aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/InlineFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Utils/InlineFunction.cpp')
-rw-r--r--lib/Transforms/Utils/InlineFunction.cpp362
1 files changed, 362 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp
new file mode 100644
index 0000000000..cf45633447
--- /dev/null
+++ b/lib/Transforms/Utils/InlineFunction.cpp
@@ -0,0 +1,362 @@
+//===- InlineFunction.cpp - Code to perform function inlining -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements inlining of a function into a call site, resolving
+// parameters and the return value as appropriate.
+//
+// FIXME: This pass should transform alloca instructions in the called function
+// into alloca/dealloca pairs! Or perhaps it should refuse to inline them!
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/CallSite.h"
+using namespace llvm;
+
+bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
+bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));}
+
+// InlineFunction - This function inlines the called function into the basic
+// block of the caller. This returns false if it is not possible to inline this
+// call. The program is still in a well defined state if this occurs though.
+//
+// Note that this only does one level of inlining. For example, if the
+// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
+// exists in the instruction stream. Similiarly this will inline a recursive
+// function by one level.
+//
+bool llvm::InlineFunction(CallSite CS) {
+ Instruction *TheCall = CS.getInstruction();
+ assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
+ "Instruction not in function!");
+
+ const Function *CalledFunc = CS.getCalledFunction();
+ if (CalledFunc == 0 || // Can't inline external function or indirect
+ CalledFunc->isExternal() || // call, or call to a vararg function!
+ CalledFunc->getFunctionType()->isVarArg()) return false;
+
+
+ // If the call to the callee is a non-tail call, we must clear the 'tail'
+ // flags on any calls that we inline.
+ bool MustClearTailCallFlags =
+ isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
+
+ BasicBlock *OrigBB = TheCall->getParent();
+ Function *Caller = OrigBB->getParent();
+
+ // Get an iterator to the last basic block in the function, which will have
+ // the new function inlined after it.
+ //
+ Function::iterator LastBlock = &Caller->back();
+
+ // Make sure to capture all of the return instructions from the cloned
+ // function.
+ std::vector<ReturnInst*> Returns;
+ { // Scope to destroy ValueMap after cloning.
+ // Calculate the vector of arguments to pass into the function cloner...
+ std::map<const Value*, Value*> ValueMap;
+ assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
+ std::distance(CS.arg_begin(), CS.arg_end()) &&
+ "No varargs calls can be inlined!");
+
+ CallSite::arg_iterator AI = CS.arg_begin();
+ for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
+ E = CalledFunc->arg_end(); I != E; ++I, ++AI)
+ ValueMap[I] = *AI;
+
+ // Clone the entire body of the callee into the caller.
+ CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
+ }
+
+ // Remember the first block that is newly cloned over.
+ Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
+
+ // If there are any alloca instructions in the block that used to be the entry
+ // block for the callee, move them to the entry block of the caller. First
+ // calculate which instruction they should be inserted before. We insert the
+ // instructions at the end of the current alloca list.
+ //
+ if (isa<AllocaInst>(FirstNewBlock->begin())) {
+ BasicBlock::iterator InsertPoint = Caller->begin()->begin();
+ for (BasicBlock::iterator I = FirstNewBlock->begin(),
+ E = FirstNewBlock->end(); I != E; )
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
+ if (isa<Constant>(AI->getArraySize())) {
+ // Scan for the block of allocas that we can move over.
+ while (isa<AllocaInst>(I) &&
+ isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
+ ++I;
+
+ // Transfer all of the allocas over in a block. Using splice means
+ // that they instructions aren't removed from the symbol table, then
+ // reinserted.
+ Caller->front().getInstList().splice(InsertPoint,
+ FirstNewBlock->getInstList(),
+ AI, I);
+ }
+ }
+
+ // If we are inlining tail call instruction through an invoke or
+ if (MustClearTailCallFlags) {
+ for (Function::iterator BB = FirstNewBlock, E = Caller->end();
+ BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (CallInst *CI = dyn_cast<CallInst>(I))
+ CI->setTailCall(false);
+ }
+
+ // If we are inlining for an invoke instruction, we must make sure to rewrite
+ // any inlined 'unwind' instructions into branches to the invoke exception
+ // destination, and call instructions into invoke instructions.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
+ BasicBlock *InvokeDest = II->getUnwindDest();
+ std::vector<Value*> InvokeDestPHIValues;
+
+ // If there are PHI nodes in the exceptional destination block, we need to
+ // keep track of which values came into them from this invoke, then remove
+ // the entry for this block.
+ for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ // Save the value to use for this edge...
+ InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
+ }
+
+ for (Function::iterator BB = FirstNewBlock, E = Caller->end();
+ BB != E; ++BB) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
+ // We only need to check for function calls: inlined invoke instructions
+ // require no special handling...
+ if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ // Convert this function call into an invoke instruction... if it's
+ // not an intrinsic function call (which are known to not unwind).
+ if (CI->getCalledFunction() &&
+ CI->getCalledFunction()->getIntrinsicID()) {
+ ++I;
+ } else {
+ // First, split the basic block...
+ BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
+
+ // Next, create the new invoke instruction, inserting it at the end
+ // of the old basic block.
+ InvokeInst *II =
+ new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
+ std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
+ CI->getName(), BB->getTerminator());
+ II->setCallingConv(CI->getCallingConv());
+
+ // Make sure that anything using the call now uses the invoke!
+ CI->replaceAllUsesWith(II);
+
+ // Delete the unconditional branch inserted by splitBasicBlock
+ BB->getInstList().pop_back();
+ Split->getInstList().pop_front(); // Delete the original call
+
+ // Update any PHI nodes in the exceptional block to indicate that
+ // there is now a new entry in them.
+ unsigned i = 0;
+ for (BasicBlock::iterator I = InvokeDest->begin();
+ isa<PHINode>(I); ++I, ++i) {
+ PHINode *PN = cast<PHINode>(I);
+ PN->addIncoming(InvokeDestPHIValues[i], BB);
+ }
+
+ // This basic block is now complete, start scanning the next one.
+ break;
+ }
+ } else {
+ ++I;
+ }
+ }
+
+ if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
+ // An UnwindInst requires special handling when it gets inlined into an
+ // invoke site. Once this happens, we know that the unwind would cause
+ // a control transfer to the invoke exception destination, so we can
+ // transform it into a direct branch to the exception destination.
+ new BranchInst(InvokeDest, UI);
+
+ // Delete the unwind instruction!
+ UI->getParent()->getInstList().pop_back();
+
+ // Update any PHI nodes in the exceptional block to indicate that
+ // there is now a new entry in them.
+ unsigned i = 0;
+ for (BasicBlock::iterator I = InvokeDest->begin();
+ isa<PHINode>(I); ++I, ++i) {
+ PHINode *PN = cast<PHINode>(I);
+ PN->addIncoming(InvokeDestPHIValues[i], BB);
+ }
+ }
+ }
+
+ // Now that everything is happy, we have one final detail. The PHI nodes in
+ // the exception destination block still have entries due to the original
+ // invoke instruction. Eliminate these entries (which might even delete the
+ // PHI node) now.
+ InvokeDest->removePredecessor(II->getParent());
+ }
+
+ // If we cloned in _exactly one_ basic block, and if that block ends in a
+ // return instruction, we splice the body of the inlined callee directly into
+ // the calling basic block.
+ if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
+ // Move all of the instructions right before the call.
+ OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
+ FirstNewBlock->begin(), FirstNewBlock->end());
+ // Remove the cloned basic block.
+ Caller->getBasicBlockList().pop_back();
+
+ // If the call site was an invoke instruction, add a branch to the normal
+ // destination.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
+ new BranchInst(II->getNormalDest(), TheCall);
+
+ // If the return instruction returned a value, replace uses of the call with
+ // uses of the returned value.
+ if (!TheCall->use_empty())
+ TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
+
+ // Since we are now done with the Call/Invoke, we can delete it.
+ TheCall->getParent()->getInstList().erase(TheCall);
+
+ // Since we are now done with the return instruction, delete it also.
+ Returns[0]->getParent()->getInstList().erase(Returns[0]);
+
+ // We are now done with the inlining.
+ return true;
+ }
+
+ // Otherwise, we have the normal case, of more than one block to inline or
+ // multiple return sites.
+
+ // We want to clone the entire callee function into the hole between the
+ // "starter" and "ender" blocks. How we accomplish this depends on whether
+ // this is an invoke instruction or a call instruction.
+ BasicBlock *AfterCallBB;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
+
+ // Add an unconditional branch to make this look like the CallInst case...
+ BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
+
+ // Split the basic block. This guarantees that no PHI nodes will have to be
+ // updated due to new incoming edges, and make the invoke case more
+ // symmetric to the call case.
+ AfterCallBB = OrigBB->splitBasicBlock(NewBr,
+ CalledFunc->getName()+".exit");
+
+ } else { // It's a call
+ // If this is a call instruction, we need to split the basic block that
+ // the call lives in.
+ //
+ AfterCallBB = OrigBB->splitBasicBlock(TheCall,
+ CalledFunc->getName()+".exit");
+ }
+
+ // Change the branch that used to go to AfterCallBB to branch to the first
+ // basic block of the inlined function.
+ //
+ TerminatorInst *Br = OrigBB->getTerminator();
+ assert(Br && Br->getOpcode() == Instruction::Br &&
+ "splitBasicBlock broken!");
+ Br->setOperand(0, FirstNewBlock);
+
+
+ // Now that the function is correct, make it a little bit nicer. In
+ // particular, move the basic blocks inserted from the end of the function
+ // into the space made by splitting the source basic block.
+ //
+ Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
+ FirstNewBlock, Caller->end());
+
+ // Handle all of the return instructions that we just cloned in, and eliminate
+ // any users of the original call/invoke instruction.
+ if (Returns.size() > 1) {
+ // The PHI node should go at the front of the new basic block to merge all
+ // possible incoming values.
+ //
+ PHINode *PHI = 0;
+ if (!TheCall->use_empty()) {
+ PHI = new PHINode(CalledFunc->getReturnType(),
+ TheCall->getName(), AfterCallBB->begin());
+
+ // Anything that used the result of the function call should now use the
+ // PHI node as their operand.
+ //
+ TheCall->replaceAllUsesWith(PHI);
+ }
+
+ // Loop over all of the return instructions, turning them into unconditional
+ // branches to the merge point now, and adding entries to the PHI node as
+ // appropriate.
+ for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
+ ReturnInst *RI = Returns[i];
+
+ if (PHI) {
+ assert(RI->getReturnValue() && "Ret should have value!");
+ assert(RI->getReturnValue()->getType() == PHI->getType() &&
+ "Ret value not consistent in function!");
+ PHI->addIncoming(RI->getReturnValue(), RI->getParent());
+ }
+
+ // Add a branch to the merge point where the PHI node lives if it exists.
+ new BranchInst(AfterCallBB, RI);
+
+ // Delete the return instruction now
+ RI->getParent()->getInstList().erase(RI);
+ }
+
+ } else if (!Returns.empty()) {
+ // Otherwise, if there is exactly one return value, just replace anything
+ // using the return value of the call with the computed value.
+ if (!TheCall->use_empty())
+ TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
+
+ // Splice the code from the return block into the block that it will return
+ // to, which contains the code that was after the call.
+ BasicBlock *ReturnBB = Returns[0]->getParent();
+ AfterCallBB->getInstList().splice(AfterCallBB->begin(),
+ ReturnBB->getInstList());
+
+ // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
+ ReturnBB->replaceAllUsesWith(AfterCallBB);
+
+ // Delete the return instruction now and empty ReturnBB now.
+ Returns[0]->eraseFromParent();
+ ReturnBB->eraseFromParent();
+ } else if (!TheCall->use_empty()) {
+ // No returns, but something is using the return value of the call. Just
+ // nuke the result.
+ TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
+ }
+
+ // Since we are now done with the Call/Invoke, we can delete it.
+ TheCall->eraseFromParent();
+
+ // We should always be able to fold the entry block of the function into the
+ // single predecessor of the block...
+ assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
+ BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
+
+ // Splice the code entry block into calling block, right before the
+ // unconditional branch.
+ OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
+ CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
+
+ // Remove the unconditional branch.
+ OrigBB->getInstList().erase(Br);
+
+ // Now we can remove the CalleeEntry block, which is now empty.
+ Caller->getBasicBlockList().erase(CalleeEntry);
+ return true;
+}