diff options
Diffstat (limited to 'lib/Transforms/Utils/InlineFunction.cpp')
-rw-r--r-- | lib/Transforms/Utils/InlineFunction.cpp | 362 |
1 files changed, 362 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp new file mode 100644 index 0000000000..cf45633447 --- /dev/null +++ b/lib/Transforms/Utils/InlineFunction.cpp @@ -0,0 +1,362 @@ +//===- InlineFunction.cpp - Code to perform function inlining -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements inlining of a function into a call site, resolving +// parameters and the return value as appropriate. +// +// FIXME: This pass should transform alloca instructions in the called function +// into alloca/dealloca pairs! Or perhaps it should refuse to inline them! +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/Support/CallSite.h" +using namespace llvm; + +bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); } +bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));} + +// InlineFunction - This function inlines the called function into the basic +// block of the caller. This returns false if it is not possible to inline this +// call. The program is still in a well defined state if this occurs though. +// +// Note that this only does one level of inlining. For example, if the +// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now +// exists in the instruction stream. Similiarly this will inline a recursive +// function by one level. +// +bool llvm::InlineFunction(CallSite CS) { + Instruction *TheCall = CS.getInstruction(); + assert(TheCall->getParent() && TheCall->getParent()->getParent() && + "Instruction not in function!"); + + const Function *CalledFunc = CS.getCalledFunction(); + if (CalledFunc == 0 || // Can't inline external function or indirect + CalledFunc->isExternal() || // call, or call to a vararg function! + CalledFunc->getFunctionType()->isVarArg()) return false; + + + // If the call to the callee is a non-tail call, we must clear the 'tail' + // flags on any calls that we inline. + bool MustClearTailCallFlags = + isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall(); + + BasicBlock *OrigBB = TheCall->getParent(); + Function *Caller = OrigBB->getParent(); + + // Get an iterator to the last basic block in the function, which will have + // the new function inlined after it. + // + Function::iterator LastBlock = &Caller->back(); + + // Make sure to capture all of the return instructions from the cloned + // function. + std::vector<ReturnInst*> Returns; + { // Scope to destroy ValueMap after cloning. + // Calculate the vector of arguments to pass into the function cloner... + std::map<const Value*, Value*> ValueMap; + assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) == + std::distance(CS.arg_begin(), CS.arg_end()) && + "No varargs calls can be inlined!"); + + CallSite::arg_iterator AI = CS.arg_begin(); + for (Function::const_arg_iterator I = CalledFunc->arg_begin(), + E = CalledFunc->arg_end(); I != E; ++I, ++AI) + ValueMap[I] = *AI; + + // Clone the entire body of the callee into the caller. + CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i"); + } + + // Remember the first block that is newly cloned over. + Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock; + + // If there are any alloca instructions in the block that used to be the entry + // block for the callee, move them to the entry block of the caller. First + // calculate which instruction they should be inserted before. We insert the + // instructions at the end of the current alloca list. + // + if (isa<AllocaInst>(FirstNewBlock->begin())) { + BasicBlock::iterator InsertPoint = Caller->begin()->begin(); + for (BasicBlock::iterator I = FirstNewBlock->begin(), + E = FirstNewBlock->end(); I != E; ) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) + if (isa<Constant>(AI->getArraySize())) { + // Scan for the block of allocas that we can move over. + while (isa<AllocaInst>(I) && + isa<Constant>(cast<AllocaInst>(I)->getArraySize())) + ++I; + + // Transfer all of the allocas over in a block. Using splice means + // that they instructions aren't removed from the symbol table, then + // reinserted. + Caller->front().getInstList().splice(InsertPoint, + FirstNewBlock->getInstList(), + AI, I); + } + } + + // If we are inlining tail call instruction through an invoke or + if (MustClearTailCallFlags) { + for (Function::iterator BB = FirstNewBlock, E = Caller->end(); + BB != E; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (CallInst *CI = dyn_cast<CallInst>(I)) + CI->setTailCall(false); + } + + // If we are inlining for an invoke instruction, we must make sure to rewrite + // any inlined 'unwind' instructions into branches to the invoke exception + // destination, and call instructions into invoke instructions. + if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { + BasicBlock *InvokeDest = II->getUnwindDest(); + std::vector<Value*> InvokeDestPHIValues; + + // If there are PHI nodes in the exceptional destination block, we need to + // keep track of which values came into them from this invoke, then remove + // the entry for this block. + for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + // Save the value to use for this edge... + InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB)); + } + + for (Function::iterator BB = FirstNewBlock, E = Caller->end(); + BB != E; ++BB) { + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { + // We only need to check for function calls: inlined invoke instructions + // require no special handling... + if (CallInst *CI = dyn_cast<CallInst>(I)) { + // Convert this function call into an invoke instruction... if it's + // not an intrinsic function call (which are known to not unwind). + if (CI->getCalledFunction() && + CI->getCalledFunction()->getIntrinsicID()) { + ++I; + } else { + // First, split the basic block... + BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); + + // Next, create the new invoke instruction, inserting it at the end + // of the old basic block. + InvokeInst *II = + new InvokeInst(CI->getCalledValue(), Split, InvokeDest, + std::vector<Value*>(CI->op_begin()+1, CI->op_end()), + CI->getName(), BB->getTerminator()); + II->setCallingConv(CI->getCallingConv()); + + // Make sure that anything using the call now uses the invoke! + CI->replaceAllUsesWith(II); + + // Delete the unconditional branch inserted by splitBasicBlock + BB->getInstList().pop_back(); + Split->getInstList().pop_front(); // Delete the original call + + // Update any PHI nodes in the exceptional block to indicate that + // there is now a new entry in them. + unsigned i = 0; + for (BasicBlock::iterator I = InvokeDest->begin(); + isa<PHINode>(I); ++I, ++i) { + PHINode *PN = cast<PHINode>(I); + PN->addIncoming(InvokeDestPHIValues[i], BB); + } + + // This basic block is now complete, start scanning the next one. + break; + } + } else { + ++I; + } + } + + if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { + // An UnwindInst requires special handling when it gets inlined into an + // invoke site. Once this happens, we know that the unwind would cause + // a control transfer to the invoke exception destination, so we can + // transform it into a direct branch to the exception destination. + new BranchInst(InvokeDest, UI); + + // Delete the unwind instruction! + UI->getParent()->getInstList().pop_back(); + + // Update any PHI nodes in the exceptional block to indicate that + // there is now a new entry in them. + unsigned i = 0; + for (BasicBlock::iterator I = InvokeDest->begin(); + isa<PHINode>(I); ++I, ++i) { + PHINode *PN = cast<PHINode>(I); + PN->addIncoming(InvokeDestPHIValues[i], BB); + } + } + } + + // Now that everything is happy, we have one final detail. The PHI nodes in + // the exception destination block still have entries due to the original + // invoke instruction. Eliminate these entries (which might even delete the + // PHI node) now. + InvokeDest->removePredecessor(II->getParent()); + } + + // If we cloned in _exactly one_ basic block, and if that block ends in a + // return instruction, we splice the body of the inlined callee directly into + // the calling basic block. + if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { + // Move all of the instructions right before the call. + OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), + FirstNewBlock->begin(), FirstNewBlock->end()); + // Remove the cloned basic block. + Caller->getBasicBlockList().pop_back(); + + // If the call site was an invoke instruction, add a branch to the normal + // destination. + if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) + new BranchInst(II->getNormalDest(), TheCall); + + // If the return instruction returned a value, replace uses of the call with + // uses of the returned value. + if (!TheCall->use_empty()) + TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); + + // Since we are now done with the Call/Invoke, we can delete it. + TheCall->getParent()->getInstList().erase(TheCall); + + // Since we are now done with the return instruction, delete it also. + Returns[0]->getParent()->getInstList().erase(Returns[0]); + + // We are now done with the inlining. + return true; + } + + // Otherwise, we have the normal case, of more than one block to inline or + // multiple return sites. + + // We want to clone the entire callee function into the hole between the + // "starter" and "ender" blocks. How we accomplish this depends on whether + // this is an invoke instruction or a call instruction. + BasicBlock *AfterCallBB; + if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { + + // Add an unconditional branch to make this look like the CallInst case... + BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall); + + // Split the basic block. This guarantees that no PHI nodes will have to be + // updated due to new incoming edges, and make the invoke case more + // symmetric to the call case. + AfterCallBB = OrigBB->splitBasicBlock(NewBr, + CalledFunc->getName()+".exit"); + + } else { // It's a call + // If this is a call instruction, we need to split the basic block that + // the call lives in. + // + AfterCallBB = OrigBB->splitBasicBlock(TheCall, + CalledFunc->getName()+".exit"); + } + + // Change the branch that used to go to AfterCallBB to branch to the first + // basic block of the inlined function. + // + TerminatorInst *Br = OrigBB->getTerminator(); + assert(Br && Br->getOpcode() == Instruction::Br && + "splitBasicBlock broken!"); + Br->setOperand(0, FirstNewBlock); + + + // Now that the function is correct, make it a little bit nicer. In + // particular, move the basic blocks inserted from the end of the function + // into the space made by splitting the source basic block. + // + Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), + FirstNewBlock, Caller->end()); + + // Handle all of the return instructions that we just cloned in, and eliminate + // any users of the original call/invoke instruction. + if (Returns.size() > 1) { + // The PHI node should go at the front of the new basic block to merge all + // possible incoming values. + // + PHINode *PHI = 0; + if (!TheCall->use_empty()) { + PHI = new PHINode(CalledFunc->getReturnType(), + TheCall->getName(), AfterCallBB->begin()); + + // Anything that used the result of the function call should now use the + // PHI node as their operand. + // + TheCall->replaceAllUsesWith(PHI); + } + + // Loop over all of the return instructions, turning them into unconditional + // branches to the merge point now, and adding entries to the PHI node as + // appropriate. + for (unsigned i = 0, e = Returns.size(); i != e; ++i) { + ReturnInst *RI = Returns[i]; + + if (PHI) { + assert(RI->getReturnValue() && "Ret should have value!"); + assert(RI->getReturnValue()->getType() == PHI->getType() && + "Ret value not consistent in function!"); + PHI->addIncoming(RI->getReturnValue(), RI->getParent()); + } + + // Add a branch to the merge point where the PHI node lives if it exists. + new BranchInst(AfterCallBB, RI); + + // Delete the return instruction now + RI->getParent()->getInstList().erase(RI); + } + + } else if (!Returns.empty()) { + // Otherwise, if there is exactly one return value, just replace anything + // using the return value of the call with the computed value. + if (!TheCall->use_empty()) + TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); + + // Splice the code from the return block into the block that it will return + // to, which contains the code that was after the call. + BasicBlock *ReturnBB = Returns[0]->getParent(); + AfterCallBB->getInstList().splice(AfterCallBB->begin(), + ReturnBB->getInstList()); + + // Update PHI nodes that use the ReturnBB to use the AfterCallBB. + ReturnBB->replaceAllUsesWith(AfterCallBB); + + // Delete the return instruction now and empty ReturnBB now. + Returns[0]->eraseFromParent(); + ReturnBB->eraseFromParent(); + } else if (!TheCall->use_empty()) { + // No returns, but something is using the return value of the call. Just + // nuke the result. + TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); + } + + // Since we are now done with the Call/Invoke, we can delete it. + TheCall->eraseFromParent(); + + // We should always be able to fold the entry block of the function into the + // single predecessor of the block... + assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); + BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); + + // Splice the code entry block into calling block, right before the + // unconditional branch. + OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); + CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes + + // Remove the unconditional branch. + OrigBB->getInstList().erase(Br); + + // Now we can remove the CalleeEntry block, which is now empty. + Caller->getBasicBlockList().erase(CalleeEntry); + return true; +} |