks, then it will dominate all blocks that
+ // NewBBSucc does.
+ if (NewBBDominatesNewBBSucc) {
+ BasicBlock *PredBlock = PredBlocks[0];
+ Function *F = NewBB->getParent();
+ for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
+ if (DS.dominates(NewBBSucc, I))
+ DS.addDominator(I, NewBB);
+ }
+
+ // Update immediate dominator information if we have it...
+ BasicBlock *NewBBIDom = 0;
+ if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
+ // To find the immediate dominator of the new exit node, we trace up the
+ // immediate dominators of a predecessor until we find a basic block that
+ // dominates the exit block.
+ //
+ BasicBlock *Dom = PredBlocks[0]; // Some random predecessor...
+ while (!NewBBDomSet.count(Dom)) { // Loop until we find a dominator...
+ assert(Dom != 0 && "No shared dominator found???");
+ Dom = ID->get(Dom);
+ }
+
+ // Set the immediate dominator now...
+ ID->addNewBlock(NewBB, Dom);
+ NewBBIDom = Dom; // Reuse this if calculating DominatorTree info...
+
+ // If NewBB strictly dominates other blocks, we need to update their idom's
+ // now. The only block that need adjustment is the NewBBSucc block, whose
+ // idom should currently be set to PredBlocks[0].
+ if (NewBBDominatesNewBBSucc)
+ ID->setImmediateDominator(NewBBSucc, NewBB);
+ }
+
+ // Update DominatorTree information if it is active.
+ if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
+ // If we don't have ImmediateDominator info around, calculate the idom as
+ // above.
+ DominatorTree::Node *NewBBIDomNode;
+ if (NewBBIDom) {
+ NewBBIDomNode = DT->getNode(NewBBIDom);
+ } else {
+ NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
+ while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
+ NewBBIDomNode = NewBBIDomNode->getIDom();
+ assert(NewBBIDomNode && "No shared dominator found??");
+ }
+ }
+
+ // Create the new dominator tree node... and set the idom of NewBB.
+ DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
+
+ // If NewBB strictly dominates other blocks, then it is now the immediate
+ // dominator of NewBBSucc. Update the dominator tree as appropriate.
+ if (NewBBDominatesNewBBSucc) {
+ DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
+ DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
+ }
+ }
+
+ // Update dominance frontier information...
+ if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
+ // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
+ // DF(PredBlocks[0]) without the stuff that the new block does not dominate
+ // a predecessor of.
+ if (NewBBDominatesNewBBSucc) {
+ DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
+ if (DFI != DF->end()) {
+ DominanceFrontier::DomSetType Set = DFI->second;
+ // Filter out stuff in Set that we do not dominate a predecessor of.
+ for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
+ E = Set.end(); SetI != E;) {
+ bool DominatesPred = false;
+ for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
+ PI != E; ++PI)
+ if (DS.dominates(NewBB, *PI))
+ DominatesPred = true;
+ if (!DominatesPred)
+ Set.erase(SetI++);
+ else
+ ++SetI;
+ }
+
+ DF->addBasicBlock(NewBB, Set);
+ }
+
+ } else {
+ // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
+ // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
+ // NewBBSucc)). NewBBSucc is the single successor of NewBB.
+ DominanceFrontier::DomSetType NewDFSet;
+ NewDFSet.insert(NewBBSucc);
+ DF->addBasicBlock(NewBB, NewDFSet);
+ }
+
+ // Now we must loop over all of the dominance frontiers in the function,
+ // replacing occurrences of NewBBSucc with NewBB in some cases. All
+ // blocks that dominate a block in PredBlocks and contained NewBBSucc in
+ // their dominance frontier must be updated to contain NewBB instead.
+ //
+ for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
+ BasicBlock *Pred = PredBlocks[i];
+ // Get all of the dominators of the predecessor...
+ const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
+ for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
+ PDE = PredDoms.end(); PDI != PDE; ++PDI) {
+ BasicBlock *PredDom = *PDI;
+
+ // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
+ // dominate NewBBSucc but did dominate a predecessor of it. Now we
+ // change this entry to include NewBB in the DF instead of NewBBSucc.
+ DominanceFrontier::iterator DFI = DF->find(PredDom);
+ assert(DFI != DF->end() && "No dominance frontier for node?");
+ if (DFI->second.count(NewBBSucc)) {
+ // If NewBBSucc should not stay in our dominator frontier, remove it.
+ // We remove it unless there is a predecessor of NewBBSucc that we
+ // dominate, but we don't strictly dominate NewBBSucc.
+ bool ShouldRemove = true;
+ if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
+ // Okay, we know that PredDom does not strictly dominate NewBBSucc.
+ // Check to see if it dominates any predecessors of NewBBSucc.
+ for (pred_iterator PI = pred_begin(NewBBSucc),
+ E = pred_end(NewBBSucc); PI != E; ++PI)
+ if (DS.dominates(PredDom, *PI)) {
+ ShouldRemove = false;
+ break;
+ }
+ }
+
+ if (ShouldRemove)
+ DF->removeFromFrontier(DFI, NewBBSucc);
+ DF->addToFrontier(DFI, NewBB);
+ }
+ }
+ }
+ }
+}
+