aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar')
-rw-r--r--lib/Transforms/Scalar/ADCE.cpp6
-rw-r--r--lib/Transforms/Scalar/BasicBlockPlacement.cpp2
-rw-r--r--lib/Transforms/Scalar/CMakeLists.txt1
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp663
-rw-r--r--lib/Transforms/Scalar/ConstantProp.cpp6
-rw-r--r--lib/Transforms/Scalar/CorrelatedValuePropagation.cpp35
-rw-r--r--lib/Transforms/Scalar/DCE.cpp2
-rw-r--r--lib/Transforms/Scalar/DeadStoreElimination.cpp18
-rw-r--r--lib/Transforms/Scalar/EarlyCSE.cpp4
-rw-r--r--lib/Transforms/Scalar/GVN.cpp69
-rw-r--r--lib/Transforms/Scalar/GlobalMerge.cpp53
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp14
-rw-r--r--lib/Transforms/Scalar/JumpThreading.cpp12
-rw-r--r--lib/Transforms/Scalar/LICM.cpp51
-rw-r--r--lib/Transforms/Scalar/LoopIdiomRecognize.cpp38
-rw-r--r--lib/Transforms/Scalar/LoopInstSimplify.cpp5
-rw-r--r--lib/Transforms/Scalar/LoopRotation.cpp19
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp614
-rw-r--r--lib/Transforms/Scalar/LoopUnrollPass.cpp29
-rw-r--r--lib/Transforms/Scalar/LoopUnswitch.cpp29
-rw-r--r--lib/Transforms/Scalar/LowerAtomic.cpp6
-rw-r--r--lib/Transforms/Scalar/MemCpyOptimizer.cpp10
-rw-r--r--lib/Transforms/Scalar/ObjCARC.cpp4232
-rw-r--r--lib/Transforms/Scalar/Reassociate.cpp12
-rw-r--r--lib/Transforms/Scalar/Reg2Mem.cpp10
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp20
-rw-r--r--lib/Transforms/Scalar/SROA.cpp487
-rw-r--r--lib/Transforms/Scalar/Scalar.cpp7
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp22
-rw-r--r--lib/Transforms/Scalar/SimplifyCFGPass.cpp45
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp10
-rw-r--r--lib/Transforms/Scalar/Sink.cpp2
-rw-r--r--lib/Transforms/Scalar/TailRecursionElimination.cpp32
33 files changed, 1527 insertions, 5038 deletions
diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp
index f43baf5a76..a097308640 100644
--- a/lib/Transforms/Scalar/ADCE.cpp
+++ b/lib/Transforms/Scalar/ADCE.cpp
@@ -20,9 +20,9 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstIterator.h"
diff --git a/lib/Transforms/Scalar/BasicBlockPlacement.cpp b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
index 6214e3b703..e755008808 100644
--- a/lib/Transforms/Scalar/BasicBlockPlacement.cpp
+++ b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
@@ -30,7 +30,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileInfo.h"
-#include "llvm/Function.h"
+#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include <set>
diff --git a/lib/Transforms/Scalar/CMakeLists.txt b/lib/Transforms/Scalar/CMakeLists.txt
index b3fc6e338c..fd55e082ac 100644
--- a/lib/Transforms/Scalar/CMakeLists.txt
+++ b/lib/Transforms/Scalar/CMakeLists.txt
@@ -21,7 +21,6 @@ add_llvm_library(LLVMScalarOpts
LoopUnswitch.cpp
LowerAtomic.cpp
MemCpyOptimizer.cpp
- ObjCARC.cpp
Reassociate.cpp
Reg2Mem.cpp
SCCP.cpp
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
index e6abfdf581..015fd2e6e6 100644
--- a/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -23,14 +23,14 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
@@ -41,7 +41,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
@@ -106,6 +105,8 @@ namespace {
}
bool runOnFunction(Function &F);
+ const char *getPassName() const { return "CodeGen Prepare"; }
+
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<ProfileInfo>();
@@ -148,11 +149,12 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
TLInfo = &getAnalysis<TargetLibraryInfo>();
DT = getAnalysisIfAvailable<DominatorTree>();
PFI = getAnalysisIfAvailable<ProfileInfo>();
- OptSize = F.getFnAttributes().hasAttribute(Attributes::OptimizeForSize);
+ OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
/// This optimization identifies DIV instructions that can be
/// profitably bypassed and carried out with a shorter, faster divide.
- if (TLI && TLI->isSlowDivBypassed()) {
+ if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
const DenseMap<unsigned int, unsigned int> &BypassWidths =
TLI->getBypassSlowDivWidths();
for (Function::iterator I = F.begin(); I != F.end(); I++)
@@ -727,9 +729,9 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
// It's not safe to eliminate the sign / zero extension of the return value.
// See llvm::isInTailCallPosition().
const Function *F = BB->getParent();
- Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
- if (CallerRetAttr.hasAttribute(Attributes::ZExt) ||
- CallerRetAttr.hasAttribute(Attributes::SExt))
+ AttributeSet CallerAttrs = F->getAttributes();
+ if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
+ CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
return false;
// Make sure there are no instructions between the PHI and return, or that the
@@ -786,11 +788,11 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
// Conservatively require the attributes of the call to match those of the
// return. Ignore noalias because it doesn't affect the call sequence.
- Attributes CalleeRetAttr = CS.getAttributes().getRetAttributes();
- if (AttrBuilder(CalleeRetAttr).
- removeAttribute(Attributes::NoAlias) !=
- AttrBuilder(CallerRetAttr).
- removeAttribute(Attributes::NoAlias))
+ AttributeSet CalleeAttrs = CS.getAttributes();
+ if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
+ removeAttribute(Attribute::NoAlias) !=
+ AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
+ removeAttribute(Attribute::NoAlias))
continue;
// Make sure the call instruction is followed by an unconditional branch to
@@ -817,6 +819,629 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
// Memory Optimization
//===----------------------------------------------------------------------===//
+namespace {
+
+/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
+/// which holds actual Value*'s for register values.
+struct ExtAddrMode : public TargetLowering::AddrMode {
+ Value *BaseReg;
+ Value *ScaledReg;
+ ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+ bool operator==(const ExtAddrMode& O) const {
+ return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
+ (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
+ (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
+ }
+};
+
+static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
+ AM.print(OS);
+ return OS;
+}
+
+void ExtAddrMode::print(raw_ostream &OS) const {
+ bool NeedPlus = false;
+ OS << "[";
+ if (BaseGV) {
+ OS << (NeedPlus ? " + " : "")
+ << "GV:";
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ if (BaseOffs)
+ OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
+
+ if (BaseReg) {
+ OS << (NeedPlus ? " + " : "")
+ << "Base:";
+ WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+ if (Scale) {
+ OS << (NeedPlus ? " + " : "")
+ << Scale << "*";
+ WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
+ NeedPlus = true;
+ }
+
+ OS << ']';
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ExtAddrMode::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+
+/// \brief A helper class for matching addressing modes.
+///
+/// This encapsulates the logic for matching the target-legal addressing modes.
+class AddressingModeMatcher {
+ SmallVectorImpl<Instruction*> &AddrModeInsts;
+ const TargetLowering &TLI;
+
+ /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
+ /// the memory instruction that we're computing this address for.
+ Type *AccessTy;
+ Instruction *MemoryInst;
+
+ /// AddrMode - This is the addressing mode that we're building up. This is
+ /// part of the return value of this addressing mode matching stuff.
+ ExtAddrMode &AddrMode;
+
+ /// IgnoreProfitability - This is set to true when we should not do
+ /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
+ /// always returns true.
+ bool IgnoreProfitability;
+
+ AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
+ const TargetLowering &T, Type *AT,
+ Instruction *MI, ExtAddrMode &AM)
+ : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
+ IgnoreProfitability = false;
+ }
+public:
+
+ /// Match - Find the maximal addressing mode that a load/store of V can fold,
+ /// give an access type of AccessTy. This returns a list of involved
+ /// instructions in AddrModeInsts.
+ static ExtAddrMode Match(Value *V, Type *AccessTy,
+ Instruction *MemoryInst,
+ SmallVectorImpl<Instruction*> &AddrModeInsts,
+ const TargetLowering &TLI) {
+ ExtAddrMode Result;
+
+ bool Success =
+ AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
+ MemoryInst, Result).MatchAddr(V, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+ return Result;
+ }
+private:
+ bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
+ bool MatchAddr(Value *V, unsigned Depth);
+ bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
+ bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
+ ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter);
+ bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
+};
+
+/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
+/// Return true and update AddrMode if this addr mode is legal for the target,
+/// false if not.
+bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
+ unsigned Depth) {
+ // If Scale is 1, then this is the same as adding ScaleReg to the addressing
+ // mode. Just process that directly.
+ if (Scale == 1)
+ return MatchAddr(ScaleReg, Depth);
+
+ // If the scale is 0, it takes nothing to add this.
+ if (Scale == 0)
+ return true;
+
+ // If we already have a scale of this value, we can add to it, otherwise, we
+ // need an available scale field.
+ if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
+ return false;
+
+ ExtAddrMode TestAddrMode = AddrMode;
+
+ // Add scale to turn X*4+X*3 -> X*7. This could also do things like
+ // [A+B + A*7] -> [B+A*8].
+ TestAddrMode.Scale += Scale;
+ TestAddrMode.ScaledReg = ScaleReg;
+
+ // If the new address isn't legal, bail out.
+ if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
+ return false;
+
+ // It was legal, so commit it.
+ AddrMode = TestAddrMode;
+
+ // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
+ // to see if ScaleReg is actually X+C. If so, we can turn this into adding
+ // X*Scale + C*Scale to addr mode.
+ ConstantInt *CI = 0; Value *AddLHS = 0;
+ if (isa<Instruction>(ScaleReg) && // not a constant expr.
+ match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
+ TestAddrMode.ScaledReg = AddLHS;
+ TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
+
+ // If this addressing mode is legal, commit it and remember that we folded
+ // this instruction.
+ if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
+ AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
+ AddrMode = TestAddrMode;
+ return true;
+ }
+ }
+
+ // Otherwise, not (x+c)*scale, just return what we have.
+ return true;
+}
+
+/// MightBeFoldableInst - This is a little filter, which returns true if an
+/// addressing computation involving I might be folded into a load/store
+/// accessing it. This doesn't need to be perfect, but needs to accept at least
+/// the set of instructions that MatchOperationAddr can.
+static bool MightBeFoldableInst(Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::BitCast:
+ // Don't touch identity bitcasts.
+ if (I->getType() == I->getOperand(0)->getType())
+ return false;
+ return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return true;
+ case Instruction::IntToPtr:
+ // We know the input is intptr_t, so this is foldable.
+ return true;
+ case Instruction::Add:
+ return true;
+ case Instruction::Mul:
+ case Instruction::Shl:
+ // Can only handle X*C and X << C.
+ return isa<ConstantInt>(I->getOperand(1));
+ case Instruction::GetElementPtr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// MatchOperationAddr - Given an instruction or constant expr, see if we can
+/// fold the operation into the addressing mode. If so, update the addressing
+/// mode and return true, otherwise return false without modifying AddrMode.
+bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
+ unsigned Depth) {
+ // Avoid exponential behavior on extremely deep expression trees.
+ if (Depth >= 5) return false;
+
+ switch (Opcode) {
+ case Instruction::PtrToInt:
+ // PtrToInt is always a noop, as we know that the int type is pointer sized.
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ case Instruction::IntToPtr:
+ // This inttoptr is a no-op if the integer type is pointer sized.
+ if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
+ TLI.getPointerTy())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::BitCast:
+ // BitCast is always a noop, and we can handle it as long as it is
+ // int->int or pointer->pointer (we don't want int<->fp or something).
+ if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
+ AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
+ // Don't touch identity bitcasts. These were probably put here by LSR,
+ // and we don't want to mess around with them. Assume it knows what it
+ // is doing.
+ AddrInst->getOperand(0)->getType() != AddrInst->getType())
+ return MatchAddr(AddrInst->getOperand(0), Depth);
+ return false;
+ case Instruction::Add: {
+ // Check to see if we can merge in the RHS then the LHS. If so, we win.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+ if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+
+ // Restore the old addr mode info.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+
+ // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
+ MatchAddr(AddrInst->getOperand(1), Depth+1))
+ return true;
+
+ // Otherwise we definitely can't merge the ADD in.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ break;
+ }
+ //case Instruction::Or:
+ // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
+ //break;
+ case Instruction::Mul:
+ case Instruction::Shl: {
+ // Can only handle X*C and X << C.
+ ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
+ if (!RHS) return false;
+ int64_t Scale = RHS->getSExtValue();
+ if (Opcode == Instruction::Shl)
+ Scale = 1LL << Scale;
+
+ return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
+ }
+ case Instruction::GetElementPtr: {
+ // Scan the GEP. We check it if it contains constant offsets and at most
+ // one variable offset.
+ int VariableOperand = -1;
+ unsigned VariableScale = 0;
+
+ int64_t ConstantOffset = 0;
+ const DataLayout *TD = TLI.getDataLayout();
+ gep_type_iterator GTI = gep_type_begin(AddrInst);
+ for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = TD->getStructLayout(STy);
+ unsigned Idx =
+ cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
+ ConstantOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
+ ConstantOffset += CI->getSExtValue()*TypeSize;
+ } else if (TypeSize) { // Scales of zero don't do anything.
+ // We only allow one variable index at the moment.
+ if (VariableOperand != -1)
+ return false;
+
+ // Remember the variable index.
+ VariableOperand = i;
+ VariableScale = TypeSize;
+ }
+ }
+ }
+
+ // A common case is for the GEP to only do a constant offset. In this case,
+ // just add it to the disp field and check validity.
+ if (VariableOperand == -1) {
+ AddrMode.BaseOffs += ConstantOffset;
+ if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
+ // Check to see if we can fold the base pointer in too.
+ if (MatchAddr(AddrInst->getOperand(0), Depth+1))
+ return true;
+ }
+ AddrMode.BaseOffs -= ConstantOffset;
+ return false;
+ }
+
+ // Save the valid addressing mode in case we can't match.
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // See if the scale and offset amount is valid for this target.
+ AddrMode.BaseOffs += ConstantOffset;
+
+ // Match the base operand of the GEP.
+ if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
+ // If it couldn't be matched, just stuff the value in a register.
+ if (AddrMode.HasBaseReg) {
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ }
+
+ // Match the remaining variable portion of the GEP.
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
+ Depth)) {
+ // If it couldn't be matched, try stuffing the base into a register
+ // instead of matching it, and retrying the match of the scale.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ if (AddrMode.HasBaseReg)
+ return false;
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = AddrInst->getOperand(0);
+ AddrMode.BaseOffs += ConstantOffset;
+ if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
+ VariableScale, Depth)) {
+ // If even that didn't work, bail.
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ return false;
+ }
+ }
+
+ return true;
+ }
+ }
+ return false;
+}
+
+/// MatchAddr - If we can, try to add the value of 'Addr' into the current
+/// addressing mode. If Addr can't be added to AddrMode this returns false and
+/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
+/// or intptr_t for the target.
+///
+bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
+ // Fold in immediates if legal for the target.
+ AddrMode.BaseOffs += CI->getSExtValue();
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseOffs -= CI->getSExtValue();
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
+ // If this is a global variable, try to fold it into the addressing mode.
+ if (AddrMode.BaseGV == 0) {
+ AddrMode.BaseGV = GV;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.BaseGV = 0;
+ }
+ } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
+ ExtAddrMode BackupAddrMode = AddrMode;
+ unsigned OldSize = AddrModeInsts.size();
+
+ // Check to see if it is possible to fold this operation.
+ if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
+ // Okay, it's possible to fold this. Check to see if it is actually
+ // *profitable* to do so. We use a simple cost model to avoid increasing
+ // register pressure too much.
+ if (I->hasOneUse() ||
+ IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
+ AddrModeInsts.push_back(I);
+ return true;
+ }
+
+ // It isn't profitable to do this, roll back.
+ //cerr << "NOT FOLDING: " << *I;
+ AddrMode = BackupAddrMode;
+ AddrModeInsts.resize(OldSize);
+ }
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
+ if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
+ return true;
+ } else if (isa<ConstantPointerNull>(Addr)) {
+ // Null pointer gets folded without affecting the addressing mode.
+ return true;
+ }
+
+ // Worse case, the target should support [reg] addressing modes. :)
+ if (!AddrMode.HasBaseReg) {
+ AddrMode.HasBaseReg = true;
+ AddrMode.BaseReg = Addr;
+ // Still check for legality in case the target supports [imm] but not [i+r].
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.HasBaseReg = false;
+ AddrMode.BaseReg = 0;
+ }
+
+ // If the base register is already taken, see if we can do [r+r].
+ if (AddrMode.Scale == 0) {
+ AddrMode.Scale = 1;
+ AddrMode.ScaledReg = Addr;
+ if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+ return true;
+ AddrMode.Scale = 0;
+ AddrMode.ScaledReg = 0;
+ }
+ // Couldn't match.
+ return false;
+}
+
+/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
+/// inline asm call are due to memory operands. If so, return true, otherwise
+/// return false.
+static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
+ const TargetLowering &TLI) {
+ TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
+ for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+ TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI.ComputeConstraintToUse(OpInfo, SDValue());
+
+ // If this asm operand is our Value*, and if it isn't an indirect memory
+ // operand, we can't fold it!
+ if (OpInfo.CallOperandVal == OpVal &&
+ (OpInfo.ConstraintType != TargetLowering::C_Memory ||
+ !OpInfo.isIndirect))
+ return false;
+ }
+
+ return true;
+}
+
+/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
+/// memory use. If we find an obviously non-foldable instruction, return true.
+/// Add the ultimately found memory instructions to MemoryUses.
+static bool FindAllMemoryUses(Instruction *I,
+ SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
+ SmallPtrSet<Instruction*, 16> &ConsideredInsts,
+ const TargetLowering &TLI) {
+ // If we already considered this instruction, we're done.
+ if (!ConsideredInsts.insert(I))
+ return false;
+
+ // If this is an obviously unfoldable instruction, bail out.
+ if (!MightBeFoldableInst(I))
+ return true;
+
+ // Loop over all the uses, recursively processing them.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI) {
+ User *U = *UI;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ unsigned opNo = UI.getOperandNo();
+ if (opNo == 0) return true; // Storing addr, not into addr.
+ MemoryUses.push_back(std::make_pair(SI, opNo));
+ continue;
+ }
+
+ if (CallInst *CI = dyn_cast<CallInst>(U)) {
+ InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
+ if (!IA) return true;
+
+ // If this is a memory operand, we're cool, otherwise bail out.
+ if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
+ return true;
+ continue;
+ }
+
+ if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
+ TLI))
+ return true;
+ }
+
+ return false;
+}
+
+/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
+/// the use site that we're folding it into. If so, there is no cost to
+/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
+/// that we know are live at the instruction already.
+bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
+ Value *KnownLive2) {
+ // If Val is either of the known-live values, we know it is live!
+ if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
+ return true;
+
+ // All values other than instructions and arguments (e.g. constants) are live.
+ if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
+
+ // If Val is a constant sized alloca in the entry block, it is live, this is
+ // true because it is just a reference to the stack/frame pointer, which is
+ // live for the whole function.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
+ if (AI->isStaticAlloca())
+ return true;
+
+ // Check to see if this value is already used in the memory instruction's
+ // block. If so, it's already live into the block at the very least, so we
+ // can reasonably fold it.
+ return Val->isUsedInBasicBlock(MemoryInst->getParent());
+}
+
+/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
+/// mode of the machine to fold the specified instruction into a load or store
+/// that ultimately uses it. However, the specified instruction has multiple
+/// uses. Given this, it may actually increase register pressure to fold it
+/// into the load. For example, consider this code:
+///
+/// X = ...
+/// Y = X+1
+/// use(Y) -> nonload/store
+/// Z = Y+1
+/// load Z
+///
+/// In this case, Y has multiple uses, and can be folded into the load of Z
+/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
+/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
+/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
+/// number of computations either.
+///
+/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
+/// X was live across 'load Z' for other reasons, we actually *would* want to
+/// fold the addressing mode in the Z case. This would make Y die earlier.
+bool AddressingModeMatcher::
+IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
+ ExtAddrMode &AMAfter) {
+ if (IgnoreProfitability) return true;
+
+ // AMBefore is the addressing mode before this instruction was folded into it,
+ // and AMAfter is the addressing mode after the instruction was folded. Get
+ // the set of registers referenced by AMAfter and subtract out those
+ // referenced by AMBefore: this is the set of values which folding in this
+ // address extends the lifetime of.
+ //
+ // Note that there are only two potential values being referenced here,
+ // BaseReg and ScaleReg (global addresses are always available, as are any
+ // folded immediates).
+ Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
+
+ // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
+ // lifetime wasn't extended by adding this instruction.
+ if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ BaseReg = 0;
+ if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ ScaledReg = 0;
+
+ // If folding this instruction (and it's subexprs) didn't extend any live
+ // ranges, we're ok with it.
+ if (BaseReg == 0 && ScaledReg == 0)
+ return true;
+
+ // If all uses of this instruction are ultimately load/store/inlineasm's,
+ // check to see if their addressing modes will include this instruction. If
+ // so, we can fold it into all uses, so it doesn't matter if it has multiple
+ // uses.
+ SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
+ SmallPtrSet<Instruction*, 16> ConsideredInsts;
+ if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
+ return false; // Has a non-memory, non-foldable use!
+
+ // Now that we know that all uses of this instruction are part of a chain of
+ // computation involving only operations that could theoretically be folded
+ // into a memory use, loop over each of these uses and see if they could
+ // *actually* fold the instruction.
+ SmallVector<Instruction*, 32> MatchedAddrModeInsts;
+ for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
+ Instruction *User = MemoryUses[i].first;
+ unsigned OpNo = MemoryUses[i].second;
+
+ // Get the access type of this use. If the use isn't a pointer, we don't
+ // know what it accesses.
+ Value *Address = User->getOperand(OpNo);
+ if (!Address->getType()->isPointerTy())
+ return false;
+ Type *AddressAccessTy =
+ cast<PointerType>(Address->getType())->getElementType();
+
+ // Do a match against the root of this address, ignoring profitability. This
+ // will tell us if the addressing mode for the memory operation will
+ // *actually* cover the shared instruction.
+ ExtAddrMode Result;
+ AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
+ MemoryInst, Result);
+ Matcher.IgnoreProfitability = true;
+ bool Success = Matcher.MatchAddr(Address, 0);
+ (void)Success; assert(Success && "Couldn't select *anything*?");
+
+ // If the match didn't cover I, then it won't be shared by it.
+ if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
+ I) == MatchedAddrModeInsts.end())
+ return false;
+
+ MatchedAddrModeInsts.clear();
+ }
+
+ return true;
+}
+
+} // end anonymous namespace
+
/// IsNonLocalValue - Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
diff --git a/lib/Transforms/Scalar/ConstantProp.cpp b/lib/Transforms/Scalar/ConstantProp.cpp
index 27efde53cd..d5a96eceb9 100644
--- a/lib/Transforms/Scalar/ConstantProp.cpp
+++ b/lib/Transforms/Scalar/ConstantProp.cpp
@@ -22,9 +22,9 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Constant.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instruction.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
diff --git a/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
index b5a2a25ba0..995782e1bc 100644
--- a/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
+++ b/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
@@ -16,11 +16,13 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -97,12 +99,29 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) {
Value *Incoming = P->getIncomingValue(i);
if (isa<Constant>(Incoming)) continue;
- Constant *C = LVI->getConstantOnEdge(P->getIncomingValue(i),
- P->getIncomingBlock(i),
- BB);
- if (!C) continue;
+ Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB);
- P->setIncomingValue(i, C);
+ // Look if the incoming value is a select with a constant but LVI tells us
+ // that the incoming value can never be that constant. In that case replace
+ // the incoming value with the other value of the select. This often allows
+ // us to remove the select later.
+ if (!V) {
+ SelectInst *SI = dyn_cast<SelectInst>(Incoming);
+ if (!SI) continue;
+
+ Constant *C = dyn_cast<Constant>(SI->getFalseValue());
+ if (!C) continue;
+
+ if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
+ P->getIncomingBlock(i), BB) !=
+ LazyValueInfo::False)
+ continue;
+
+ DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
+ V = SI->getTrueValue();
+ }
+
+ P->setIncomingValue(i, V);
Changed = true;
}
diff --git a/lib/Transforms/Scalar/DCE.cpp b/lib/Transforms/Scalar/DCE.cpp
index f260331c6d..e8a090af40 100644
--- a/lib/Transforms/Scalar/DCE.cpp
+++ b/lib/Transforms/Scalar/DCE.cpp
@@ -19,7 +19,7 @@
#define DEBUG_TYPE "dce"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Instruction.h"
+#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
diff --git a/lib/Transforms/Scalar/DeadStoreElimination.cpp b/lib/Transforms/Scalar/DeadStoreElimination.cpp
index 124892887c..57432c7d71 100644
--- a/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -26,12 +26,12 @@
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLibraryInfo.h"
@@ -376,10 +376,10 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
// Check to see if the later store is to the entire object (either a global,
// an alloca, or a byval argument). If so, then it clearly overwrites any
// other store to the same object.
- const DataLayout &TD = *AA.getDataLayout();
+ const DataLayout *TD = AA.getDataLayout();
- const Value *UO1 = GetUnderlyingObject(P1, &TD),
- *UO2 = GetUnderlyingObject(P2, &TD);
+ const Value *UO1 = GetUnderlyingObject(P1, TD),
+ *UO2 = GetUnderlyingObject(P2, TD);
// If we can't resolve the same pointers to the same object, then we can't
// analyze them at all.
diff --git a/lib/Transforms/Scalar/EarlyCSE.cpp b/lib/Transforms/Scalar/EarlyCSE.cpp
index 6b622c73f0..3c08634bfe 100644
--- a/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -19,8 +19,8 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index 1c540b240c..c04b447f1c 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -32,12 +32,12 @@
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/DataLayout.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -849,8 +849,8 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
return -1;
int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
+ Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
+ Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
if (StoreBase != LoadBase)
return -1;
@@ -945,7 +945,7 @@ static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
// then we should widen it!
int64_t LoadOffs = 0;
const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
+ GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
unsigned Size = MemoryDependenceAnalysis::
@@ -1526,10 +1526,8 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
BasicBlock *LoadBB = LI->getParent();
BasicBlock *TmpBB = LoadBB;
- bool isSinglePred = false;
bool allSingleSucc = true;
while (TmpBB->getSinglePredecessor()) {
- isSinglePred = true;
TmpBB = TmpBB->getSinglePredecessor();
if (TmpBB == LoadBB) // Infinite (unreachable) loop.
return false;
@@ -1548,28 +1546,6 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
assert(TmpBB);
LoadBB = TmpBB;
- // FIXME: It is extremely unclear what this loop is doing, other than
- // artificially restricting loadpre.
- if (isSinglePred) {
- bool isHot = false;
- for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
- const AvailableValueInBlock &AV = ValuesPerBlock[i];
- if (AV.isSimpleValue())
- // "Hot" Instruction is in some loop (because it dominates its dep.
- // instruction).
- if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
- if (DT->dominates(LI, I)) {
- isHot = true;
- break;
- }
- }
-
- // We are interested only in "hot" instructions. We don't want to do any
- // mis-optimizations here.
- if (!isHot)
- return false;
- }
-
// Check to see how many predecessors have the loaded value fully
// available.
DenseMap<BasicBlock*, Value*> PredLoads;
@@ -2371,8 +2347,8 @@ bool GVN::processBlock(BasicBlock *BB) {
E = InstrsToErase.end(); I != E; ++I) {
DEBUG(dbgs() << "GVN removed: " << **I << '\n');
if (MD) MD->removeInstruction(*I);
- (*I)->eraseFromParent();
DEBUG(verifyRemoved(*I));
+ (*I)->eraseFromParent();
}
InstrsToErase.clear();
@@ -2389,7 +2365,7 @@ bool GVN::processBlock(BasicBlock *BB) {
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function &F) {
bool Changed = false;
- DenseMap<BasicBlock*, Value*> predMap;
+ SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
BasicBlock *CurrentBlock = *DI;
@@ -2445,19 +2421,22 @@ bool GVN::performPRE(Function &F) {
if (P == CurrentBlock) {
NumWithout = 2;
break;
- } else if (!DT->dominates(&F.getEntryBlock(), P)) {
+ } else if (!DT->isReachableFromEntry(P)) {
NumWithout = 2;
break;
}
Value* predV = findLeader(P, ValNo);
if (predV == 0) {
+ predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
PREPred = P;
++NumWithout;
} else if (predV == CurInst) {
+ /* CurInst dominates this predecessor. */
NumWithout = 2;
+ break;
} else {
- predMap[P] = predV;
+ predMap.push_back(std::make_pair(predV, P));
++NumWith;
}
}
@@ -2504,15 +2483,14 @@ bool GVN::performPRE(Function &F) {
// the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
- delete PREInstr;
DEBUG(verifyRemoved(PREInstr));
+ delete PREInstr;
continue;
}
PREInstr->insertBefore(PREPred->getTerminator());
PREInstr->setName(CurInst->getName() + ".pre");
PREInstr->setDebugLoc(CurInst->getDebugLoc());
- predMap[PREPred] = PREInstr;
VN.add(PREInstr, ValNo);
++NumGVNPRE;
@@ -2520,13 +2498,14 @@ bool GVN::performPRE(Function &F) {
addToLeaderTable(ValNo, PREInstr, PREPred);
// Create a PHI to make the value available in this block.
- pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
- PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
+ PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
CurInst->getName() + ".pre-phi",
CurrentBlock->begin());
- for (pred_iterator PI = PB; PI != PE; ++PI) {
- BasicBlock *P = *PI;
- Phi->addIncoming(predMap[P], P);
+ for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
+ if (Value *V = predMap[i].first)
+ Phi->addIncoming(V, predMap[i].second);
+ else
+ Phi->addIncoming(PREInstr, PREPred);
}
VN.add(Phi, ValNo);
@@ -2551,8 +2530,8 @@ bool GVN::performPRE(Function &F) {
DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
if (MD) MD->removeInstruction(CurInst);
- CurInst->eraseFromParent();
DEBUG(verifyRemoved(CurInst));
+ CurInst->eraseFromParent();
Changed = true;
}
}
diff --git a/lib/Transforms/Scalar/GlobalMerge.cpp b/lib/Transforms/Scalar/GlobalMerge.cpp
index 486a349c55..1601a8d646 100644
--- a/lib/Transforms/Scalar/GlobalMerge.cpp
+++ b/lib/Transforms/Scalar/GlobalMerge.cpp
@@ -54,15 +54,15 @@
#define DEBUG_TYPE "global-merge"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
@@ -76,7 +76,7 @@ namespace {
const TargetLowering *TLI;
bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const;
+ Module &M, bool isConst, unsigned AddrSpace) const;
public:
static char ID; // Pass identification, replacement for typeid.
@@ -118,7 +118,7 @@ INITIALIZE_PASS(GlobalMerge, "global-merge",
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
- Module &M, bool isConst) const {
+ Module &M, bool isConst, unsigned AddrSpace) const {
const DataLayout *TD = TLI->getDataLayout();
// FIXME: Infer the maximum possible offset depending on the actual users
@@ -150,7 +150,9 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
GlobalVariable *MergedGV = new GlobalVariable(M, MergedTy, isConst,
GlobalValue::InternalLinkage,
- MergedInit, "_MergedGlobals");
+ MergedInit, "_MergedGlobals",
+ 0, GlobalVariable::NotThreadLocal,
+ AddrSpace);
for (size_t k = i; k < j; ++k) {
Constant *Idx[2] = {
ConstantInt::get(Int32Ty, 0),
@@ -169,7 +171,8 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
bool GlobalMerge::doInitialization(Module &M) {
- SmallVector<GlobalVariable*, 16> Globals, ConstGlobals, BSSGlobals;
+ DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
+ BSSGlobals;
const DataLayout *TD = TLI->getDataLayout();
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
bool Changed = false;
@@ -181,6 +184,11 @@ bool GlobalMerge::doInitialization(Module &M) {
if (!I->hasLocalLinkage() || I->isThreadLocal() || I->hasSection())
continue;
+ PointerType *PT = dyn_cast<PointerType>(I->getType());
+ assert(PT && "Global variable is not a pointer!");
+
+ unsigned AddressSpace = PT->getAddressSpace();
+
// Ignore fancy-aligned globals for now.
unsigned Alignment = TD->getPreferredAlignment(I);
Type *Ty = I->getType()->getElementType();
@@ -195,18 +203,23 @@ bool GlobalMerge::doInitialization(Module &M) {
if (TD->getTypeAllocSize(Ty) < MaxOffset) {
if (TargetLoweringObjectFile::getKindForGlobal(I, TLI->getTargetMachine())
.isBSSLocal())
- BSSGlobals.push_back(I);
+ BSSGlobals[AddressSpace].push_back(I);
else if (I->isConstant())
- ConstGlobals.push_back(I);
+ ConstGlobals[AddressSpace].push_back(I);
else
- Globals.push_back(I);
+ Globals[AddressSpace].push_back(I);
}
}
- if (Globals.size() > 1)
- Changed |= doMerge(Globals, M, false);
- if (BSSGlobals.size() > 1)
- Changed |= doMerge(BSSGlobals, M, false);
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = Globals.begin(), E = Globals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
+
+ for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
+ I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
+ if (I->second.size() > 1)
+ Changed |= doMerge(I->second, M, false, I->first);
// FIXME: This currently breaks the EH processing due to way how the
// typeinfo detection works. We might want to detect the TIs and ignore
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index 29f5a10e09..97fff7e782 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -33,12 +33,13 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -47,7 +48,6 @@
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/Type.h"
using namespace llvm;
STATISTIC(NumWidened , "Number of indvars widened");
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index 4a4cd705e2..b61c5ba56e 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -23,9 +23,9 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -249,7 +249,11 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- if (!isa<IntrinsicInst>(CI))
+ if (CI->hasFnAttr(Attribute::NoDuplicate))
+ // Blocks with NoDuplicate are modelled as having infinite cost, so they
+ // are never duplicated.
+ return ~0U;
+ else if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (!CI->getType()->isVectorTy())
Size += 1;
diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp
index 7ef1d34d3f..f94cd2a073 100644
--- a/lib/Transforms/Scalar/LICM.cpp
+++ b/lib/Transforms/Scalar/LICM.cpp
@@ -40,12 +40,13 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -439,13 +440,12 @@ bool LICM::canSinkOrHoistInst(Instruction &I) {
}
// Only these instructions are hoistable/sinkable.
- bool HoistableKind = (isa<BinaryOperator>(I) || isa<CastInst>(I) ||
- isa<SelectInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<CmpInst>(I) || isa<InsertElementInst>(I) ||
- isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I));
- if (!HoistableKind)
- return false;
+ if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) &&
+ !isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) &&
+ !isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
+ !isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) &&
+ !isa<InsertValueInst>(I))
+ return false;
return isSafeToExecuteUnconditionally(I);
}
@@ -665,16 +665,18 @@ namespace {
AliasSetTracker &AST;
DebugLoc DL;
int Alignment;
+ MDNode *TBAATag;
public:
LoopPromoter(Value *SP,
const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
SmallPtrSet<Value*, 4> &PMA,
SmallVectorImpl<BasicBlock*> &LEB,
SmallVectorImpl<Instruction*> &LIP,
- AliasSetTracker &ast, DebugLoc dl, int alignment)
+ AliasSetTracker &ast, DebugLoc dl, int alignment,
+ MDNode *TBAATag)
: LoadAndStorePromoter(Insts, S), SomePtr(SP),
PointerMustAliases(PMA), LoopExitBlocks(LEB), LoopInsertPts(LIP),
- AST(ast), DL(dl), Alignment(alignment) {}
+ AST(ast), DL(dl), Alignment(alignment), TBAATag(TBAATag) {}
virtual bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &) const {
@@ -698,6 +700,7 @@ namespace {
StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
NewSI->setAlignment(Alignment);
NewSI->setDebugLoc(DL);
+ if (TBAATag) NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
}
}
@@ -751,10 +754,11 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// We start with an alignment of one and try to find instructions that allow
// us to prove better alignment.
unsigned Alignment = 1;
+ MDNode *TBAATag = 0;
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
- // different sizes.
+ // different sizes. While we are at it, collect alignment and TBAA info.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
@@ -796,8 +800,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// instruction will be executed, update the alignment.
// Larger is better, with the exception of 0 being the best alignment.
unsigned InstAlignment = store->getAlignment();
- if ((InstAlignment > Alignment || InstAlignment == 0)
- && (Alignment != 0))
+ if ((InstAlignment > Alignment || InstAlignment == 0) && Alignment != 0)
if (isGuaranteedToExecute(*Use)) {
GuaranteedToExecute = true;
Alignment = InstAlignment;
@@ -809,6 +812,15 @@ void LICM::PromoteAliasSet(AliasSet &AS,
} else
return; // Not a load or store.
+ // Merge the TBAA tags.
+ if (LoopUses.empty()) {
+ // On the first load/store, just take its TBAA tag.
+ TBAATag = Use->getMetadata(LLVMContext::MD_tbaa);
+ } else if (TBAATag) {
+ TBAATag = MDNode::getMostGenericTBAA(TBAATag,
+ Use->getMetadata(LLVMContext::MD_tbaa));
+ }
+
LoopUses.push_back(Use);
}
}
@@ -841,7 +853,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
SmallVector<PHINode*, 16> NewPHIs;
SSAUpdater SSA(&NewPHIs);
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
- InsertPts, *CurAST, DL, Alignment);
+ InsertPts, *CurAST, DL, Alignment, TBAATag);
// Set up the preheader to have a definition of the value. It is the live-out
// value from the preheader that uses in the loop will use.
@@ -850,6 +862,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
Preheader->getTerminator());
PreheaderLoad->setAlignment(Alignment);
PreheaderLoad->setDebugLoc(DL);
+ if (TBAATag) PreheaderLoad->setMetadata(LLVMContext::MD_tbaa, TBAATag);
SSA.AddAvailableValue(Preheader, PreheaderLoad);
// Rewrite all the loads in the loop and remember all the definitions from
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index 7807e9bb4f..8258719a02 100644
--- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -48,15 +48,15 @@
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -135,12 +135,12 @@ namespace {
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
- const ScalarTargetTransformInfo *STTI;
+ const TargetTransformInfo *TTI;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
- TD = 0; DT = 0; SE = 0; TLI = 0; STTI = 0;
+ TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -177,6 +177,7 @@ namespace {
AU.addPreserved<DominatorTree>();
AU.addRequired<DominatorTree>();
AU.addRequired<TargetLibraryInfo>();
+ AU.addRequired<TargetTransformInfo>();
}
const DataLayout *getDataLayout() {
@@ -195,12 +196,8 @@ namespace {
return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
}
- const ScalarTargetTransformInfo *getScalarTargetTransformInfo() {
- if (!STTI) {
- TargetTransformInfo *TTI = getAnalysisIfAvailable<TargetTransformInfo>();
- if (TTI) STTI = TTI->getScalarTargetTransformInfo();
- }
- return STTI;
+ const TargetTransformInfo *getTargetTransformInfo() {
+ return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
}
Loop *getLoop() const { return CurLoop; }
@@ -221,6 +218,7 @@ INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
@@ -312,8 +310,8 @@ NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
}
bool NclPopcountRecognize::preliminaryScreen() {
- const ScalarTargetTransformInfo *STTI = LIR.getScalarTargetTransformInfo();
- if (STTI->getPopcntHwSupport(32) != ScalarTargetTransformInfo::Fast)
+ const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
+ if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
return false;
// Counting population are usually conducted by few arithmetic instrutions.
@@ -409,7 +407,7 @@ bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
{
- if (DefX2->getOpcode() != Instruction::And)
+ if (!DefX2 || DefX2->getOpcode() != Instruction::And)
return false;
BinaryOperator *SubOneOp;
@@ -631,7 +629,7 @@ CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
/// call, and return true; otherwise, return false.
bool NclPopcountRecognize::recognize() {
- if (!LIR.getScalarTargetTransformInfo())
+ if (!LIR.getTargetTransformInfo())
return false;
LIR.getScalarEvolution();
@@ -669,12 +667,14 @@ bool LoopIdiomRecognize::runOnCountableLoop() {
if (!getDataLayout())
return false;
- getDominatorTree();
+ // set DT
+ (void)getDominatorTree();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
- getTargetLibraryInfo();
+ // set TLI
+ (void)getTargetLibraryInfo();
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
diff --git a/lib/Transforms/Scalar/LoopInstSimplify.cpp b/lib/Transforms/Scalar/LoopInstSimplify.cpp
index 10ba22434a..a23860aad8 100644
--- a/lib/Transforms/Scalar/LoopInstSimplify.cpp
+++ b/lib/Transforms/Scalar/LoopInstSimplify.cpp
@@ -14,12 +14,13 @@
#define DEBUG_TYPE "loop-instsimplify"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
diff --git a/lib/Transforms/Scalar/LoopRotation.cpp b/lib/Transforms/Scalar/LoopRotation.cpp
index 249baf5164..e98ae953e5 100644
--- a/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/lib/Transforms/Scalar/LoopRotation.cpp
@@ -18,9 +18,10 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Function.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -51,6 +52,7 @@ namespace {
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -59,11 +61,13 @@ namespace {
private:
LoopInfo *LI;
+ const TargetTransformInfo *TTI;
};
}
char LoopRotate::ID = 0;
INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -75,6 +79,7 @@ Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
/// the loop is rotated at least once.
bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
// Simplify the loop latch before attempting to rotate the header
// upward. Rotation may not be needed if the loop tail can be folded into the
@@ -274,10 +279,16 @@ bool LoopRotate::rotateLoop(Loop *L) {
if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
return false;
- // Check size of original header and reject loop if it is very big.
+ // Check size of original header and reject loop if it is very big or we can't
+ // duplicate blocks inside it.
{
CodeMetrics Metrics;
- Metrics.analyzeBasicBlock(OrigHeader);
+ Metrics.analyzeBasicBlock(OrigHeader, *TTI);
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
+ << " instructions: "; L->dump());
+ return false;
+ }
if (Metrics.NumInsts > MAX_HEADER_SIZE)
return false;
}
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index d571ba3fe0..4e4cb86464 100644
--- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -37,8 +37,8 @@
//
// TODO: Handle multiple loops at a time.
//
-// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
-// instead of a GlobalValue?
+// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
+// of a GlobalValue?
//
// TODO: When truncation is free, truncate ICmp users' operands to make it a
// smaller encoding (on x86 at least).
@@ -58,21 +58,21 @@
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/AddressingMode.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
@@ -224,16 +224,24 @@ namespace {
/// computing satisfying a use. It may include broken-out immediates and scaled
/// registers.
struct Formula {
- /// AM - This is used to represent complex addressing, as well as other kinds
- /// of interesting uses.
- AddrMode AM;
+ /// Global base address used for complex addressing.
+ GlobalValue *BaseGV;
+
+ /// Base offset for complex addressing.
+ int64_t BaseOffset;
+
+ /// Whether any complex addressing has a base register.
+ bool HasBaseReg;
+
+ /// The scale of any complex addressing.
+ int64_t Scale;
/// BaseRegs - The list of "base" registers for this use. When this is
- /// non-empty, AM.HasBaseReg should be set to true.
- SmallVector<const SCEV *, 2> BaseRegs;
+ /// non-empty,
+ SmallVector<const SCEV *, 4> BaseRegs;
/// ScaledReg - The 'scaled' register for this use. This should be non-null
- /// when AM.Scale is not zero.
+ /// when Scale is not zero.
const SCEV *ScaledReg;
/// UnfoldedOffset - An additional constant offset which added near the
@@ -241,7 +249,9 @@ struct Formula {
/// live in an add immediate field rather than a register.
int64_t UnfoldedOffset;
- Formula() : ScaledReg(0), UnfoldedOffset(0) {}
+ Formula()
+ : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0),
+ UnfoldedOffset(0) {}
void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
@@ -327,13 +337,13 @@ void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
const SCEV *Sum = SE.getAddExpr(Good);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
if (!Bad.empty()) {
const SCEV *Sum = SE.getAddExpr(Bad);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
- AM.HasBaseReg = true;
+ HasBaseReg = true;
}
}
@@ -349,7 +359,7 @@ unsigned Formula::getNumRegs() const {
Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
- AM.BaseGV ? AM.BaseGV->getType() :
+ BaseGV ? BaseGV->getType() :
0;
}
@@ -382,29 +392,29 @@ bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
void Formula::print(raw_ostream &OS) const {
bool First = true;
- if (AM.BaseGV) {
+ if (BaseGV) {
if (!First) OS << " + "; else First = false;
- WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
}
- if (AM.BaseOffs != 0) {
+ if (BaseOffset != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.BaseOffs;
+ OS << BaseOffset;
}
for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
E = BaseRegs.end(); I != E; ++I) {
if (!First) OS << " + "; else First = false;
OS << "reg(" << **I << ')';
}
- if (AM.HasBaseReg && BaseRegs.empty()) {
+ if (HasBaseReg && BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: HasBaseReg**";
- } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
+ } else if (!HasBaseReg && !BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: !HasBaseReg**";
}
- if (AM.Scale != 0) {
+ if (Scale != 0) {
if (!First) OS << " + "; else First = false;
- OS << AM.Scale << "*reg(";
+ OS << Scale << "*reg(";
if (ScaledReg)
OS << *ScaledReg;
else
@@ -927,8 +937,8 @@ void Cost::RateFormula(const Formula &F,
// Tally up the non-zero immediates.
for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
E = Offsets.end(); I != E; ++I) {
- int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
- if (F.AM.BaseGV)
+ int64_t Offset = (uint64_t)*I + F.BaseOffset;
+ if (F.BaseGV)
ImmCost += 64; // Handle symbolic values conservatively.
// TODO: This should probably be the pointer size.
else if (Offset != 0)
@@ -1078,19 +1088,19 @@ namespace {
/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
struct UniquifierDenseMapInfo {
- static SmallVector<const SCEV *, 2> getEmptyKey() {
- SmallVector<const SCEV *, 2> V;
+ static SmallVector<const SCEV *, 4> getEmptyKey() {
+ SmallVector<const SCEV *, 4> V;
V.push_back(reinterpret_cast<const SCEV *>(-1));
return V;
}
- static SmallVector<const SCEV *, 2> getTombstoneKey() {
- SmallVector<const SCEV *, 2> V;
+ static SmallVector<const SCEV *, 4> getTombstoneKey() {
+ SmallVector<const SCEV *, 4> V;
V.push_back(reinterpret_cast<const SCEV *>(-2));
return V;
}
- static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
+ static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
unsigned Result = 0;
for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
E = V.end(); I != E; ++I)
@@ -1098,8 +1108,8 @@ struct UniquifierDenseMapInfo {
return Result;
}
- static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
- const SmallVector<const SCEV *, 2> &RHS) {
+ static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
+ const SmallVector<const SCEV *, 4> &RHS) {
return LHS == RHS;
}
};
@@ -1110,7 +1120,7 @@ struct UniquifierDenseMapInfo {
/// the user itself, and information about how the use may be satisfied.
/// TODO: Represent multiple users of the same expression in common?
class LSRUse {
- DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
+ DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
public:
/// KindType - An enum for a kind of use, indicating what types of
@@ -1169,7 +1179,7 @@ public:
/// HasFormula - Test whether this use as a formula which has the same
/// registers as the given formula.
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
- SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
// Unstable sort by host order ok, because this is only used for uniquifying.
std::sort(Key.begin(), Key.end());
@@ -1179,7 +1189,7 @@ bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
/// InsertFormula - If the given formula has not yet been inserted, add it to
/// the list, and return true. Return false otherwise.
bool LSRUse::InsertFormula(const Formula &F) {
- SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
// Unstable sort by host order ok, because this is only used for uniquifying.
std::sort(Key.begin(), Key.end());
@@ -1270,46 +1280,42 @@ void LSRUse::dump() const {
/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
/// be completely folded into the user instruction at isel time. This includes
/// address-mode folding and special icmp tricks.
-static bool isLegalUse(const AddrMode &AM,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind,
+ Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) {
switch (Kind) {
case LSRUse::Address:
- // If we have low-level target information, ask the target if it can
- // completely fold this address.
- if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
+ return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
// Otherwise, just guess that reg+reg addressing is legal.
- return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
+ //return ;
case LSRUse::ICmpZero:
// There's not even a target hook for querying whether it would be legal to
// fold a GV into an ICmp.
- if (AM.BaseGV)
+ if (BaseGV)
return false;
// ICmp only has two operands; don't allow more than two non-trivial parts.
- if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
+ if (Scale != 0 && HasBaseReg && BaseOffset != 0)
return false;
// ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
// putting the scaled register in the other operand of the icmp.
- if (AM.Scale != 0 && AM.Scale != -1)
+ if (Scale != 0 && Scale != -1)
return false;
// If we have low-level target information, ask the target if it can fold an
// integer immediate on an icmp.
- if (AM.BaseOffs != 0) {
- if (!TLI)
- return false;
+ if (BaseOffset != 0) {
// We have one of:
- // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
- // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
+ // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
+ // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
// Offs is the ICmp immediate.
- int64_t Offs = AM.BaseOffs;
- if (AM.Scale == 0)
- Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
- return TLI->isLegalICmpImmediate(Offs);
+ if (Scale == 0)
+ // The cast does the right thing with INT64_MIN.
+ BaseOffset = -(uint64_t)BaseOffset;
+ return TTI.isLegalICmpImmediate(BaseOffset);
}
// ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
@@ -1317,92 +1323,87 @@ static bool isLegalUse(const AddrMode &AM,
case LSRUse::Basic:
// Only handle single-register values.
- return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
+ return !BaseGV && Scale == 0 && BaseOffset == 0;
case LSRUse::Special:
// Special case Basic to handle -1 scales.
- return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
+ return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
}
llvm_unreachable("Invalid LSRUse Kind!");
}
-static bool isLegalUse(AddrMode AM,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) {
// Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
+ if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
(MinOffset > 0))
return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
- if (isLegalUse(AM, Kind, AccessTy, TLI)) {
- AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
- // Check for overflow.
- if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
- (MaxOffset > 0))
- return false;
- AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
- return isLegalUse(AM, Kind, AccessTy, TLI);
- }
- return false;
+ MinOffset = (uint64_t)BaseOffset + MinOffset;
+ if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
+ (MaxOffset > 0))
+ return false;
+ MaxOffset = (uint64_t)BaseOffset + MaxOffset;
+
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg,
+ Scale) &&
+ isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale);
}
-static bool isAlwaysFoldable(int64_t BaseOffs,
- GlobalValue *BaseGV,
- bool HasBaseReg,
+static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
+ const Formula &F) {
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
+ F.BaseOffset, F.HasBaseReg, F.Scale);
+}
+
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI) {
+ GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg) {
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
// Canonicalize a scale of 1 to a base register if the formula doesn't
// already have a base register.
- if (!AM.HasBaseReg && AM.Scale == 1) {
- AM.Scale = 0;
- AM.HasBaseReg = true;
+ if (!HasBaseReg && Scale == 1) {
+ Scale = 0;
+ HasBaseReg = true;
}
- return isLegalUse(AM, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
}
-static bool isAlwaysFoldable(const SCEV *S,
- int64_t MinOffset, int64_t MaxOffset,
- bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy,
- const TargetLowering *TLI,
- ScalarEvolution &SE) {
+static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
+ ScalarEvolution &SE, int64_t MinOffset,
+ int64_t MaxOffset, LSRUse::KindType Kind,
+ Type *AccessTy, const SCEV *S, bool HasBaseReg) {
// Fast-path: zero is always foldable.
if (S->isZero()) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- int64_t BaseOffs = ExtractImmediate(S, SE);
+ int64_t BaseOffset = ExtractImmediate(S, SE);
GlobalValue *BaseGV = ExtractSymbol(S, SE);
// If there's anything else involved, it's not foldable.
if (!S->isZero()) return false;
// Fast-path: zero is always foldable.
- if (BaseOffs == 0 && !BaseGV) return true;
+ if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
- AddrMode AM;
- AM.BaseOffs = BaseOffs;
- AM.BaseGV = BaseGV;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+ int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
- return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
+ return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
+ BaseOffset, HasBaseReg, Scale);
}
namespace {
@@ -1502,7 +1503,7 @@ class LSRInstance {
ScalarEvolution &SE;
DominatorTree &DT;
LoopInfo &LI;
- const TargetLowering *const TLI;
+ const TargetTransformInfo &TTI;
Loop *const L;
bool Changed;
@@ -1638,7 +1639,7 @@ class LSRInstance {
Pass *P);
public:
- LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
+ LSRInstance(Loop *L, Pass *P);
bool getChanged() const { return Changed; }
@@ -1688,12 +1689,9 @@ void LSRInstance::OptimizeShadowIV() {
}
if (!DestTy) continue;
- if (TLI) {
- // If target does not support DestTy natively then do not apply
- // this transformation.
- EVT DVT = TLI->getValueType(DestTy);
- if (!TLI->isTypeLegal(DVT)) continue;
- }
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ if (!TTI.isTypeLegal(DestTy)) continue;
PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
if (!PH) continue;
@@ -2015,18 +2013,17 @@ LSRInstance::OptimizeLoopTermCond() {
if (C->getValue().getMinSignedBits() >= 64 ||
C->getValue().isMinSignedValue())
goto decline_post_inc;
- // Without TLI, assume that any stride might be valid, and so any
- // use might be shared.
- if (!TLI)
- goto decline_post_inc;
// Check for possible scaled-address reuse.
Type *AccessTy = getAccessType(UI->getUser());
- AddrMode AM;
- AM.Scale = C->getSExtValue();
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ int64_t Scale = C->getSExtValue();
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
- AM.Scale = -AM.Scale;
- if (TLI->isLegalAddressingMode(AM, AccessTy))
+ Scale = -Scale;
+ if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
+ /*BaseOffset=*/ 0,
+ /*HasBaseReg=*/ false, Scale))
goto decline_post_inc;
}
}
@@ -2096,13 +2093,13 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
return false;
// Conservatively assume HasBaseReg is true for now.
if (NewOffset < LU.MinOffset) {
- if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ LU.MaxOffset - NewOffset, HasBaseReg))
return false;
NewMinOffset = NewOffset;
} else if (NewOffset > LU.MaxOffset) {
- if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
- Kind, AccessTy, TLI))
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ NewOffset - LU.MinOffset, HasBaseReg))
return false;
NewMaxOffset = NewOffset;
}
@@ -2131,7 +2128,8 @@ LSRInstance::getUse(const SCEV *&Expr,
int64_t Offset = ExtractImmediate(Expr, SE);
// Basic uses can't accept any offset, for example.
- if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
+ if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
+ Offset, /*HasBaseReg=*/ true)) {
Expr = Copy;
Offset = 0;
}
@@ -2199,10 +2197,10 @@ LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
// as OrigF.
if (F.BaseRegs == OrigF.BaseRegs &&
F.ScaledReg == OrigF.ScaledReg &&
- F.AM.BaseGV == OrigF.AM.BaseGV &&
- F.AM.Scale == OrigF.AM.Scale &&
+ F.BaseGV == OrigF.BaseGV &&
+ F.Scale == OrigF.Scale &&
F.UnfoldedOffset == OrigF.UnfoldedOffset) {
- if (F.AM.BaseOffs == 0)
+ if (F.BaseOffset == 0)
return &LU;
// This is the formula where all the registers and symbols matched;
// there aren't going to be any others. Since we declined it, we
@@ -2396,7 +2394,7 @@ bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
/// TODO: Consider IVInc free if it's already used in another chains.
static bool
isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
- ScalarEvolution &SE, const TargetLowering *TLI) {
+ ScalarEvolution &SE, const TargetTransformInfo &TTI) {
if (StressIVChain)
return true;
@@ -2539,6 +2537,7 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
// Add this IV user to the end of the chain.
IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
}
+ IVChain &Chain = IVChainVec[ChainIdx];
SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
// This chain's NearUsers become FarUsers.
@@ -2556,8 +2555,19 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
for (Value::use_iterator UseIter = IVOper->use_begin(),
UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
- if (!OtherUse || OtherUse == UserInst)
+ if (!OtherUse)
+ continue;
+ // Uses in the chain will no longer be uses if the chain is formed.
+ // Include the head of the chain in this iteration (not Chain.begin()).
+ IVChain::const_iterator IncIter = Chain.Incs.begin();
+ IVChain::const_iterator IncEnd = Chain.Incs.end();
+ for( ; IncIter != IncEnd; ++IncIter) {
+ if (IncIter->UserInst == OtherUse)
+ break;
+ }
+ if (IncIter != IncEnd)
continue;
+
if (SE.isSCEVable(OtherUse->getType())
&& !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
&& IU.isIVUserOrOperand(OtherUse)) {
@@ -2654,7 +2664,7 @@ void LSRInstance::CollectChains() {
for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
UsersIdx < NChains; ++UsersIdx) {
if (!isProfitableChain(IVChainVec[UsersIdx],
- ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
+ ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
continue;
// Preserve the chain at UsesIdx.
if (ChainIdx != UsersIdx)
@@ -2681,7 +2691,7 @@ void LSRInstance::FinalizeChain(IVChain &Chain) {
/// Return true if the IVInc can be folded into an addressing mode.
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
- Value *Operand, const TargetLowering *TLI) {
+ Value *Operand, const TargetTransformInfo &TTI) {
const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
if (!IncConst || !isAddressUse(UserInst, Operand))
return false;
@@ -2690,8 +2700,9 @@ static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
return false;
int64_t IncOffset = IncConst->getValue()->getSExtValue();
- if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
- LSRUse::Address, getAccessType(UserInst), TLI))
+ if (!isAlwaysFoldable(TTI, LSRUse::Address,
+ getAccessType(UserInst), /*BaseGV=*/ 0,
+ IncOffset, /*HaseBaseReg=*/ false))
return false;
return true;
@@ -2762,7 +2773,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
// If an IV increment can't be folded, use it as the next IV value.
if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
- TLI)) {
+ TTI)) {
assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
IVSrc = IVOper;
LeftOverExpr = 0;
@@ -2904,7 +2915,7 @@ LSRInstance::InsertSupplementalFormula(const SCEV *S,
LSRUse &LU, size_t LUIdx) {
Formula F;
F.BaseRegs.push_back(S);
- F.AM.HasBaseReg = true;
+ F.HasBaseReg = true;
bool Inserted = InsertFormula(LU, LUIdx, F);
assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}
@@ -3106,9 +3117,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't pull a constant into a register if the constant could be folded
// into an immediate field.
- if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, *J, Base.getNumRegs() > 1))
continue;
// Collect all operands except *J.
@@ -3120,9 +3130,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Don't leave just a constant behind in a register if the constant could
// be folded into an immediate field.
if (InnerAddOps.size() == 1 &&
- isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
- Base.getNumRegs() > 1,
- LU.Kind, LU.AccessTy, TLI, SE))
+ isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
+ LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
continue;
const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
@@ -3132,10 +3141,10 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add the remaining pieces of the add back into the new formula.
const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
- if (TLI && InnerSumSC &&
+ if (InnerSumSC &&
SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- InnerSumSC->getValue()->getZExtValue())) {
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ InnerSumSC->getValue()->getZExtValue())) {
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
InnerSumSC->getValue()->getZExtValue();
F.BaseRegs.erase(F.BaseRegs.begin() + i);
@@ -3144,9 +3153,9 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
// Add J as its own register, or an unfolded immediate.
const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
- if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
- TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- SC->getValue()->getZExtValue()))
+ if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
+ TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ SC->getValue()->getZExtValue()))
F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
SC->getValue()->getZExtValue();
else
@@ -3195,7 +3204,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// We can't add a symbolic offset if the address already contains one.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
const SCEV *G = Base.BaseRegs[i];
@@ -3203,9 +3212,8 @@ void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || !GV)
continue;
Formula F = Base;
- F.AM.BaseGV = GV;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseGV = GV;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3228,9 +3236,9 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
E = Worklist.end(); I != E; ++I) {
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
- if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
- LU.Kind, LU.AccessTy, TLI)) {
+ F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
+ if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
+ LU.AccessTy, F)) {
// Add the offset to the base register.
const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
// If it cancelled out, drop the base register, otherwise update it.
@@ -3248,9 +3256,8 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
if (G->isZero() || Imm == 0)
continue;
Formula F = Base;
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
- if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
continue;
F.BaseRegs[i] = G;
(void)InsertFormula(LU, LUIdx, F);
@@ -3271,7 +3278,7 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
// Don't do this if there is more than one offset.
if (LU.MinOffset != LU.MaxOffset) return;
- assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
+ assert(!Base.BaseGV && "ICmpZero use is not legal!");
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
@@ -3279,10 +3286,10 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
int64_t Factor = *I;
// Check that the multiplication doesn't overflow.
- if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
+ if (Base.BaseOffset == INT64_MIN && Factor == -1)
continue;
- int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
- if (NewBaseOffs / Factor != Base.AM.BaseOffs)
+ int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
+ if (NewBaseOffset / Factor != Base.BaseOffset)
continue;
// Check that multiplying with the use offset doesn't overflow.
@@ -3294,14 +3301,14 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
continue;
Formula F = Base;
- F.AM.BaseOffs = NewBaseOffs;
+ F.BaseOffset = NewBaseOffset;
// Check that this scale is legal.
- if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
+ if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
continue;
// Compensate for the use having MinOffset built into it.
- F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
+ F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
const SCEV *FactorS = SE.getConstant(IntTy, Factor);
@@ -3342,23 +3349,23 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
if (!IntTy) return;
// If this Formula already has a scaled register, we can't add another one.
- if (Base.AM.Scale != 0) return;
+ if (Base.Scale != 0) return;
// Check each interesting stride.
for (SmallSetVector<int64_t, 8>::const_iterator
I = Factors.begin(), E = Factors.end(); I != E; ++I) {
int64_t Factor = *I;
- Base.AM.Scale = Factor;
- Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
+ Base.Scale = Factor;
+ Base.HasBaseReg = Base.BaseRegs.size() > 1;
// Check whether this scale is going to be legal.
- if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ Base)) {
// As a special-case, handle special out-of-loop Basic users specially.
// TODO: Reconsider this special case.
if (LU.Kind == LSRUse::Basic &&
- isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
- LSRUse::Special, LU.AccessTy, TLI) &&
+ isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
+ LU.AccessTy, Base) &&
LU.AllFixupsOutsideLoop)
LU.Kind = LSRUse::Special;
else
@@ -3367,7 +3374,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// For an ICmpZero, negating a solitary base register won't lead to
// new solutions.
if (LU.Kind == LSRUse::ICmpZero &&
- !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
+ !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
continue;
// For each addrec base reg, apply the scale, if possible.
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
@@ -3391,11 +3398,8 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
/// GenerateTruncates - Generate reuse formulae from different IV types.
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // This requires TargetLowering to tell us which truncates are free.
- if (!TLI) return;
-
// Don't bother truncating symbolic values.
- if (Base.AM.BaseGV) return;
+ if (Base.BaseGV) return;
// Determine the integer type for the base formula.
Type *DstTy = Base.getType();
@@ -3405,7 +3409,7 @@ void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
for (SmallSetVector<Type *, 4>::const_iterator
I = Types.begin(), E = Types.end(); I != E; ++I) {
Type *SrcTy = *I;
- if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
+ if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
Formula F = Base;
if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
@@ -3552,16 +3556,15 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
const Formula &F = LU.Formulae[L];
// Use the immediate in the scaled register.
if (F.ScaledReg == OrigReg) {
- int64_t Offs = (uint64_t)F.AM.BaseOffs +
- Imm * (uint64_t)F.AM.Scale;
+ int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
// Don't create 50 + reg(-50).
if (F.referencesReg(SE.getSCEV(
- ConstantInt::get(IntTy, -(uint64_t)Offs))))
+ ConstantInt::get(IntTy, -(uint64_t)Offset))))
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = Offs;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI))
+ NewF.BaseOffset = Offset;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ NewF))
continue;
NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
@@ -3570,9 +3573,9 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// immediate itself, then the formula isn't worthwhile.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
if (C->getValue()->isNegative() !=
- (NewF.AM.BaseOffs < 0) &&
- (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
- .ule(abs64(NewF.AM.BaseOffs)))
+ (NewF.BaseOffset < 0) &&
+ (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
+ .ule(abs64(NewF.BaseOffset)))
continue;
// OK, looks good.
@@ -3584,11 +3587,10 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
if (BaseReg != OrigReg)
continue;
Formula NewF = F;
- NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
- if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI)) {
- if (!TLI ||
- !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
+ NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
+ if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, NewF)) {
+ if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
continue;
NewF = F;
NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
@@ -3602,11 +3604,11 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
J != JE; ++J)
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
- if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
- abs64(NewF.AM.BaseOffs)) &&
+ if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
+ abs64(NewF.BaseOffset)) &&
(C->getValue()->getValue() +
- NewF.AM.BaseOffs).countTrailingZeros() >=
- CountTrailingZeros_64(NewF.AM.BaseOffs))
+ NewF.BaseOffset).countTrailingZeros() >=
+ CountTrailingZeros_64(NewF.BaseOffset))
goto skip_formula;
// Ok, looks good.
@@ -3667,7 +3669,7 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
// Collect the best formula for each unique set of shared registers. This
// is reset for each use.
- typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
+ typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
BestFormulaeTy;
BestFormulaeTy BestFormulae;
@@ -3702,7 +3704,7 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
dbgs() << "\n");
}
else {
- SmallVector<const SCEV *, 2> Key;
+ SmallVector<const SCEV *, 4> Key;
for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
JE = F.BaseRegs.end(); J != JE; ++J) {
const SCEV *Reg = *J;
@@ -3804,7 +3806,7 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
Formula NewF = F;
- NewF.AM.BaseOffs += C->getValue()->getSExtValue();
+ NewF.BaseOffset += C->getValue()->getSExtValue();
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3817,9 +3819,9 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
}
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
- if (!F.AM.BaseGV) {
+ if (!F.BaseGV) {
Formula NewF = F;
- NewF.AM.BaseGV = GV;
+ NewF.BaseGV = GV;
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
(I - F.BaseRegs.begin()));
if (LU.HasFormulaWithSameRegs(NewF)) {
@@ -3848,84 +3850,83 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
/// for expressions like A, A+1, A+2, etc., allocate a single register for
/// them.
void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
- if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- DEBUG(dbgs() << "The search space is too complex.\n");
+ if (EstimateSearchSpaceComplexity() < ComplexityLimit)
+ return;
- DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
- "separated by a constant offset will use the same "
- "registers.\n");
+ DEBUG(dbgs() << "The search space is too complex.\n"
+ "Narrowing the search space by assuming that uses separated "
+ "by a constant offset will use the same registers.\n");
- // This is especially useful for unrolled loops.
+ // This is especially useful for unrolled loops.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
- E = LU.Formulae.end(); I != E; ++I) {
- const Formula &F = *I;
- if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
- if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
- if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
- /*HasBaseReg=*/false,
- LU.Kind, LU.AccessTy)) {
- DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
- dbgs() << '\n');
-
- LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
-
- // Update the relocs to reference the new use.
- for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
- E = Fixups.end(); I != E; ++I) {
- LSRFixup &Fixup = *I;
- if (Fixup.LUIdx == LUIdx) {
- Fixup.LUIdx = LUThatHas - &Uses.front();
- Fixup.Offset += F.AM.BaseOffs;
- // Add the new offset to LUThatHas' offset list.
- if (LUThatHas->Offsets.back() != Fixup.Offset) {
- LUThatHas->Offsets.push_back(Fixup.Offset);
- if (Fixup.Offset > LUThatHas->MaxOffset)
- LUThatHas->MaxOffset = Fixup.Offset;
- if (Fixup.Offset < LUThatHas->MinOffset)
- LUThatHas->MinOffset = Fixup.Offset;
- }
- DEBUG(dbgs() << "New fixup has offset "
- << Fixup.Offset << '\n');
- }
- if (Fixup.LUIdx == NumUses-1)
- Fixup.LUIdx = LUIdx;
- }
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.BaseOffset == 0 || F.Scale != 0)
+ continue;
- // Delete formulae from the new use which are no longer legal.
- bool Any = false;
- for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
- Formula &F = LUThatHas->Formulae[i];
- if (!isLegalUse(F.AM,
- LUThatHas->MinOffset, LUThatHas->MaxOffset,
- LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
- DEBUG(dbgs() << " Deleting "; F.print(dbgs());
- dbgs() << '\n');
- LUThatHas->DeleteFormula(F);
- --i;
- --e;
- Any = true;
- }
- }
- if (Any)
- LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
+ LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
+ if (!LUThatHas)
+ continue;
- // Delete the old use.
- DeleteUse(LU, LUIdx);
- --LUIdx;
- --NumUses;
- break;
- }
+ if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
+ LU.Kind, LU.AccessTy))
+ continue;
+
+ DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
+
+ LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
+
+ // Update the relocs to reference the new use.
+ for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ LSRFixup &Fixup = *I;
+ if (Fixup.LUIdx == LUIdx) {
+ Fixup.LUIdx = LUThatHas - &Uses.front();
+ Fixup.Offset += F.BaseOffset;
+ // Add the new offset to LUThatHas' offset list.
+ if (LUThatHas->Offsets.back() != Fixup.Offset) {
+ LUThatHas->Offsets.push_back(Fixup.Offset);
+ if (Fixup.Offset > LUThatHas->MaxOffset)
+ LUThatHas->MaxOffset = Fixup.Offset;
+ if (Fixup.Offset < LUThatHas->MinOffset)
+ LUThatHas->MinOffset = Fixup.Offset;
}
+ DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
}
+ if (Fixup.LUIdx == NumUses-1)
+ Fixup.LUIdx = LUIdx;
}
- }
- DEBUG(dbgs() << "After pre-selection:\n";
- print_uses(dbgs()));
+ // Delete formulae from the new use which are no longer legal.
+ bool Any = false;
+ for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
+ Formula &F = LUThatHas->Formulae[i];
+ if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
+ LUThatHas->Kind, LUThatHas->AccessTy, F)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs());
+ dbgs() << '\n');
+ LUThatHas->DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ }
+ }
+
+ if (Any)
+ LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
+
+ // Delete the old use.
+ DeleteUse(LU, LUIdx);
+ --LUIdx;
+ --NumUses;
+ break;
+ }
}
+
+ DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
}
/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
@@ -4308,7 +4309,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Expand the ScaledReg portion.
Value *ICmpScaledV = 0;
- if (F.AM.Scale != 0) {
+ if (F.Scale != 0) {
const SCEV *ScaledS = F.ScaledReg;
// If we're expanding for a post-inc user, make the post-inc adjustment.
@@ -4321,7 +4322,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// An interesting way of "folding" with an icmp is to use a negated
// scale, which we'll implement by inserting it into the other operand
// of the icmp.
- assert(F.AM.Scale == -1 &&
+ assert(F.Scale == -1 &&
"The only scale supported by ICmpZero uses is -1!");
ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
} else {
@@ -4336,20 +4337,20 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
ScaledS = SE.getMulExpr(ScaledS,
- SE.getConstant(ScaledS->getType(), F.AM.Scale));
+ SE.getConstant(ScaledS->getType(), F.Scale));
Ops.push_back(ScaledS);
}
}
// Expand the GV portion.
- if (F.AM.BaseGV) {
+ if (F.BaseGV) {
// Flush the operand list to suppress SCEVExpander hoisting.
if (!Ops.empty()) {
Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
Ops.clear();
Ops.push_back(SE.getUnknown(FullV));
}
- Ops.push_back(SE.getUnknown(F.AM.BaseGV));
+ Ops.push_back(SE.getUnknown(F.BaseGV));
}
// Flush the operand list to suppress SCEVExpander hoisting of both folded and
@@ -4361,7 +4362,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
// Expand the immediate portion.
- int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
+ int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
if (Offset != 0) {
if (LU.Kind == LSRUse::ICmpZero) {
// The other interesting way of "folding" with an ICmpZero is to use a
@@ -4402,9 +4403,9 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
if (LU.Kind == LSRUse::ICmpZero) {
ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
DeadInsts.push_back(CI->getOperand(1));
- assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
+ assert(!F.BaseGV && "ICmp does not support folding a global value and "
"a scale at the same time!");
- if (F.AM.Scale == -1) {
+ if (F.Scale == -1) {
if (ICmpScaledV->getType() != OpTy) {
Instruction *Cast =
CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
@@ -4414,7 +4415,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
}
CI->setOperand(1, ICmpScaledV);
} else {
- assert(F.AM.Scale == 0 &&
+ assert(F.Scale == 0 &&
"ICmp does not support folding a global value and "
"a scale at the same time!");
Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
@@ -4589,13 +4590,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
}
-LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
- : IU(P->getAnalysis<IVUsers>()),
- SE(P->getAnalysis<ScalarEvolution>()),
- DT(P->getAnalysis<DominatorTree>()),
- LI(P->getAnalysis<LoopInfo>()),
- TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
-
+LSRInstance::LSRInstance(Loop *L, Pass *P)
+ : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
+ DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()),
+ TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
+ IVIncInsertPos(0) {
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
return;
@@ -4678,14 +4677,14 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
#ifndef NDEBUG
// Formulae should be legal.
- for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
- E = Uses.end(); I != E; ++I) {
- const LSRUse &LU = *I;
- for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
- JE = LU.Formulae.end(); J != JE; ++J)
- assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, TLI) &&
- "Illegal formula generated!");
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
+ I != E; ++I) {
+ const LSRUse &LU = *I;
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end();
+ J != JE; ++J)
+ assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
+ *J) && "Illegal formula generated!");
};
#endif
@@ -4757,13 +4756,9 @@ void LSRInstance::dump() const {
namespace {
class LoopStrengthReduce : public LoopPass {
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// transformation profitability.
- const TargetLowering *const TLI;
-
public:
static char ID; // Pass ID, replacement for typeid
- explicit LoopStrengthReduce(const TargetLowering *tli = 0);
+ LoopStrengthReduce();
private:
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -4775,6 +4770,7 @@ private:
char LoopStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
@@ -4784,14 +4780,13 @@ INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
-Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
- return new LoopStrengthReduce(TLI);
+Pass *llvm::createLoopStrengthReducePass() {
+ return new LoopStrengthReduce();
}
-LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
- : LoopPass(ID), TLI(tli) {
- initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
- }
+LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
+ initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
+}
void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
// We split critical edges, so we change the CFG. However, we do update
@@ -4810,24 +4805,27 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<IVUsers>();
AU.addPreserved<IVUsers>();
+ AU.addRequired<TargetTransformInfo>();
}
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
bool Changed = false;
// Run the main LSR transformation.
- Changed |= LSRInstance(TLI, L, this).getChanged();
+ Changed |= LSRInstance(L, this).getChanged();
// Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());
- if (EnablePhiElim) {
+ if (EnablePhiElim && L->isLoopSimplifyForm()) {
SmallVector<WeakVH, 16> DeadInsts;
SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
- unsigned numFolded = Rewriter.
- replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
+ unsigned numFolded =
+ Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(),
+ DeadInsts,
+ &getAnalysis<TargetTransformInfo>());
if (numFolded) {
Changed = true;
DeleteTriviallyDeadInstructions(DeadInsts);
diff --git a/lib/Transforms/Scalar/LoopUnrollPass.cpp b/lib/Transforms/Scalar/LoopUnrollPass.cpp
index 2b15528411..80d060b926 100644
--- a/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -17,8 +17,9 @@
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/DataLayout.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -90,6 +91,7 @@ namespace {
AU.addPreservedID(LCSSAID);
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
// FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
// If loop unroll does not preserve dom info then LCSSA pass on next
// loop will receive invalid dom info.
@@ -101,6 +103,7 @@ namespace {
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -113,12 +116,14 @@ Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial) {
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
- const DataLayout *TD) {
+ bool &NotDuplicatable,
+ const TargetTransformInfo &TTI) {
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
- Metrics.analyzeBasicBlock(*I, TD);
+ Metrics.analyzeBasicBlock(*I, TTI);
NumCalls = Metrics.NumInlineCandidates;
+ NotDuplicatable = Metrics.notDuplicatable;
unsigned LoopSize = Metrics.NumInsts;
@@ -133,6 +138,7 @@ static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
LoopInfo *LI = &getAnalysis<LoopInfo>();
ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
+ const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
@@ -145,8 +151,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// not user specified.
unsigned Threshold = CurrentThreshold;
if (!UserThreshold &&
- Header->getParent()->getFnAttributes().
- hasAttribute(Attributes::OptimizeForSize))
+ Header->getParent()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
Threshold = OptSizeUnrollThreshold;
// Find trip count and trip multiple if count is not available
@@ -179,10 +186,16 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// Enforce the threshold.
if (Threshold != NoThreshold) {
- const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
unsigned NumInlineCandidates;
- unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates, TD);
+ bool notDuplicatable;
+ unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates,
+ notDuplicatable, TTI);
DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
+ if (notDuplicatable) {
+ DEBUG(dbgs() << " Not unrolling loop which contains non duplicatable"
+ << " instructions.\n");
+ return false;
+ }
if (NumInlineCandidates != 0) {
DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return false;
diff --git a/lib/Transforms/Scalar/LoopUnswitch.cpp b/lib/Transforms/Scalar/LoopUnswitch.cpp
index d41da4a9a9..0e8199f2fd 100644
--- a/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -37,10 +37,11 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -101,7 +102,7 @@ namespace {
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
- bool countLoop(const Loop* L);
+ bool countLoop(const Loop* L, const TargetTransformInfo &TTI);
// Clean all data related to given loop.
void forgetLoop(const Loop* L);
@@ -170,6 +171,7 @@ namespace {
AU.addPreservedID(LCSSAID);
AU.addPreserved<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
}
private:
@@ -221,7 +223,7 @@ namespace {
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
-bool LUAnalysisCache::countLoop(const Loop* L) {
+bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
std::pair<LoopPropsMapIt, bool> InsertRes =
LoopsProperties.insert(std::make_pair(L, LoopProperties()));
@@ -243,11 +245,18 @@ bool LUAnalysisCache::countLoop(const Loop* L) {
for (Loop::block_iterator I = L->block_begin(),
E = L->block_end();
I != E; ++I)
- Metrics.analyzeBasicBlock(*I);
+ Metrics.analyzeBasicBlock(*I, TTI);
Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
+
+ if (Metrics.notDuplicatable) {
+ DEBUG(dbgs() << "NOT unswitching loop %"
+ << L->getHeader()->getName() << ", contents cannot be "
+ << "duplicated!\n");
+ return false;
+ }
}
if (!Props.CanBeUnswitchedCount) {
@@ -327,6 +336,7 @@ void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
char LoopUnswitch::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -417,7 +427,7 @@ bool LoopUnswitch::processCurrentLoop() {
// Probably we reach the quota of branches for this loop. If so
// stop unswitching.
- if (!BranchesInfo.countLoop(currentLoop))
+ if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>()))
return false;
// Loop over all of the basic blocks in the loop. If we find an interior
@@ -639,7 +649,8 @@ bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
// Do not do non-trivial unswitch while optimizing for size.
if (OptimizeForSize ||
- F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize))
+ F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
return false;
UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
diff --git a/lib/Transforms/Scalar/LowerAtomic.cpp b/lib/Transforms/Scalar/LowerAtomic.cpp
index 7419a6543e..8ced4946c8 100644
--- a/lib/Transforms/Scalar/LowerAtomic.cpp
+++ b/lib/Transforms/Scalar/LowerAtomic.cpp
@@ -14,9 +14,9 @@
#define DEBUG_TYPE "loweratomic"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
using namespace llvm;
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 26b6269f42..be0f0e8a25 100644
--- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -20,11 +20,11 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/DataLayout.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/Scalar/ObjCARC.cpp b/lib/Transforms/Scalar/ObjCARC.cpp
deleted file mode 100644
index ce397658bf..0000000000
--- a/lib/Transforms/Scalar/ObjCARC.cpp
+++ /dev/null
@@ -1,4232 +0,0 @@
-//===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines ObjC ARC optimizations. ARC stands for
-// Automatic Reference Counting and is a system for managing reference counts
-// for objects in Objective C.
-//
-// The optimizations performed include elimination of redundant, partially
-// redundant, and inconsequential reference count operations, elimination of
-// redundant weak pointer operations, pattern-matching and replacement of
-// low-level operations into higher-level operations, and numerous minor
-// simplifications.
-//
-// This file also defines a simple ARC-aware AliasAnalysis.
-//
-// WARNING: This file knows about certain library functions. It recognizes them
-// by name, and hardwires knowledge of their semantics.
-//
-// WARNING: This file knows about how certain Objective-C library functions are
-// used. Naive LLVM IR transformations which would otherwise be
-// behavior-preserving may break these assumptions.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "objc-arc"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/raw_ostream.h"
-using namespace llvm;
-
-// A handy option to enable/disable all optimizations in this file.
-static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
-
-//===----------------------------------------------------------------------===//
-// Misc. Utilities
-//===----------------------------------------------------------------------===//
-
-namespace {
- /// MapVector - An associative container with fast insertion-order
- /// (deterministic) iteration over its elements. Plus the special
- /// blot operation.
- template<class KeyT, class ValueT>
- class MapVector {
- /// Map - Map keys to indices in Vector.
- typedef DenseMap<KeyT, size_t> MapTy;
- MapTy Map;
-
- /// Vector - Keys and values.
- typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
- VectorTy Vector;
-
- public:
- typedef typename VectorTy::iterator iterator;
- typedef typename VectorTy::const_iterator const_iterator;
- iterator begin() { return Vector.begin(); }
- iterator end() { return Vector.end(); }
- const_iterator begin() const { return Vector.begin(); }
- const_iterator end() const { return Vector.end(); }
-
-#ifdef XDEBUG
- ~MapVector() {
- assert(Vector.size() >= Map.size()); // May differ due to blotting.
- for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
- I != E; ++I) {
- assert(I->second < Vector.size());
- assert(Vector[I->second].first == I->first);
- }
- for (typename VectorTy::const_iterator I = Vector.begin(),
- E = Vector.end(); I != E; ++I)
- assert(!I->first ||
- (Map.count(I->first) &&
- Map[I->first] == size_t(I - Vector.begin())));
- }
-#endif
-
- ValueT &operator[](const KeyT &Arg) {
- std::pair<typename MapTy::iterator, bool> Pair =
- Map.insert(std::make_pair(Arg, size_t(0)));
- if (Pair.second) {
- size_t Num = Vector.size();
- Pair.first->second = Num;
- Vector.push_back(std::make_pair(Arg, ValueT()));
- return Vector[Num].second;
- }
- return Vector[Pair.first->second].second;
- }
-
- std::pair<iterator, bool>
- insert(const std::pair<KeyT, ValueT> &InsertPair) {
- std::pair<typename MapTy::iterator, bool> Pair =
- Map.insert(std::make_pair(InsertPair.first, size_t(0)));
- if (Pair.second) {
- size_t Num = Vector.size();
- Pair.first->second = Num;
- Vector.push_back(InsertPair);
- return std::make_pair(Vector.begin() + Num, true);
- }
- return std::make_pair(Vector.begin() + Pair.first->second, false);
- }
-
- const_iterator find(const KeyT &Key) const {
- typename MapTy::const_iterator It = Map.find(Key);
- if (It == Map.end()) return Vector.end();
- return Vector.begin() + It->second;
- }
-
- /// blot - This is similar to erase, but instead of removing the element
- /// from the vector, it just zeros out the key in the vector. This leaves
- /// iterators intact, but clients must be prepared for zeroed-out keys when
- /// iterating.
- void blot(const KeyT &Key) {
- typename MapTy::iterator It = Map.find(Key);
- if (It == Map.end()) return;
- Vector[It->second].first = KeyT();
- Map.erase(It);
- }
-
- void clear() {
- Map.clear();
- Vector.clear();
- }
- };
-}
-
-//===----------------------------------------------------------------------===//
-// ARC Utilities.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Transforms/Utils/Local.h"
-
-namespace {
- /// InstructionClass - A simple classification for instructions.
- enum InstructionClass {
- IC_Retain, ///< objc_retain
- IC_RetainRV, ///< objc_retainAutoreleasedReturnValue
- IC_RetainBlock, ///< objc_retainBlock
- IC_Release, ///< objc_release
- IC_Autorelease, ///< objc_autorelease
- IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue
- IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
- IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop
- IC_NoopCast, ///< objc_retainedObject, etc.
- IC_FusedRetainAutorelease, ///< objc_retainAutorelease
- IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
- IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive)
- IC_StoreWeak, ///< objc_storeWeak (primitive)
- IC_InitWeak, ///< objc_initWeak (derived)
- IC_LoadWeak, ///< objc_loadWeak (derived)
- IC_MoveWeak, ///< objc_moveWeak (derived)
- IC_CopyWeak, ///< objc_copyWeak (derived)
- IC_DestroyWeak, ///< objc_destroyWeak (derived)
- IC_StoreStrong, ///< objc_storeStrong (derived)
- IC_CallOrUser, ///< could call objc_release and/or "use" pointers
- IC_Call, ///< could call objc_release
- IC_User, ///< could "use" a pointer
- IC_None ///< anything else
- };
-}
-
-/// IsPotentialUse - Test whether the given value is possible a
-/// reference-counted pointer.
-static bool IsPotentialUse(const Value *Op) {
- // Pointers to static or stack storage are not reference-counted pointers.
- if (isa<Constant>(Op) || isa<AllocaInst>(Op))
- return false;
- // Special arguments are not reference-counted.
- if (const Argument *Arg = dyn_cast<Argument>(Op))
- if (Arg->hasByValAttr() ||
- Arg->hasNestAttr() ||
- Arg->hasStructRetAttr())
- return false;
- // Only consider values with pointer types.
- // It seemes intuitive to exclude function pointer types as well, since
- // functions are never reference-counted, however clang occasionally
- // bitcasts reference-counted pointers to function-pointer type
- // temporarily.
- PointerType *Ty = dyn_cast<PointerType>(Op->getType());
- if (!Ty)
- return false;
- // Conservatively assume anything else is a potential use.
- return true;
-}
-
-/// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
-/// of construct CS is.
-static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
- for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- I != E; ++I)
- if (IsPotentialUse(*I))
- return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
-
- return CS.onlyReadsMemory() ? IC_None : IC_Call;
-}
-
-/// GetFunctionClass - Determine if F is one of the special known Functions.
-/// If it isn't, return IC_CallOrUser.
-static InstructionClass GetFunctionClass(const Function *F) {
- Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
-
- // No arguments.
- if (AI == AE)
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_autoreleasePoolPush", IC_AutoreleasepoolPush)
- .Default(IC_CallOrUser);
-
- // One argument.
- const Argument *A0 = AI++;
- if (AI == AE)
- // Argument is a pointer.
- if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
- Type *ETy = PTy->getElementType();
- // Argument is i8*.
- if (ETy->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_retain", IC_Retain)
- .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
- .Case("objc_retainBlock", IC_RetainBlock)
- .Case("objc_release", IC_Release)
- .Case("objc_autorelease", IC_Autorelease)
- .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
- .Case("objc_autoreleasePoolPop", IC_AutoreleasepoolPop)
- .Case("objc_retainedObject", IC_NoopCast)
- .Case("objc_unretainedObject", IC_NoopCast)
- .Case("objc_unretainedPointer", IC_NoopCast)
- .Case("objc_retain_autorelease", IC_FusedRetainAutorelease)
- .Case("objc_retainAutorelease", IC_FusedRetainAutorelease)
- .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
- .Default(IC_CallOrUser);
-
- // Argument is i8**
- if (PointerType *Pte = dyn_cast<PointerType>(ETy))
- if (Pte->getElementType()->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_loadWeakRetained", IC_LoadWeakRetained)
- .Case("objc_loadWeak", IC_LoadWeak)
- .Case("objc_destroyWeak", IC_DestroyWeak)
- .Default(IC_CallOrUser);
- }
-
- // Two arguments, first is i8**.
- const Argument *A1 = AI++;
- if (AI == AE)
- if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
- if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
- if (Pte->getElementType()->isIntegerTy(8))
- if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
- Type *ETy1 = PTy1->getElementType();
- // Second argument is i8*
- if (ETy1->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_storeWeak", IC_StoreWeak)
- .Case("objc_initWeak", IC_InitWeak)
- .Case("objc_storeStrong", IC_StoreStrong)
- .Default(IC_CallOrUser);
- // Second argument is i8**.
- if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
- if (Pte1->getElementType()->isIntegerTy(8))
- return StringSwitch<InstructionClass>(F->getName())
- .Case("objc_moveWeak", IC_MoveWeak)
- .Case("objc_copyWeak", IC_CopyWeak)
- .Default(IC_CallOrUser);
- }
-
- // Anything else.
- return IC_CallOrUser;
-}
-
-/// GetInstructionClass - Determine what kind of construct V is.
-static InstructionClass GetInstructionClass(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V)) {
- // Any instruction other than bitcast and gep with a pointer operand have a
- // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
- // to a subsequent use, rather than using it themselves, in this sense.
- // As a short cut, several other opcodes are known to have no pointer
- // operands of interest. And ret is never followed by a release, so it's
- // not interesting to examine.
- switch (I->getOpcode()) {
- case Instruction::Call: {
- const CallInst *CI = cast<CallInst>(I);
- // Check for calls to special functions.
- if (const Function *F = CI->getCalledFunction()) {
- InstructionClass Class = GetFunctionClass(F);
- if (Class != IC_CallOrUser)
- return Class;
-
- // None of the intrinsic functions do objc_release. For intrinsics, the
- // only question is whether or not they may be users.
- switch (F->getIntrinsicID()) {
- case Intrinsic::returnaddress: case Intrinsic::frameaddress:
- case Intrinsic::stacksave: case Intrinsic::stackrestore:
- case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
- case Intrinsic::objectsize: case Intrinsic::prefetch:
- case Intrinsic::stackprotector:
- case Intrinsic::eh_return_i32: case Intrinsic::eh_return_i64:
- case Intrinsic::eh_typeid_for: case Intrinsic::eh_dwarf_cfa:
- case Intrinsic::eh_sjlj_lsda: case Intrinsic::eh_sjlj_functioncontext:
- case Intrinsic::init_trampoline: case Intrinsic::adjust_trampoline:
- case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start: case Intrinsic::invariant_end:
- // Don't let dbg info affect our results.
- case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
- // Short cut: Some intrinsics obviously don't use ObjC pointers.
- return IC_None;
- default:
- break;
- }
- }
- return GetCallSiteClass(CI);
- }
- case Instruction::Invoke:
- return GetCallSiteClass(cast<InvokeInst>(I));
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::Select: case Instruction::PHI:
- case Instruction::Ret: case Instruction::Br:
- case Instruction::Switch: case Instruction::IndirectBr:
- case Instruction::Alloca: case Instruction::VAArg:
- case Instruction::Add: case Instruction::FAdd:
- case Instruction::Sub: case Instruction::FSub:
- case Instruction::Mul: case Instruction::FMul:
- case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
- case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
- case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
- case Instruction::And: case Instruction::Or: case Instruction::Xor:
- case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
- case Instruction::IntToPtr: case Instruction::FCmp:
- case Instruction::FPTrunc: case Instruction::FPExt:
- case Instruction::FPToUI: case Instruction::FPToSI:
- case Instruction::UIToFP: case Instruction::SIToFP:
- case Instruction::InsertElement: case Instruction::ExtractElement:
- case Instruction::ShuffleVector:
- case Instruction::ExtractValue:
- break;
- case Instruction::ICmp:
- // Comparing a pointer with null, or any other constant, isn't an
- // interesting use, because we don't care what the pointer points to, or
- // about the values of any other dynamic reference-counted pointers.
- if (IsPotentialUse(I->getOperand(1)))
- return IC_User;
- break;
- default:
- // For anything else, check all the operands.
- // Note that this includes both operands of a Store: while the first
- // operand isn't actually being dereferenced, it is being stored to
- // memory where we can no longer track who might read it and dereference
- // it, so we have to consider it potentially used.
- for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
- OI != OE; ++OI)
- if (IsPotentialUse(*OI))
- return IC_User;
- }
- }
-
- // Otherwise, it's totally inert for ARC purposes.
- return IC_None;
-}
-
-/// GetBasicInstructionClass - Determine what kind of construct V is. This is
-/// similar to GetInstructionClass except that it only detects objc runtine
-/// calls. This allows it to be faster.
-static InstructionClass GetBasicInstructionClass(const Value *V) {
- if (const CallInst *CI = dyn_cast<CallInst>(V)) {
- if (const Function *F = CI->getCalledFunction())
- return GetFunctionClass(F);
- // Otherwise, be conservative.
- return IC_CallOrUser;
- }
-
- // Otherwise, be conservative.
- return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
-}
-
-/// IsRetain - Test if the given class is objc_retain or
-/// equivalent.
-static bool IsRetain(InstructionClass Class) {
- return Class == IC_Retain ||
- Class == IC_RetainRV;
-}
-
-/// IsAutorelease - Test if the given class is objc_autorelease or
-/// equivalent.
-static bool IsAutorelease(InstructionClass Class) {
- return Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV;
-}
-
-/// IsForwarding - Test if the given class represents instructions which return
-/// their argument verbatim.
-static bool IsForwarding(InstructionClass Class) {
- // objc_retainBlock technically doesn't always return its argument
- // verbatim, but it doesn't matter for our purposes here.
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV ||
- Class == IC_RetainBlock ||
- Class == IC_NoopCast;
-}
-
-/// IsNoopOnNull - Test if the given class represents instructions which do
-/// nothing if passed a null pointer.
-static bool IsNoopOnNull(InstructionClass Class) {
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Release ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV ||
- Class == IC_RetainBlock;
-}
-
-/// IsAlwaysTail - Test if the given class represents instructions which are
-/// always safe to mark with the "tail" keyword.
-static bool IsAlwaysTail(InstructionClass Class) {
- // IC_RetainBlock may be given a stack argument.
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV;
-}
-
-/// IsNoThrow - Test if the given class represents instructions which are always
-/// safe to mark with the nounwind attribute..
-static bool IsNoThrow(InstructionClass Class) {
- // objc_retainBlock is not nounwind because it calls user copy constructors
- // which could theoretically throw.
- return Class == IC_Retain ||
- Class == IC_RetainRV ||
- Class == IC_Release ||
- Class == IC_Autorelease ||
- Class == IC_AutoreleaseRV ||
- Class == IC_AutoreleasepoolPush ||
- Class == IC_AutoreleasepoolPop;
-}
-
-/// EraseInstruction - Erase the given instruction. Many ObjC calls return their
-/// argument verbatim, so if it's such a call and the return value has users,
-/// replace them with the argument value.
-static void EraseInstruction(Instruction *CI) {
- Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
-
- bool Unused = CI->use_empty();
-
- if (!Unused) {
- // Replace the return value with the argument.
- assert(IsForwarding(GetBasicInstructionClass(CI)) &&
- "Can't delete non-forwarding instruction with users!");
- CI->replaceAllUsesWith(OldArg);
- }
-
- CI->eraseFromParent();
-
- if (Unused)
- RecursivelyDeleteTriviallyDeadInstructions(OldArg);
-}
-
-/// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
-/// also knows how to look through objc_retain and objc_autorelease calls, which
-/// we know to return their argument verbatim.
-static const Value *GetUnderlyingObjCPtr(const Value *V) {
- for (;;) {
- V = GetUnderlyingObject(V);
- if (!IsForwarding(GetBasicInstructionClass(V)))
- break;
- V = cast<CallInst>(V)->getArgOperand(0);
- }
-
- return V;
-}
-
-/// StripPointerCastsAndObjCCalls - This is a wrapper around
-/// Value::stripPointerCasts which also knows how to look through objc_retain
-/// and objc_autorelease calls, which we know to return their argument verbatim.
-static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
- for (;;) {
- V = V->stripPointerCasts();
- if (!IsForwarding(GetBasicInstructionClass(V)))
- break;
- V = cast<CallInst>(V)->getArgOperand(0);
- }
- return V;
-}
-
-/// StripPointerCastsAndObjCCalls - This is a wrapper around
-/// Value::stripPointerCasts which also knows how to look through objc_retain
-/// and objc_autorelease calls, which we know to return their argument verbatim.
-static Value *StripPointerCastsAndObjCCalls(Value *V) {
- for (;;) {
- V = V->stripPointerCasts();
- if (!IsForwarding(GetBasicInstructionClass(V)))
- break;
- V = cast<CallInst>(V)->getArgOperand(0);
- }
- return V;
-}
-
-/// GetObjCArg - Assuming the given instruction is one of the special calls such
-/// as objc_retain or objc_release, return the argument value, stripped of no-op
-/// casts and forwarding calls.
-static Value *GetObjCArg(Value *Inst) {
- return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
-}
-
-/// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
-/// isObjCIdentifiedObject, except that it uses special knowledge of
-/// ObjC conventions...
-static bool IsObjCIdentifiedObject(const Value *V) {
- // Assume that call results and arguments have their own "provenance".
- // Constants (including GlobalVariables) and Allocas are never
- // reference-counted.
- if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
- isa<Argument>(V) || isa<Constant>(V) ||
- isa<AllocaInst>(V))
- return true;
-
- if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
- const Value *Pointer =
- StripPointerCastsAndObjCCalls(LI->getPointerOperand());
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
- // A constant pointer can't be pointing to an object on the heap. It may
- // be reference-counted, but it won't be deleted.
- if (GV->isConstant())
- return true;
- StringRef Name = GV->getName();
- // These special variables are known to hold values which are not
- // reference-counted pointers.
- if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
- Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
- Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
- Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
- Name.startswith("\01l_objc_msgSend_fixup_"))
- return true;
- }
- }
-
- return false;
-}
-
-/// FindSingleUseIdentifiedObject - This is similar to
-/// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
-/// with multiple uses.
-static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
- if (Arg->hasOneUse()) {
- if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
- return FindSingleUseIdentifiedObject(BC->getOperand(0));
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
- if (GEP->hasAllZeroIndices())
- return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
- if (IsForwarding(GetBasicInstructionClass(Arg)))
- return FindSingleUseIdentifiedObject(
- cast<CallInst>(Arg)->getArgOperand(0));
- if (!IsObjCIdentifiedObject(Arg))
- return 0;
- return Arg;
- }
-
- // If we found an identifiable object but it has multiple uses, but they are
- // trivial uses, we can still consider this to be a single-use value.
- if (IsObjCIdentifiedObject(Arg)) {
- for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
- UI != UE; ++UI) {
- const User *U = *UI;
- if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
- return 0;
- }
-
- return Arg;
- }
-
- return 0;
-}
-
-/// ModuleHasARC - Test if the given module looks interesting to run ARC
-/// optimization on.
-static bool ModuleHasARC(const Module &M) {
- return
- M.getNamedValue("objc_retain") ||
- M.getNamedValue("objc_release") ||
- M.getNamedValue("objc_autorelease") ||
- M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
- M.getNamedValue("objc_retainBlock") ||
- M.getNamedValue("objc_autoreleaseReturnValue") ||
- M.getNamedValue("objc_autoreleasePoolPush") ||
- M.getNamedValue("objc_loadWeakRetained") ||
- M.getNamedValue("objc_loadWeak") ||
- M.getNamedValue("objc_destroyWeak") ||
- M.getNamedValue("objc_storeWeak") ||
- M.getNamedValue("objc_initWeak") ||
- M.getNamedValue("objc_moveWeak") ||
- M.getNamedValue("objc_copyWeak") ||
- M.getNamedValue("objc_retainedObject") ||
- M.getNamedValue("objc_unretainedObject") ||
- M.getNamedValue("objc_unretainedPointer");
-}
-
-/// DoesObjCBlockEscape - Test whether the given pointer, which is an
-/// Objective C block pointer, does not "escape". This differs from regular
-/// escape analysis in that a use as an argument to a call is not considered
-/// an escape.
-static bool DoesObjCBlockEscape(const Value *BlockPtr) {
- // Walk the def-use chains.
- SmallVector<const Value *, 4> Worklist;
- Worklist.push_back(BlockPtr);
- do {
- const Value *V = Worklist.pop_back_val();
- for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
- UI != UE; ++UI) {
- const User *UUser = *UI;
- // Special - Use by a call (callee or argument) is not considered
- // to be an escape.
- switch (GetBasicInstructionClass(UUser)) {
- case IC_StoreWeak:
- case IC_InitWeak:
- case IC_StoreStrong:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- // These special functions make copies of their pointer arguments.
- return true;
- case IC_User:
- case IC_None:
- // Use by an instruction which copies the value is an escape if the
- // result is an escape.
- if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
- isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
- Worklist.push_back(UUser);
- continue;
- }
- // Use by a load is not an escape.
- if (isa<LoadInst>(UUser))
- continue;
- // Use by a store is not an escape if the use is the address.
- if (const StoreInst *SI = dyn_cast<StoreInst>(UUser))
- if (V != SI->getValueOperand())
- continue;
- break;
- default:
- // Regular calls and other stuff are not considered escapes.
- continue;
- }
- // Otherwise, conservatively assume an escape.
- return true;
- }
- } while (!Worklist.empty());
-
- // No escapes found.
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// ARC AliasAnalysis.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Pass.h"
-
-namespace {
- /// ObjCARCAliasAnalysis - This is a simple alias analysis
- /// implementation that uses knowledge of ARC constructs to answer queries.
- ///
- /// TODO: This class could be generalized to know about other ObjC-specific
- /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
- /// even though their offsets are dynamic.
- class ObjCARCAliasAnalysis : public ImmutablePass,
- public AliasAnalysis {
- public:
- static char ID; // Class identification, replacement for typeinfo
- ObjCARCAliasAnalysis() : ImmutablePass(ID) {
- initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
- }
-
- private:
- virtual void initializePass() {
- InitializeAliasAnalysis(this);
- }
-
- /// getAdjustedAnalysisPointer - This method is used when a pass implements
- /// an analysis interface through multiple inheritance. If needed, it
- /// should override this to adjust the this pointer as needed for the
- /// specified pass info.
- virtual void *getAdjustedAnalysisPointer(const void *PI) {
- if (PI == &AliasAnalysis::ID)
- return static_cast<AliasAnalysis *>(this);
- return this;
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual AliasResult alias(const Location &LocA, const Location &LocB);
- virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
- virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
- virtual ModRefBehavior getModRefBehavior(const Function *F);
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc);
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2);
- };
-} // End of anonymous namespace
-
-// Register this pass...
-char ObjCARCAliasAnalysis::ID = 0;
-INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
- "ObjC-ARC-Based Alias Analysis", false, true, false)
-
-ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
- return new ObjCARCAliasAnalysis();
-}
-
-void
-ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AliasAnalysis::getAnalysisUsage(AU);
-}
-
-AliasAnalysis::AliasResult
-ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
- if (!EnableARCOpts)
- return AliasAnalysis::alias(LocA, LocB);
-
- // First, strip off no-ops, including ObjC-specific no-ops, and try making a
- // precise alias query.
- const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
- const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
- AliasResult Result =
- AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
- Location(SB, LocB.Size, LocB.TBAATag));
- if (Result != MayAlias)
- return Result;
-
- // If that failed, climb to the underlying object, including climbing through
- // ObjC-specific no-ops, and try making an imprecise alias query.
- const Value *UA = GetUnderlyingObjCPtr(SA);
- const Value *UB = GetUnderlyingObjCPtr(SB);
- if (UA != SA || UB != SB) {
- Result = AliasAnalysis::alias(Location(UA), Location(UB));
- // We can't use MustAlias or PartialAlias results here because
- // GetUnderlyingObjCPtr may return an offsetted pointer value.
- if (Result == NoAlias)
- return NoAlias;
- }
-
- // If that failed, fail. We don't need to chain here, since that's covered
- // by the earlier precise query.
- return MayAlias;
-}
-
-bool
-ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
- bool OrLocal) {
- if (!EnableARCOpts)
- return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
-
- // First, strip off no-ops, including ObjC-specific no-ops, and try making
- // a precise alias query.
- const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
- if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
- OrLocal))
- return true;
-
- // If that failed, climb to the underlying object, including climbing through
- // ObjC-specific no-ops, and try making an imprecise alias query.
- const Value *U = GetUnderlyingObjCPtr(S);
- if (U != S)
- return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
-
- // If that failed, fail. We don't need to chain here, since that's covered
- // by the earlier precise query.
- return false;
-}
-
-AliasAnalysis::ModRefBehavior
-ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
- // We have nothing to do. Just chain to the next AliasAnalysis.
- return AliasAnalysis::getModRefBehavior(CS);
-}
-
-AliasAnalysis::ModRefBehavior
-ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
- if (!EnableARCOpts)
- return AliasAnalysis::getModRefBehavior(F);
-
- switch (GetFunctionClass(F)) {
- case IC_NoopCast:
- return DoesNotAccessMemory;
- default:
- break;
- }
-
- return AliasAnalysis::getModRefBehavior(F);
-}
-
-AliasAnalysis::ModRefResult
-ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
- if (!EnableARCOpts)
- return AliasAnalysis::getModRefInfo(CS, Loc);
-
- switch (GetBasicInstructionClass(CS.getInstruction())) {
- case IC_Retain:
- case IC_RetainRV:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_NoopCast:
- case IC_AutoreleasepoolPush:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- // These functions don't access any memory visible to the compiler.
- // Note that this doesn't include objc_retainBlock, because it updates
- // pointers when it copies block data.
- return NoModRef;
- default:
- break;
- }
-
- return AliasAnalysis::getModRefInfo(CS, Loc);
-}
-
-AliasAnalysis::ModRefResult
-ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
- // TODO: Theoretically we could check for dependencies between objc_* calls
- // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
- return AliasAnalysis::getModRefInfo(CS1, CS2);
-}
-
-//===----------------------------------------------------------------------===//
-// ARC expansion.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/InstIterator.h"
-#include "llvm/Transforms/Scalar.h"
-
-namespace {
- /// ObjCARCExpand - Early ARC transformations.
- class ObjCARCExpand : public FunctionPass {
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
-
- /// Run - A flag indicating whether this optimization pass should run.
- bool Run;
-
- public:
- static char ID;
- ObjCARCExpand() : FunctionPass(ID) {
- initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCExpand::ID = 0;
-INITIALIZE_PASS(ObjCARCExpand,
- "objc-arc-expand", "ObjC ARC expansion", false, false)
-
-Pass *llvm::createObjCARCExpandPass() {
- return new ObjCARCExpand();
-}
-
-void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
-}
-
-bool ObjCARCExpand::doInitialization(Module &M) {
- Run = ModuleHasARC(M);
- return false;
-}
-
-bool ObjCARCExpand::runOnFunction(Function &F) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!Run)
- return false;
-
- bool Changed = false;
-
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
- Instruction *Inst = &*I;
-
- switch (GetBasicInstructionClass(Inst)) {
- case IC_Retain:
- case IC_RetainRV:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- // These calls return their argument verbatim, as a low-level
- // optimization. However, this makes high-level optimizations
- // harder. Undo any uses of this optimization that the front-end
- // emitted here. We'll redo them in the contract pass.
- Changed = true;
- Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
- break;
- default:
- break;
- }
- }
-
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// ARC autorelease pool elimination.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Constants.h"
-
-namespace {
- /// ObjCARCAPElim - Autorelease pool elimination.
- class ObjCARCAPElim : public ModulePass {
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool runOnModule(Module &M);
-
- static bool MayAutorelease(ImmutableCallSite CS, unsigned Depth = 0);
- static bool OptimizeBB(BasicBlock *BB);
-
- public:
- static char ID;
- ObjCARCAPElim() : ModulePass(ID) {
- initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCAPElim::ID = 0;
-INITIALIZE_PASS(ObjCARCAPElim,
- "objc-arc-apelim",
- "ObjC ARC autorelease pool elimination",
- false, false)
-
-Pass *llvm::createObjCARCAPElimPass() {
- return new ObjCARCAPElim();
-}
-
-void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
-}
-
-/// MayAutorelease - Interprocedurally determine if calls made by the
-/// given call site can possibly produce autoreleases.
-bool ObjCARCAPElim::MayAutorelease(ImmutableCallSite CS, unsigned Depth) {
- if (const Function *Callee = CS.getCalledFunction()) {
- if (Callee->isDeclaration() || Callee->mayBeOverridden())
- return true;
- for (Function::const_iterator I = Callee->begin(), E = Callee->end();
- I != E; ++I) {
- const BasicBlock *BB = I;
- for (BasicBlock::const_iterator J = BB->begin(), F = BB->end();
- J != F; ++J)
- if (ImmutableCallSite JCS = ImmutableCallSite(J))
- // This recursion depth limit is arbitrary. It's just great
- // enough to cover known interesting testcases.
- if (Depth < 3 &&
- !JCS.onlyReadsMemory() &&
- MayAutorelease(JCS, Depth + 1))
- return true;
- }
- return false;
- }
-
- return true;
-}
-
-bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
- bool Changed = false;
-
- Instruction *Push = 0;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
- Instruction *Inst = I++;
- switch (GetBasicInstructionClass(Inst)) {
- case IC_AutoreleasepoolPush:
- Push = Inst;
- break;
- case IC_AutoreleasepoolPop:
- // If this pop matches a push and nothing in between can autorelease,
- // zap the pair.
- if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
- Changed = true;
- Inst->eraseFromParent();
- Push->eraseFromParent();
- }
- Push = 0;
- break;
- case IC_CallOrUser:
- if (MayAutorelease(ImmutableCallSite(Inst)))
- Push = 0;
- break;
- default:
- break;
- }
- }
-
- return Changed;
-}
-
-bool ObjCARCAPElim::runOnModule(Module &M) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!ModuleHasARC(M))
- return false;
-
- // Find the llvm.global_ctors variable, as the first step in
- // identifying the global constructors. In theory, unnecessary autorelease
- // pools could occur anywhere, but in practice it's pretty rare. Global
- // ctors are a place where autorelease pools get inserted automatically,
- // so it's pretty common for them to be unnecessary, and it's pretty
- // profitable to eliminate them.
- GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
- if (!GV)
- return false;
-
- assert(GV->hasDefinitiveInitializer() &&
- "llvm.global_ctors is uncooperative!");
-
- bool Changed = false;
-
- // Dig the constructor functions out of GV's initializer.
- ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
- for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end();
- OI != OE; ++OI) {
- Value *Op = *OI;
- // llvm.global_ctors is an array of pairs where the second members
- // are constructor functions.
- Function *F = dyn_cast<Function>(cast<ConstantStruct>(Op)->getOperand(1));
- // If the user used a constructor function with the wrong signature and
- // it got bitcasted or whatever, look the other way.
- if (!F)
- continue;
- // Only look at function definitions.
- if (F->isDeclaration())
- continue;
- // Only look at functions with one basic block.
- if (llvm::next(F->begin()) != F->end())
- continue;
- // Ok, a single-block constructor function definition. Try to optimize it.
- Changed |= OptimizeBB(F->begin());
- }
-
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// ARC optimization.
-//===----------------------------------------------------------------------===//
-
-// TODO: On code like this:
-//
-// objc_retain(%x)
-// stuff_that_cannot_release()
-// objc_autorelease(%x)
-// stuff_that_cannot_release()
-// objc_retain(%x)
-// stuff_that_cannot_release()
-// objc_autorelease(%x)
-//
-// The second retain and autorelease can be deleted.
-
-// TODO: It should be possible to delete
-// objc_autoreleasePoolPush and objc_autoreleasePoolPop
-// pairs if nothing is actually autoreleased between them. Also, autorelease
-// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
-// after inlining) can be turned into plain release calls.
-
-// TODO: Critical-edge splitting. If the optimial insertion point is
-// a critical edge, the current algorithm has to fail, because it doesn't
-// know how to split edges. It should be possible to make the optimizer
-// think in terms of edges, rather than blocks, and then split critical
-// edges on demand.
-
-// TODO: OptimizeSequences could generalized to be Interprocedural.
-
-// TODO: Recognize that a bunch of other objc runtime calls have
-// non-escaping arguments and non-releasing arguments, and may be
-// non-autoreleasing.
-
-// TODO: Sink autorelease calls as far as possible. Unfortunately we
-// usually can't sink them past other calls, which would be the main
-// case where it would be useful.
-
-// TODO: The pointer returned from objc_loadWeakRetained is retained.
-
-// TODO: Delete release+retain pairs (rare).
-
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Support/CFG.h"
-
-STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
-STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
-STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
-STATISTIC(NumRets, "Number of return value forwarding "
- "retain+autoreleaes eliminated");
-STATISTIC(NumRRs, "Number of retain+release paths eliminated");
-STATISTIC(NumPeeps, "Number of calls peephole-optimized");
-
-namespace {
- /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
- /// uses many of the same techniques, except it uses special ObjC-specific
- /// reasoning about pointer relationships.
- class ProvenanceAnalysis {
- AliasAnalysis *AA;
-
- typedef std::pair<const Value *, const Value *> ValuePairTy;
- typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
- CachedResultsTy CachedResults;
-
- bool relatedCheck(const Value *A, const Value *B);
- bool relatedSelect(const SelectInst *A, const Value *B);
- bool relatedPHI(const PHINode *A, const Value *B);
-
- void operator=(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
- ProvenanceAnalysis(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
-
- public:
- ProvenanceAnalysis() {}
-
- void setAA(AliasAnalysis *aa) { AA = aa; }
-
- AliasAnalysis *getAA() const { return AA; }
-
- bool related(const Value *A, const Value *B);
-
- void clear() {
- CachedResults.clear();
- }
- };
-}
-
-bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
- // If the values are Selects with the same condition, we can do a more precise
- // check: just check for relations between the values on corresponding arms.
- if (const SelectInst *SB = dyn_cast<SelectInst>(B))
- if (A->getCondition() == SB->getCondition())
- return related(A->getTrueValue(), SB->getTrueValue()) ||
- related(A->getFalseValue(), SB->getFalseValue());
-
- // Check both arms of the Select node individually.
- return related(A->getTrueValue(), B) ||
- related(A->getFalseValue(), B);
-}
-
-bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
- // If the values are PHIs in the same block, we can do a more precise as well
- // as efficient check: just check for relations between the values on
- // corresponding edges.
- if (const PHINode *PNB = dyn_cast<PHINode>(B))
- if (PNB->getParent() == A->getParent()) {
- for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
- if (related(A->getIncomingValue(i),
- PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
- return true;
- return false;
- }
-
- // Check each unique source of the PHI node against B.
- SmallPtrSet<const Value *, 4> UniqueSrc;
- for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
- const Value *PV1 = A->getIncomingValue(i);
- if (UniqueSrc.insert(PV1) && related(PV1, B))
- return true;
- }
-
- // All of the arms checked out.
- return false;
-}
-
-/// isStoredObjCPointer - Test if the value of P, or any value covered by its
-/// provenance, is ever stored within the function (not counting callees).
-static bool isStoredObjCPointer(const Value *P) {
- SmallPtrSet<const Value *, 8> Visited;
- SmallVector<const Value *, 8> Worklist;
- Worklist.push_back(P);
- Visited.insert(P);
- do {
- P = Worklist.pop_back_val();
- for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
- UI != UE; ++UI) {
- const User *Ur = *UI;
- if (isa<StoreInst>(Ur)) {
- if (UI.getOperandNo() == 0)
- // The pointer is stored.
- return true;
- // The pointed is stored through.
- continue;
- }
- if (isa<CallInst>(Ur))
- // The pointer is passed as an argument, ignore this.
- continue;
- if (isa<PtrToIntInst>(P))
- // Assume the worst.
- return true;
- if (Visited.insert(Ur))
- Worklist.push_back(Ur);
- }
- } while (!Worklist.empty());
-
- // Everything checked out.
- return false;
-}
-
-bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
- // Skip past provenance pass-throughs.
- A = GetUnderlyingObjCPtr(A);
- B = GetUnderlyingObjCPtr(B);
-
- // Quick check.
- if (A == B)
- return true;
-
- // Ask regular AliasAnalysis, for a first approximation.
- switch (AA->alias(A, B)) {
- case AliasAnalysis::NoAlias:
- return false;
- case AliasAnalysis::MustAlias:
- case AliasAnalysis::PartialAlias:
- return true;
- case AliasAnalysis::MayAlias:
- break;
- }
-
- bool AIsIdentified = IsObjCIdentifiedObject(A);
- bool BIsIdentified = IsObjCIdentifiedObject(B);
-
- // An ObjC-Identified object can't alias a load if it is never locally stored.
- if (AIsIdentified) {
- // Check for an obvious escape.
- if (isa<LoadInst>(B))
- return isStoredObjCPointer(A);
- if (BIsIdentified) {
- // Check for an obvious escape.
- if (isa<LoadInst>(A))
- return isStoredObjCPointer(B);
- // Both pointers are identified and escapes aren't an evident problem.
- return false;
- }
- } else if (BIsIdentified) {
- // Check for an obvious escape.
- if (isa<LoadInst>(A))
- return isStoredObjCPointer(B);
- }
-
- // Special handling for PHI and Select.
- if (const PHINode *PN = dyn_cast<PHINode>(A))
- return relatedPHI(PN, B);
- if (const PHINode *PN = dyn_cast<PHINode>(B))
- return relatedPHI(PN, A);
- if (const SelectInst *S = dyn_cast<SelectInst>(A))
- return relatedSelect(S, B);
- if (const SelectInst *S = dyn_cast<SelectInst>(B))
- return relatedSelect(S, A);
-
- // Conservative.
- return true;
-}
-
-bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
- // Begin by inserting a conservative value into the map. If the insertion
- // fails, we have the answer already. If it succeeds, leave it there until we
- // compute the real answer to guard against recursive queries.
- if (A > B) std::swap(A, B);
- std::pair<CachedResultsTy::iterator, bool> Pair =
- CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
- if (!Pair.second)
- return Pair.first->second;
-
- bool Result = relatedCheck(A, B);
- CachedResults[ValuePairTy(A, B)] = Result;
- return Result;
-}
-
-namespace {
- // Sequence - A sequence of states that a pointer may go through in which an
- // objc_retain and objc_release are actually needed.
- enum Sequence {
- S_None,
- S_Retain, ///< objc_retain(x)
- S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement
- S_Use, ///< any use of x
- S_Stop, ///< like S_Release, but code motion is stopped
- S_Release, ///< objc_release(x)
- S_MovableRelease ///< objc_release(x), !clang.imprecise_release
- };
-}
-
-static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
- // The easy cases.
- if (A == B)
- return A;
- if (A == S_None || B == S_None)
- return S_None;
-
- if (A > B) std::swap(A, B);
- if (TopDown) {
- // Choose the side which is further along in the sequence.
- if ((A == S_Retain || A == S_CanRelease) &&
- (B == S_CanRelease || B == S_Use))
- return B;
- } else {
- // Choose the side which is further along in the sequence.
- if ((A == S_Use || A == S_CanRelease) &&
- (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
- return A;
- // If both sides are releases, choose the more conservative one.
- if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
- return A;
- if (A == S_Release && B == S_MovableRelease)
- return A;
- }
-
- return S_None;
-}
-
-namespace {
- /// RRInfo - Unidirectional information about either a
- /// retain-decrement-use-release sequence or release-use-decrement-retain
- /// reverese sequence.
- struct RRInfo {
- /// KnownSafe - After an objc_retain, the reference count of the referenced
- /// object is known to be positive. Similarly, before an objc_release, the
- /// reference count of the referenced object is known to be positive. If
- /// there are retain-release pairs in code regions where the retain count
- /// is known to be positive, they can be eliminated, regardless of any side
- /// effects between them.
- ///
- /// Also, a retain+release pair nested within another retain+release
- /// pair all on the known same pointer value can be eliminated, regardless
- /// of any intervening side effects.
- ///
- /// KnownSafe is true when either of these conditions is satisfied.
- bool KnownSafe;
-
- /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
- /// opposed to objc_retain calls).
- bool IsRetainBlock;
-
- /// IsTailCallRelease - True of the objc_release calls are all marked
- /// with the "tail" keyword.
- bool IsTailCallRelease;
-
- /// ReleaseMetadata - If the Calls are objc_release calls and they all have
- /// a clang.imprecise_release tag, this is the metadata tag.
- MDNode *ReleaseMetadata;
-
- /// Calls - For a top-down sequence, the set of objc_retains or
- /// objc_retainBlocks. For bottom-up, the set of objc_releases.
- SmallPtrSet<Instruction *, 2> Calls;
-
- /// ReverseInsertPts - The set of optimal insert positions for
- /// moving calls in the opposite sequence.
- SmallPtrSet<Instruction *, 2> ReverseInsertPts;
-
- RRInfo() :
- KnownSafe(false), IsRetainBlock(false),
- IsTailCallRelease(false),
- ReleaseMetadata(0) {}
-
- void clear();
- };
-}
-
-void RRInfo::clear() {
- KnownSafe = false;
- IsRetainBlock = false;
- IsTailCallRelease = false;
- ReleaseMetadata = 0;
- Calls.clear();
- ReverseInsertPts.clear();
-}
-
-namespace {
- /// PtrState - This class summarizes several per-pointer runtime properties
- /// which are propogated through the flow graph.
- class PtrState {
- /// KnownPositiveRefCount - True if the reference count is known to
- /// be incremented.
- bool KnownPositiveRefCount;
-
- /// Partial - True of we've seen an opportunity for partial RR elimination,
- /// such as pushing calls into a CFG triangle or into one side of a
- /// CFG diamond.
- bool Partial;
-
- /// Seq - The current position in the sequence.
- Sequence Seq : 8;
-
- public:
- /// RRI - Unidirectional information about the current sequence.
- /// TODO: Encapsulate this better.
- RRInfo RRI;
-
- PtrState() : KnownPositiveRefCount(false), Partial(false),
- Seq(S_None) {}
-
- void SetKnownPositiveRefCount() {
- KnownPositiveRefCount = true;
- }
-
- void ClearRefCount() {
- KnownPositiveRefCount = false;
- }
-
- bool IsKnownIncremented() const {
- return KnownPositiveRefCount;
- }
-
- void SetSeq(Sequence NewSeq) {
- Seq = NewSeq;
- }
-
- Sequence GetSeq() const {
- return Seq;
- }
-
- void ClearSequenceProgress() {
- ResetSequenceProgress(S_None);
- }
-
- void ResetSequenceProgress(Sequence NewSeq) {
- Seq = NewSeq;
- Partial = false;
- RRI.clear();
- }
-
- void Merge(const PtrState &Other, bool TopDown);
- };
-}
-
-void
-PtrState::Merge(const PtrState &Other, bool TopDown) {
- Seq = MergeSeqs(Seq, Other.Seq, TopDown);
- KnownPositiveRefCount = KnownPositiveRefCount && Other.KnownPositiveRefCount;
-
- // We can't merge a plain objc_retain with an objc_retainBlock.
- if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
- Seq = S_None;
-
- // If we're not in a sequence (anymore), drop all associated state.
- if (Seq == S_None) {
- Partial = false;
- RRI.clear();
- } else if (Partial || Other.Partial) {
- // If we're doing a merge on a path that's previously seen a partial
- // merge, conservatively drop the sequence, to avoid doing partial
- // RR elimination. If the branch predicates for the two merge differ,
- // mixing them is unsafe.
- ClearSequenceProgress();
- } else {
- // Conservatively merge the ReleaseMetadata information.
- if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
- RRI.ReleaseMetadata = 0;
-
- RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
- RRI.IsTailCallRelease = RRI.IsTailCallRelease &&
- Other.RRI.IsTailCallRelease;
- RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
-
- // Merge the insert point sets. If there are any differences,
- // that makes this a partial merge.
- Partial = RRI.ReverseInsertPts.size() != Other.RRI.ReverseInsertPts.size();
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- I = Other.RRI.ReverseInsertPts.begin(),
- E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
- Partial |= RRI.ReverseInsertPts.insert(*I);
- }
-}
-
-namespace {
- /// BBState - Per-BasicBlock state.
- class BBState {
- /// TopDownPathCount - The number of unique control paths from the entry
- /// which can reach this block.
- unsigned TopDownPathCount;
-
- /// BottomUpPathCount - The number of unique control paths to exits
- /// from this block.
- unsigned BottomUpPathCount;
-
- /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
- typedef MapVector<const Value *, PtrState> MapTy;
-
- /// PerPtrTopDown - The top-down traversal uses this to record information
- /// known about a pointer at the bottom of each block.
- MapTy PerPtrTopDown;
-
- /// PerPtrBottomUp - The bottom-up traversal uses this to record information
- /// known about a pointer at the top of each block.
- MapTy PerPtrBottomUp;
-
- /// Preds, Succs - Effective successors and predecessors of the current
- /// block (this ignores ignorable edges and ignored backedges).
- SmallVector<BasicBlock *, 2> Preds;
- SmallVector<BasicBlock *, 2> Succs;
-
- public:
- BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
-
- typedef MapTy::iterator ptr_iterator;
- typedef MapTy::const_iterator ptr_const_iterator;
-
- ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
- ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
- ptr_const_iterator top_down_ptr_begin() const {
- return PerPtrTopDown.begin();
- }
- ptr_const_iterator top_down_ptr_end() const {
- return PerPtrTopDown.end();
- }
-
- ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
- ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
- ptr_const_iterator bottom_up_ptr_begin() const {
- return PerPtrBottomUp.begin();
- }
- ptr_const_iterator bottom_up_ptr_end() const {
- return PerPtrBottomUp.end();
- }
-
- /// SetAsEntry - Mark this block as being an entry block, which has one
- /// path from the entry by definition.
- void SetAsEntry() { TopDownPathCount = 1; }
-
- /// SetAsExit - Mark this block as being an exit block, which has one
- /// path to an exit by definition.
- void SetAsExit() { BottomUpPathCount = 1; }
-
- PtrState &getPtrTopDownState(const Value *Arg) {
- return PerPtrTopDown[Arg];
- }
-
- PtrState &getPtrBottomUpState(const Value *Arg) {
- return PerPtrBottomUp[Arg];
- }
-
- void clearBottomUpPointers() {
- PerPtrBottomUp.clear();
- }
-
- void clearTopDownPointers() {
- PerPtrTopDown.clear();
- }
-
- void InitFromPred(const BBState &Other);
- void InitFromSucc(const BBState &Other);
- void MergePred(const BBState &Other);
- void MergeSucc(const BBState &Other);
-
- /// GetAllPathCount - Return the number of possible unique paths from an
- /// entry to an exit which pass through this block. This is only valid
- /// after both the top-down and bottom-up traversals are complete.
- unsigned GetAllPathCount() const {
- assert(TopDownPathCount != 0);
- assert(BottomUpPathCount != 0);
- return TopDownPathCount * BottomUpPathCount;
- }
-
- // Specialized CFG utilities.
- typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
- edge_iterator pred_begin() { return Preds.begin(); }
- edge_iterator pred_end() { return Preds.end(); }
- edge_iterator succ_begin() { return Succs.begin(); }
- edge_iterator succ_end() { return Succs.end(); }
-
- void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
- void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
-
- bool isExit() const { return Succs.empty(); }
- };
-}
-
-void BBState::InitFromPred(const BBState &Other) {
- PerPtrTopDown = Other.PerPtrTopDown;
- TopDownPathCount = Other.TopDownPathCount;
-}
-
-void BBState::InitFromSucc(const BBState &Other) {
- PerPtrBottomUp = Other.PerPtrBottomUp;
- BottomUpPathCount = Other.BottomUpPathCount;
-}
-
-/// MergePred - The top-down traversal uses this to merge information about
-/// predecessors to form the initial state for a new block.
-void BBState::MergePred(const BBState &Other) {
- // Other.TopDownPathCount can be 0, in which case it is either dead or a
- // loop backedge. Loop backedges are special.
- TopDownPathCount += Other.TopDownPathCount;
-
- // Check for overflow. If we have overflow, fall back to conservative behavior.
- if (TopDownPathCount < Other.TopDownPathCount) {
- clearTopDownPointers();
- return;
- }
-
- // For each entry in the other set, if our set has an entry with the same key,
- // merge the entries. Otherwise, copy the entry and merge it with an empty
- // entry.
- for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
- ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
- std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
- Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
- /*TopDown=*/true);
- }
-
- // For each entry in our set, if the other set doesn't have an entry with the
- // same key, force it to merge with an empty entry.
- for (ptr_iterator MI = top_down_ptr_begin(),
- ME = top_down_ptr_end(); MI != ME; ++MI)
- if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
- MI->second.Merge(PtrState(), /*TopDown=*/true);
-}
-
-/// MergeSucc - The bottom-up traversal uses this to merge information about
-/// successors to form the initial state for a new block.
-void BBState::MergeSucc(const BBState &Other) {
- // Other.BottomUpPathCount can be 0, in which case it is either dead or a
- // loop backedge. Loop backedges are special.
- BottomUpPathCount += Other.BottomUpPathCount;
-
- // Check for overflow. If we have overflow, fall back to conservative behavior.
- if (BottomUpPathCount < Other.BottomUpPathCount) {
- clearBottomUpPointers();
- return;
- }
-
- // For each entry in the other set, if our set has an entry with the
- // same key, merge the entries. Otherwise, copy the entry and merge
- // it with an empty entry.
- for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
- ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
- std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
- Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
- /*TopDown=*/false);
- }
-
- // For each entry in our set, if the other set doesn't have an entry
- // with the same key, force it to merge with an empty entry.
- for (ptr_iterator MI = bottom_up_ptr_begin(),
- ME = bottom_up_ptr_end(); MI != ME; ++MI)
- if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
- MI->second.Merge(PtrState(), /*TopDown=*/false);
-}
-
-namespace {
- /// ObjCARCOpt - The main ARC optimization pass.
- class ObjCARCOpt : public FunctionPass {
- bool Changed;
- ProvenanceAnalysis PA;
-
- /// Run - A flag indicating whether this optimization pass should run.
- bool Run;
-
- /// RetainRVCallee, etc. - Declarations for ObjC runtime
- /// functions, for use in creating calls to them. These are initialized
- /// lazily to avoid cluttering up the Module with unused declarations.
- Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
- *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
-
- /// UsedInThisFunciton - Flags which determine whether each of the
- /// interesting runtine functions is in fact used in the current function.
- unsigned UsedInThisFunction;
-
- /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
- /// metadata.
- unsigned ImpreciseReleaseMDKind;
-
- /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape
- /// metadata.
- unsigned CopyOnEscapeMDKind;
-
- /// NoObjCARCExceptionsMDKind - The Metadata Kind for
- /// clang.arc.no_objc_arc_exceptions metadata.
- unsigned NoObjCARCExceptionsMDKind;
-
- Constant *getRetainRVCallee(Module *M);
- Constant *getAutoreleaseRVCallee(Module *M);
- Constant *getReleaseCallee(Module *M);
- Constant *getRetainCallee(Module *M);
- Constant *getRetainBlockCallee(Module *M);
- Constant *getAutoreleaseCallee(Module *M);
-
- bool IsRetainBlockOptimizable(const Instruction *Inst);
-
- void OptimizeRetainCall(Function &F, Instruction *Retain);
- bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
- void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
- void OptimizeIndividualCalls(Function &F);
-
- void CheckForCFGHazards(const BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- BBState &MyStates) const;
- bool VisitInstructionBottomUp(Instruction *Inst,
- BasicBlock *BB,
- MapVector<Value *, RRInfo> &Retains,
- BBState &MyStates);
- bool VisitBottomUp(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains);
- bool VisitInstructionTopDown(Instruction *Inst,
- DenseMap<Value *, RRInfo> &Releases,
- BBState &MyStates);
- bool VisitTopDown(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- DenseMap<Value *, RRInfo> &Releases);
- bool Visit(Function &F,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases);
-
- void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- SmallVectorImpl<Instruction *> &DeadInsts,
- Module *M);
-
- bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- Module *M);
-
- void OptimizeWeakCalls(Function &F);
-
- bool OptimizeSequences(Function &F);
-
- void OptimizeReturns(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
- virtual void releaseMemory();
-
- public:
- static char ID;
- ObjCARCOpt() : FunctionPass(ID) {
- initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCOpt::ID = 0;
-INITIALIZE_PASS_BEGIN(ObjCARCOpt,
- "objc-arc", "ObjC ARC optimization", false, false)
-INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
-INITIALIZE_PASS_END(ObjCARCOpt,
- "objc-arc", "ObjC ARC optimization", false, false)
-
-Pass *llvm::createObjCARCOptPass() {
- return new ObjCARCOpt();
-}
-
-void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<ObjCARCAliasAnalysis>();
- AU.addRequired<AliasAnalysis>();
- // ARC optimization doesn't currently split critical edges.
- AU.setPreservesCFG();
-}
-
-bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
- // Without the magic metadata tag, we have to assume this might be an
- // objc_retainBlock call inserted to convert a block pointer to an id,
- // in which case it really is needed.
- if (!Inst->getMetadata(CopyOnEscapeMDKind))
- return false;
-
- // If the pointer "escapes" (not including being used in a call),
- // the copy may be needed.
- if (DoesObjCBlockEscape(Inst))
- return false;
-
- // Otherwise, it's not needed.
- return true;
-}
-
-Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
- if (!RetainRVCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
- AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainRVCallee =
- M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
- Attributes);
- }
- return RetainRVCallee;
-}
-
-Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
- if (!AutoreleaseRVCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
- AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- AutoreleaseRVCallee =
- M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
- Attributes);
- }
- return AutoreleaseRVCallee;
-}
-
-Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
- if (!ReleaseCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttributeSet Attributes =
- AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- ReleaseCallee =
- M->getOrInsertFunction(
- "objc_release",
- FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
- }
- return ReleaseCallee;
-}
-
-Constant *ObjCARCOpt::getRetainCallee(Module *M) {
- if (!RetainCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttributeSet Attributes =
- AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainCallee =
- M->getOrInsertFunction(
- "objc_retain",
- FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
- }
- return RetainCallee;
-}
-
-Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
- if (!RetainBlockCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- // objc_retainBlock is not nounwind because it calls user copy constructors
- // which could theoretically throw.
- RetainBlockCallee =
- M->getOrInsertFunction(
- "objc_retainBlock",
- FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- AttributeSet());
- }
- return RetainBlockCallee;
-}
-
-Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
- if (!AutoreleaseCallee) {
- LLVMContext &C = M->getContext();
- Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
- AttributeSet Attributes =
- AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- AutoreleaseCallee =
- M->getOrInsertFunction(
- "objc_autorelease",
- FunctionType::get(Params[0], Params, /*isVarArg=*/false),
- Attributes);
- }
- return AutoreleaseCallee;
-}
-
-/// IsPotentialUse - Test whether the given value is possible a
-/// reference-counted pointer, including tests which utilize AliasAnalysis.
-static bool IsPotentialUse(const Value *Op, AliasAnalysis &AA) {
- // First make the rudimentary check.
- if (!IsPotentialUse(Op))
- return false;
-
- // Objects in constant memory are not reference-counted.
- if (AA.pointsToConstantMemory(Op))
- return false;
-
- // Pointers in constant memory are not pointing to reference-counted objects.
- if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
- if (AA.pointsToConstantMemory(LI->getPointerOperand()))
- return false;
-
- // Otherwise assume the worst.
- return true;
-}
-
-/// CanAlterRefCount - Test whether the given instruction can result in a
-/// reference count modification (positive or negative) for the pointer's
-/// object.
-static bool
-CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
- ProvenanceAnalysis &PA, InstructionClass Class) {
- switch (Class) {
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_User:
- // These operations never directly modify a reference count.
- return false;
- default: break;
- }
-
- ImmutableCallSite CS = static_cast<const Value *>(Inst);
- assert(CS && "Only calls can alter reference counts!");
-
- // See if AliasAnalysis can help us with the call.
- AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
- if (AliasAnalysis::onlyReadsMemory(MRB))
- return false;
- if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
- for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- I != E; ++I) {
- const Value *Op = *I;
- if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
- return true;
- }
- return false;
- }
-
- // Assume the worst.
- return true;
-}
-
-/// CanUse - Test whether the given instruction can "use" the given pointer's
-/// object in a way that requires the reference count to be positive.
-static bool
-CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
- InstructionClass Class) {
- // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
- if (Class == IC_Call)
- return false;
-
- // Consider various instructions which may have pointer arguments which are
- // not "uses".
- if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
- // Comparing a pointer with null, or any other constant, isn't really a use,
- // because we don't care what the pointer points to, or about the values
- // of any other dynamic reference-counted pointers.
- if (!IsPotentialUse(ICI->getOperand(1), *PA.getAA()))
- return false;
- } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
- // For calls, just check the arguments (and not the callee operand).
- for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
- OE = CS.arg_end(); OI != OE; ++OI) {
- const Value *Op = *OI;
- if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
- return true;
- }
- return false;
- } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- // Special-case stores, because we don't care about the stored value, just
- // the store address.
- const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
- // If we can't tell what the underlying object was, assume there is a
- // dependence.
- return IsPotentialUse(Op, *PA.getAA()) && PA.related(Op, Ptr);
- }
-
- // Check each operand for a match.
- for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
- OI != OE; ++OI) {
- const Value *Op = *OI;
- if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
- return true;
- }
- return false;
-}
-
-/// CanInterruptRV - Test whether the given instruction can autorelease
-/// any pointer or cause an autoreleasepool pop.
-static bool
-CanInterruptRV(InstructionClass Class) {
- switch (Class) {
- case IC_AutoreleasepoolPop:
- case IC_CallOrUser:
- case IC_Call:
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- return true;
- default:
- return false;
- }
-}
-
-namespace {
- /// DependenceKind - There are several kinds of dependence-like concepts in
- /// use here.
- enum DependenceKind {
- NeedsPositiveRetainCount,
- AutoreleasePoolBoundary,
- CanChangeRetainCount,
- RetainAutoreleaseDep, ///< Blocks objc_retainAutorelease.
- RetainAutoreleaseRVDep, ///< Blocks objc_retainAutoreleaseReturnValue.
- RetainRVDep ///< Blocks objc_retainAutoreleasedReturnValue.
- };
-}
-
-/// Depends - Test if there can be dependencies on Inst through Arg. This
-/// function only tests dependencies relevant for removing pairs of calls.
-static bool
-Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
- ProvenanceAnalysis &PA) {
- // If we've reached the definition of Arg, stop.
- if (Inst == Arg)
- return true;
-
- switch (Flavor) {
- case NeedsPositiveRetainCount: {
- InstructionClass Class = GetInstructionClass(Inst);
- switch (Class) {
- case IC_AutoreleasepoolPop:
- case IC_AutoreleasepoolPush:
- case IC_None:
- return false;
- default:
- return CanUse(Inst, Arg, PA, Class);
- }
- }
-
- case AutoreleasePoolBoundary: {
- InstructionClass Class = GetInstructionClass(Inst);
- switch (Class) {
- case IC_AutoreleasepoolPop:
- case IC_AutoreleasepoolPush:
- // These mark the end and begin of an autorelease pool scope.
- return true;
- default:
- // Nothing else does this.
- return false;
- }
- }
-
- case CanChangeRetainCount: {
- InstructionClass Class = GetInstructionClass(Inst);
- switch (Class) {
- case IC_AutoreleasepoolPop:
- // Conservatively assume this can decrement any count.
- return true;
- case IC_AutoreleasepoolPush:
- case IC_None:
- return false;
- default:
- return CanAlterRefCount(Inst, Arg, PA, Class);
- }
- }
-
- case RetainAutoreleaseDep:
- switch (GetBasicInstructionClass(Inst)) {
- case IC_AutoreleasepoolPop:
- case IC_AutoreleasepoolPush:
- // Don't merge an objc_autorelease with an objc_retain inside a different
- // autoreleasepool scope.
- return true;
- case IC_Retain:
- case IC_RetainRV:
- // Check for a retain of the same pointer for merging.
- return GetObjCArg(Inst) == Arg;
- default:
- // Nothing else matters for objc_retainAutorelease formation.
- return false;
- }
-
- case RetainAutoreleaseRVDep: {
- InstructionClass Class = GetBasicInstructionClass(Inst);
- switch (Class) {
- case IC_Retain:
- case IC_RetainRV:
- // Check for a retain of the same pointer for merging.
- return GetObjCArg(Inst) == Arg;
- default:
- // Anything that can autorelease interrupts
- // retainAutoreleaseReturnValue formation.
- return CanInterruptRV(Class);
- }
- }
-
- case RetainRVDep:
- return CanInterruptRV(GetBasicInstructionClass(Inst));
- }
-
- llvm_unreachable("Invalid dependence flavor");
-}
-
-/// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
-/// find local and non-local dependencies on Arg.
-/// TODO: Cache results?
-static void
-FindDependencies(DependenceKind Flavor,
- const Value *Arg,
- BasicBlock *StartBB, Instruction *StartInst,
- SmallPtrSet<Instruction *, 4> &DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4> &Visited,
- ProvenanceAnalysis &PA) {
- BasicBlock::iterator StartPos = StartInst;
-
- SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
- Worklist.push_back(std::make_pair(StartBB, StartPos));
- do {
- std::pair<BasicBlock *, BasicBlock::iterator> Pair =
- Worklist.pop_back_val();
- BasicBlock *LocalStartBB = Pair.first;
- BasicBlock::iterator LocalStartPos = Pair.second;
- BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
- for (;;) {
- if (LocalStartPos == StartBBBegin) {
- pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
- if (PI == PE)
- // If we've reached the function entry, produce a null dependence.
- DependingInstructions.insert(0);
- else
- // Add the predecessors to the worklist.
- do {
- BasicBlock *PredBB = *PI;
- if (Visited.insert(PredBB))
- Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
- } while (++PI != PE);
- break;
- }
-
- Instruction *Inst = --LocalStartPos;
- if (Depends(Flavor, Inst, Arg, PA)) {
- DependingInstructions.insert(Inst);
- break;
- }
- }
- } while (!Worklist.empty());
-
- // Determine whether the original StartBB post-dominates all of the blocks we
- // visited. If not, insert a sentinal indicating that most optimizations are
- // not safe.
- for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
- E = Visited.end(); I != E; ++I) {
- const BasicBlock *BB = *I;
- if (BB == StartBB)
- continue;
- const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
- for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
- const BasicBlock *Succ = *SI;
- if (Succ != StartBB && !Visited.count(Succ)) {
- DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
- return;
- }
- }
- }
-}
-
-static bool isNullOrUndef(const Value *V) {
- return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
-}
-
-static bool isNoopInstruction(const Instruction *I) {
- return isa<BitCastInst>(I) ||
- (isa<GetElementPtrInst>(I) &&
- cast<GetElementPtrInst>(I)->hasAllZeroIndices());
-}
-
-/// OptimizeRetainCall - Turn objc_retain into
-/// objc_retainAutoreleasedReturnValue if the operand is a return value.
-void
-ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
- ImmutableCallSite CS(GetObjCArg(Retain));
- const Instruction *Call = CS.getInstruction();
- if (!Call) return;
- if (Call->getParent() != Retain->getParent()) return;
-
- // Check that the call is next to the retain.
- BasicBlock::const_iterator I = Call;
- ++I;
- while (isNoopInstruction(I)) ++I;
- if (&*I != Retain)
- return;
-
- // Turn it to an objc_retainAutoreleasedReturnValue..
- Changed = true;
- ++NumPeeps;
- cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
-}
-
-/// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
-/// objc_retain if the operand is not a return value. Or, if it can be paired
-/// with an objc_autoreleaseReturnValue, delete the pair and return true.
-bool
-ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
- // Check for the argument being from an immediately preceding call or invoke.
- const Value *Arg = GetObjCArg(RetainRV);
- ImmutableCallSite CS(Arg);
- if (const Instruction *Call = CS.getInstruction()) {
- if (Call->getParent() == RetainRV->getParent()) {
- BasicBlock::const_iterator I = Call;
- ++I;
- while (isNoopInstruction(I)) ++I;
- if (&*I == RetainRV)
- return false;
- } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
- BasicBlock *RetainRVParent = RetainRV->getParent();
- if (II->getNormalDest() == RetainRVParent) {
- BasicBlock::const_iterator I = RetainRVParent->begin();
- while (isNoopInstruction(I)) ++I;
- if (&*I == RetainRV)
- return false;
- }
- }
- }
-
- // Check for being preceded by an objc_autoreleaseReturnValue on the same
- // pointer. In this case, we can delete the pair.
- BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
- if (I != Begin) {
- do --I; while (I != Begin && isNoopInstruction(I));
- if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
- GetObjCArg(I) == Arg) {
- Changed = true;
- ++NumPeeps;
- EraseInstruction(I);
- EraseInstruction(RetainRV);
- return true;
- }
- }
-
- // Turn it to a plain objc_retain.
- Changed = true;
- ++NumPeeps;
- cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
- return false;
-}
-
-/// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
-/// objc_autorelease if the result is not used as a return value.
-void
-ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
- // Check for a return of the pointer value.
- const Value *Ptr = GetObjCArg(AutoreleaseRV);
- SmallVector<const Value *, 2> Users;
- Users.push_back(Ptr);
- do {
- Ptr = Users.pop_back_val();
- for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
- UI != UE; ++UI) {
- const User *I = *UI;
- if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
- return;
- if (isa<BitCastInst>(I))
- Users.push_back(I);
- }
- } while (!Users.empty());
-
- Changed = true;
- ++NumPeeps;
- cast<CallInst>(AutoreleaseRV)->
- setCalledFunction(getAutoreleaseCallee(F.getParent()));
-}
-
-/// OptimizeIndividualCalls - Visit each call, one at a time, and make
-/// simplifications without doing any additional analysis.
-void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
- // Reset all the flags in preparation for recomputing them.
- UsedInThisFunction = 0;
-
- // Visit all objc_* calls in F.
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
- InstructionClass Class = GetBasicInstructionClass(Inst);
-
- switch (Class) {
- default: break;
-
- // Delete no-op casts. These function calls have special semantics, but
- // the semantics are entirely implemented via lowering in the front-end,
- // so by the time they reach the optimizer, they are just no-op calls
- // which return their argument.
- //
- // There are gray areas here, as the ability to cast reference-counted
- // pointers to raw void* and back allows code to break ARC assumptions,
- // however these are currently considered to be unimportant.
- case IC_NoopCast:
- Changed = true;
- ++NumNoops;
- EraseInstruction(Inst);
- continue;
-
- // If the pointer-to-weak-pointer is null, it's undefined behavior.
- case IC_StoreWeak:
- case IC_LoadWeak:
- case IC_LoadWeakRetained:
- case IC_InitWeak:
- case IC_DestroyWeak: {
- CallInst *CI = cast<CallInst>(Inst);
- if (isNullOrUndef(CI->getArgOperand(0))) {
- Changed = true;
- Type *Ty = CI->getArgOperand(0)->getType();
- new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
- Constant::getNullValue(Ty),
- CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
- CI->eraseFromParent();
- continue;
- }
- break;
- }
- case IC_CopyWeak:
- case IC_MoveWeak: {
- CallInst *CI = cast<CallInst>(Inst);
- if (isNullOrUndef(CI->getArgOperand(0)) ||
- isNullOrUndef(CI->getArgOperand(1))) {
- Changed = true;
- Type *Ty = CI->getArgOperand(0)->getType();
- new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
- Constant::getNullValue(Ty),
- CI);
- CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
- CI->eraseFromParent();
- continue;
- }
- break;
- }
- case IC_Retain:
- OptimizeRetainCall(F, Inst);
- break;
- case IC_RetainRV:
- if (OptimizeRetainRVCall(F, Inst))
- continue;
- break;
- case IC_AutoreleaseRV:
- OptimizeAutoreleaseRVCall(F, Inst);
- break;
- }
-
- // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
- if (IsAutorelease(Class) && Inst->use_empty()) {
- CallInst *Call = cast<CallInst>(Inst);
- const Value *Arg = Call->getArgOperand(0);
- Arg = FindSingleUseIdentifiedObject(Arg);
- if (Arg) {
- Changed = true;
- ++NumAutoreleases;
-
- // Create the declaration lazily.
- LLVMContext &C = Inst->getContext();
- CallInst *NewCall =
- CallInst::Create(getReleaseCallee(F.getParent()),
- Call->getArgOperand(0), "", Call);
- NewCall->setMetadata(ImpreciseReleaseMDKind,
- MDNode::get(C, ArrayRef<Value *>()));
- EraseInstruction(Call);
- Inst = NewCall;
- Class = IC_Release;
- }
- }
-
- // For functions which can never be passed stack arguments, add
- // a tail keyword.
- if (IsAlwaysTail(Class)) {
- Changed = true;
- cast<CallInst>(Inst)->setTailCall();
- }
-
- // Set nounwind as needed.
- if (IsNoThrow(Class)) {
- Changed = true;
- cast<CallInst>(Inst)->setDoesNotThrow();
- }
-
- if (!IsNoopOnNull(Class)) {
- UsedInThisFunction |= 1 << Class;
- continue;
- }
-
- const Value *Arg = GetObjCArg(Inst);
-
- // ARC calls with null are no-ops. Delete them.
- if (isNullOrUndef(Arg)) {
- Changed = true;
- ++NumNoops;
- EraseInstruction(Inst);
- continue;
- }
-
- // Keep track of which of retain, release, autorelease, and retain_block
- // are actually present in this function.
- UsedInThisFunction |= 1 << Class;
-
- // If Arg is a PHI, and one or more incoming values to the
- // PHI are null, and the call is control-equivalent to the PHI, and there
- // are no relevant side effects between the PHI and the call, the call
- // could be pushed up to just those paths with non-null incoming values.
- // For now, don't bother splitting critical edges for this.
- SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
- Worklist.push_back(std::make_pair(Inst, Arg));
- do {
- std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
- Inst = Pair.first;
- Arg = Pair.second;
-
- const PHINode *PN = dyn_cast<PHINode>(Arg);
- if (!PN) continue;
-
- // Determine if the PHI has any null operands, or any incoming
- // critical edges.
- bool HasNull = false;
- bool HasCriticalEdges = false;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *Incoming =
- StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
- if (isNullOrUndef(Incoming))
- HasNull = true;
- else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
- .getNumSuccessors() != 1) {
- HasCriticalEdges = true;
- break;
- }
- }
- // If we have null operands and no critical edges, optimize.
- if (!HasCriticalEdges && HasNull) {
- SmallPtrSet<Instruction *, 4> DependingInstructions;
- SmallPtrSet<const BasicBlock *, 4> Visited;
-
- // Check that there is nothing that cares about the reference
- // count between the call and the phi.
- switch (Class) {
- case IC_Retain:
- case IC_RetainBlock:
- // These can always be moved up.
- break;
- case IC_Release:
- // These can't be moved across things that care about the retain
- // count.
- FindDependencies(NeedsPositiveRetainCount, Arg,
- Inst->getParent(), Inst,
- DependingInstructions, Visited, PA);
- break;
- case IC_Autorelease:
- // These can't be moved across autorelease pool scope boundaries.
- FindDependencies(AutoreleasePoolBoundary, Arg,
- Inst->getParent(), Inst,
- DependingInstructions, Visited, PA);
- break;
- case IC_RetainRV:
- case IC_AutoreleaseRV:
- // Don't move these; the RV optimization depends on the autoreleaseRV
- // being tail called, and the retainRV being immediately after a call
- // (which might still happen if we get lucky with codegen layout, but
- // it's not worth taking the chance).
- continue;
- default:
- llvm_unreachable("Invalid dependence flavor");
- }
-
- if (DependingInstructions.size() == 1 &&
- *DependingInstructions.begin() == PN) {
- Changed = true;
- ++NumPartialNoops;
- // Clone the call into each predecessor that has a non-null value.
- CallInst *CInst = cast<CallInst>(Inst);
- Type *ParamTy = CInst->getArgOperand(0)->getType();
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *Incoming =
- StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
- if (!isNullOrUndef(Incoming)) {
- CallInst *Clone = cast<CallInst>(CInst->clone());
- Value *Op = PN->getIncomingValue(i);
- Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
- if (Op->getType() != ParamTy)
- Op = new BitCastInst(Op, ParamTy, "", InsertPos);
- Clone->setArgOperand(0, Op);
- Clone->insertBefore(InsertPos);
- Worklist.push_back(std::make_pair(Clone, Incoming));
- }
- }
- // Erase the original call.
- EraseInstruction(CInst);
- continue;
- }
- }
- } while (!Worklist.empty());
- }
-}
-
-/// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
-/// control flow, or other CFG structures where moving code across the edge
-/// would result in it being executed more.
-void
-ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- BBState &MyStates) const {
- // If any top-down local-use or possible-dec has a succ which is earlier in
- // the sequence, forget it.
- for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
- E = MyStates.top_down_ptr_end(); I != E; ++I)
- switch (I->second.GetSeq()) {
- default: break;
- case S_Use: {
- const Value *Arg = I->first;
- const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
- bool SomeSuccHasSame = false;
- bool AllSuccsHaveSame = true;
- PtrState &S = I->second;
- succ_const_iterator SI(TI), SE(TI, false);
-
- // If the terminator is an invoke marked with the
- // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
- // ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
- --SE;
-
- for (; SI != SE; ++SI) {
- Sequence SuccSSeq = S_None;
- bool SuccSRRIKnownSafe = false;
- // If VisitBottomUp has pointer information for this successor, take
- // what we know about it.
- DenseMap<const BasicBlock *, BBState>::iterator BBI =
- BBStates.find(*SI);
- assert(BBI != BBStates.end());
- const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
- SuccSSeq = SuccS.GetSeq();
- SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
- switch (SuccSSeq) {
- case S_None:
- case S_CanRelease: {
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
- S.ClearSequenceProgress();
- break;
- }
- continue;
- }
- case S_Use:
- SomeSuccHasSame = true;
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
- AllSuccsHaveSame = false;
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
- // If the state at the other end of any of the successor edges
- // matches the current state, require all edges to match. This
- // guards against loops in the middle of a sequence.
- if (SomeSuccHasSame && !AllSuccsHaveSame)
- S.ClearSequenceProgress();
- break;
- }
- case S_CanRelease: {
- const Value *Arg = I->first;
- const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
- bool SomeSuccHasSame = false;
- bool AllSuccsHaveSame = true;
- PtrState &S = I->second;
- succ_const_iterator SI(TI), SE(TI, false);
-
- // If the terminator is an invoke marked with the
- // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
- // ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
- --SE;
-
- for (; SI != SE; ++SI) {
- Sequence SuccSSeq = S_None;
- bool SuccSRRIKnownSafe = false;
- // If VisitBottomUp has pointer information for this successor, take
- // what we know about it.
- DenseMap<const BasicBlock *, BBState>::iterator BBI =
- BBStates.find(*SI);
- assert(BBI != BBStates.end());
- const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
- SuccSSeq = SuccS.GetSeq();
- SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
- switch (SuccSSeq) {
- case S_None: {
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
- S.ClearSequenceProgress();
- break;
- }
- continue;
- }
- case S_CanRelease:
- SomeSuccHasSame = true;
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- case S_Use:
- if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
- AllSuccsHaveSame = false;
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
- // If the state at the other end of any of the successor edges
- // matches the current state, require all edges to match. This
- // guards against loops in the middle of a sequence.
- if (SomeSuccHasSame && !AllSuccsHaveSame)
- S.ClearSequenceProgress();
- break;
- }
- }
-}
-
-bool
-ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
- BasicBlock *BB,
- MapVector<Value *, RRInfo> &Retains,
- BBState &MyStates) {
- bool NestingDetected = false;
- InstructionClass Class = GetInstructionClass(Inst);
- const Value *Arg = 0;
-
- switch (Class) {
- case IC_Release: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrBottomUpState(Arg);
-
- // If we see two releases in a row on the same pointer. If so, make
- // a note, and we'll cicle back to revisit it after we've
- // hopefully eliminated the second release, which may allow us to
- // eliminate the first release too.
- // Theoretically we could implement removal of nested retain+release
- // pairs by making PtrState hold a stack of states, but this is
- // simple and avoids adding overhead for the non-nested case.
- if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
- NestingDetected = true;
-
- MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
- S.ResetSequenceProgress(ReleaseMetadata ? S_MovableRelease : S_Release);
- S.RRI.ReleaseMetadata = ReleaseMetadata;
- S.RRI.KnownSafe = S.IsKnownIncremented();
- S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
- S.RRI.Calls.insert(Inst);
-
- S.SetKnownPositiveRefCount();
- break;
- }
- case IC_RetainBlock:
- // An objc_retainBlock call with just a use may need to be kept,
- // because it may be copying a block from the stack to the heap.
- if (!IsRetainBlockOptimizable(Inst))
- break;
- // FALLTHROUGH
- case IC_Retain:
- case IC_RetainRV: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrBottomUpState(Arg);
- S.SetKnownPositiveRefCount();
-
- switch (S.GetSeq()) {
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- case S_Use:
- S.RRI.ReverseInsertPts.clear();
- // FALL THROUGH
- case S_CanRelease:
- // Don't do retain+release tracking for IC_RetainRV, because it's
- // better to let it remain as the first instruction after a call.
- if (Class != IC_RetainRV) {
- S.RRI.IsRetainBlock = Class == IC_RetainBlock;
- Retains[Inst] = S.RRI;
- }
- S.ClearSequenceProgress();
- break;
- case S_None:
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- return NestingDetected;
- }
- case IC_AutoreleasepoolPop:
- // Conservatively, clear MyStates for all known pointers.
- MyStates.clearBottomUpPointers();
- return NestingDetected;
- case IC_AutoreleasepoolPush:
- case IC_None:
- // These are irrelevant.
- return NestingDetected;
- default:
- break;
- }
-
- // Consider any other possible effects of this instruction on each
- // pointer being tracked.
- for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
- ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
- const Value *Ptr = MI->first;
- if (Ptr == Arg)
- continue; // Handled above.
- PtrState &S = MI->second;
- Sequence Seq = S.GetSeq();
-
- // Check for possible releases.
- if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
- S.ClearRefCount();
- switch (Seq) {
- case S_Use:
- S.SetSeq(S_CanRelease);
- continue;
- case S_CanRelease:
- case S_Release:
- case S_MovableRelease:
- case S_Stop:
- case S_None:
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
-
- // Check for possible direct uses.
- switch (Seq) {
- case S_Release:
- case S_MovableRelease:
- if (CanUse(Inst, Ptr, PA, Class)) {
- assert(S.RRI.ReverseInsertPts.empty());
- // If this is an invoke instruction, we're scanning it as part of
- // one of its successor blocks, since we can't insert code after it
- // in its own block, and we don't want to split critical edges.
- if (isa<InvokeInst>(Inst))
- S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
- else
- S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
- S.SetSeq(S_Use);
- } else if (Seq == S_Release &&
- (Class == IC_User || Class == IC_CallOrUser)) {
- // Non-movable releases depend on any possible objc pointer use.
- S.SetSeq(S_Stop);
- assert(S.RRI.ReverseInsertPts.empty());
- // As above; handle invoke specially.
- if (isa<InvokeInst>(Inst))
- S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
- else
- S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
- }
- break;
- case S_Stop:
- if (CanUse(Inst, Ptr, PA, Class))
- S.SetSeq(S_Use);
- break;
- case S_CanRelease:
- case S_Use:
- case S_None:
- break;
- case S_Retain:
- llvm_unreachable("bottom-up pointer in retain state!");
- }
- }
-
- return NestingDetected;
-}
-
-bool
-ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains) {
- bool NestingDetected = false;
- BBState &MyStates = BBStates[BB];
-
- // Merge the states from each successor to compute the initial state
- // for the current block.
- BBState::edge_iterator SI(MyStates.succ_begin()),
- SE(MyStates.succ_end());
- if (SI != SE) {
- const BasicBlock *Succ = *SI;
- DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
- assert(I != BBStates.end());
- MyStates.InitFromSucc(I->second);
- ++SI;
- for (; SI != SE; ++SI) {
- Succ = *SI;
- I = BBStates.find(Succ);
- assert(I != BBStates.end());
- MyStates.MergeSucc(I->second);
- }
- }
-
- // Visit all the instructions, bottom-up.
- for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
- Instruction *Inst = llvm::prior(I);
-
- // Invoke instructions are visited as part of their successors (below).
- if (isa<InvokeInst>(Inst))
- continue;
-
- NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
- }
-
- // If there's a predecessor with an invoke, visit the invoke as if it were
- // part of this block, since we can't insert code after an invoke in its own
- // block, and we don't want to split critical edges.
- for (BBState::edge_iterator PI(MyStates.pred_begin()),
- PE(MyStates.pred_end()); PI != PE; ++PI) {
- BasicBlock *Pred = *PI;
- if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
- NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
- }
-
- return NestingDetected;
-}
-
-bool
-ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
- DenseMap<Value *, RRInfo> &Releases,
- BBState &MyStates) {
- bool NestingDetected = false;
- InstructionClass Class = GetInstructionClass(Inst);
- const Value *Arg = 0;
-
- switch (Class) {
- case IC_RetainBlock:
- // An objc_retainBlock call with just a use may need to be kept,
- // because it may be copying a block from the stack to the heap.
- if (!IsRetainBlockOptimizable(Inst))
- break;
- // FALLTHROUGH
- case IC_Retain:
- case IC_RetainRV: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrTopDownState(Arg);
-
- // Don't do retain+release tracking for IC_RetainRV, because it's
- // better to let it remain as the first instruction after a call.
- if (Class != IC_RetainRV) {
- // If we see two retains in a row on the same pointer. If so, make
- // a note, and we'll cicle back to revisit it after we've
- // hopefully eliminated the second retain, which may allow us to
- // eliminate the first retain too.
- // Theoretically we could implement removal of nested retain+release
- // pairs by making PtrState hold a stack of states, but this is
- // simple and avoids adding overhead for the non-nested case.
- if (S.GetSeq() == S_Retain)
- NestingDetected = true;
-
- S.ResetSequenceProgress(S_Retain);
- S.RRI.IsRetainBlock = Class == IC_RetainBlock;
- S.RRI.KnownSafe = S.IsKnownIncremented();
- S.RRI.Calls.insert(Inst);
- }
-
- S.SetKnownPositiveRefCount();
-
- // A retain can be a potential use; procede to the generic checking
- // code below.
- break;
- }
- case IC_Release: {
- Arg = GetObjCArg(Inst);
-
- PtrState &S = MyStates.getPtrTopDownState(Arg);
- S.ClearRefCount();
-
- switch (S.GetSeq()) {
- case S_Retain:
- case S_CanRelease:
- S.RRI.ReverseInsertPts.clear();
- // FALL THROUGH
- case S_Use:
- S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
- S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
- Releases[Inst] = S.RRI;
- S.ClearSequenceProgress();
- break;
- case S_None:
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- llvm_unreachable("top-down pointer in release state!");
- }
- break;
- }
- case IC_AutoreleasepoolPop:
- // Conservatively, clear MyStates for all known pointers.
- MyStates.clearTopDownPointers();
- return NestingDetected;
- case IC_AutoreleasepoolPush:
- case IC_None:
- // These are irrelevant.
- return NestingDetected;
- default:
- break;
- }
-
- // Consider any other possible effects of this instruction on each
- // pointer being tracked.
- for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
- ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
- const Value *Ptr = MI->first;
- if (Ptr == Arg)
- continue; // Handled above.
- PtrState &S = MI->second;
- Sequence Seq = S.GetSeq();
-
- // Check for possible releases.
- if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
- S.ClearRefCount();
- switch (Seq) {
- case S_Retain:
- S.SetSeq(S_CanRelease);
- assert(S.RRI.ReverseInsertPts.empty());
- S.RRI.ReverseInsertPts.insert(Inst);
-
- // One call can't cause a transition from S_Retain to S_CanRelease
- // and S_CanRelease to S_Use. If we've made the first transition,
- // we're done.
- continue;
- case S_Use:
- case S_CanRelease:
- case S_None:
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- llvm_unreachable("top-down pointer in release state!");
- }
- }
-
- // Check for possible direct uses.
- switch (Seq) {
- case S_CanRelease:
- if (CanUse(Inst, Ptr, PA, Class))
- S.SetSeq(S_Use);
- break;
- case S_Retain:
- case S_Use:
- case S_None:
- break;
- case S_Stop:
- case S_Release:
- case S_MovableRelease:
- llvm_unreachable("top-down pointer in release state!");
- }
- }
-
- return NestingDetected;
-}
-
-bool
-ObjCARCOpt::VisitTopDown(BasicBlock *BB,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- DenseMap<Value *, RRInfo> &Releases) {
- bool NestingDetected = false;
- BBState &MyStates = BBStates[BB];
-
- // Merge the states from each predecessor to compute the initial state
- // for the current block.
- BBState::edge_iterator PI(MyStates.pred_begin()),
- PE(MyStates.pred_end());
- if (PI != PE) {
- const BasicBlock *Pred = *PI;
- DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
- assert(I != BBStates.end());
- MyStates.InitFromPred(I->second);
- ++PI;
- for (; PI != PE; ++PI) {
- Pred = *PI;
- I = BBStates.find(Pred);
- assert(I != BBStates.end());
- MyStates.MergePred(I->second);
- }
- }
-
- // Visit all the instructions, top-down.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- Instruction *Inst = I;
- NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
- }
-
- CheckForCFGHazards(BB, BBStates, MyStates);
- return NestingDetected;
-}
-
-static void
-ComputePostOrders(Function &F,
- SmallVectorImpl<BasicBlock *> &PostOrder,
- SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
- unsigned NoObjCARCExceptionsMDKind,
- DenseMap<const BasicBlock *, BBState> &BBStates) {
- /// Visited - The visited set, for doing DFS walks.
- SmallPtrSet<BasicBlock *, 16> Visited;
-
- // Do DFS, computing the PostOrder.
- SmallPtrSet<BasicBlock *, 16> OnStack;
- SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
-
- // Functions always have exactly one entry block, and we don't have
- // any other block that we treat like an entry block.
- BasicBlock *EntryBB = &F.getEntryBlock();
- BBState &MyStates = BBStates[EntryBB];
- MyStates.SetAsEntry();
- TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
- SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
- Visited.insert(EntryBB);
- OnStack.insert(EntryBB);
- do {
- dfs_next_succ:
- BasicBlock *CurrBB = SuccStack.back().first;
- TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
- succ_iterator SE(TI, false);
-
- // If the terminator is an invoke marked with the
- // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
- // ignored, for ARC purposes.
- if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
- --SE;
-
- while (SuccStack.back().second != SE) {
- BasicBlock *SuccBB = *SuccStack.back().second++;
- if (Visited.insert(SuccBB)) {
- TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
- SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
- BBStates[CurrBB].addSucc(SuccBB);
- BBState &SuccStates = BBStates[SuccBB];
- SuccStates.addPred(CurrBB);
- OnStack.insert(SuccBB);
- goto dfs_next_succ;
- }
-
- if (!OnStack.count(SuccBB)) {
- BBStates[CurrBB].addSucc(SuccBB);
- BBStates[SuccBB].addPred(CurrBB);
- }
- }
- OnStack.erase(CurrBB);
- PostOrder.push_back(CurrBB);
- SuccStack.pop_back();
- } while (!SuccStack.empty());
-
- Visited.clear();
-
- // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
- // Functions may have many exits, and there also blocks which we treat
- // as exits due to ignored edges.
- SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- BasicBlock *ExitBB = I;
- BBState &MyStates = BBStates[ExitBB];
- if (!MyStates.isExit())
- continue;
-
- MyStates.SetAsExit();
-
- PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
- Visited.insert(ExitBB);
- while (!PredStack.empty()) {
- reverse_dfs_next_succ:
- BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
- while (PredStack.back().second != PE) {
- BasicBlock *BB = *PredStack.back().second++;
- if (Visited.insert(BB)) {
- PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
- goto reverse_dfs_next_succ;
- }
- }
- ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
- }
- }
-}
-
-// Visit - Visit the function both top-down and bottom-up.
-bool
-ObjCARCOpt::Visit(Function &F,
- DenseMap<const BasicBlock *, BBState> &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases) {
-
- // Use reverse-postorder traversals, because we magically know that loops
- // will be well behaved, i.e. they won't repeatedly call retain on a single
- // pointer without doing a release. We can't use the ReversePostOrderTraversal
- // class here because we want the reverse-CFG postorder to consider each
- // function exit point, and we want to ignore selected cycle edges.
- SmallVector<BasicBlock *, 16> PostOrder;
- SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
- ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
- NoObjCARCExceptionsMDKind,
- BBStates);
-
- // Use reverse-postorder on the reverse CFG for bottom-up.
- bool BottomUpNestingDetected = false;
- for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
- ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
- I != E; ++I)
- BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
-
- // Use reverse-postorder for top-down.
- bool TopDownNestingDetected = false;
- for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
- PostOrder.rbegin(), E = PostOrder.rend();
- I != E; ++I)
- TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
-
- return TopDownNestingDetected && BottomUpNestingDetected;
-}
-
-/// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
-void ObjCARCOpt::MoveCalls(Value *Arg,
- RRInfo &RetainsToMove,
- RRInfo &ReleasesToMove,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- SmallVectorImpl<Instruction *> &DeadInsts,
- Module *M) {
- Type *ArgTy = Arg->getType();
- Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
-
- // Insert the new retain and release calls.
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- PI = ReleasesToMove.ReverseInsertPts.begin(),
- PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
- Instruction *InsertPt = *PI;
- Value *MyArg = ArgTy == ParamTy ? Arg :
- new BitCastInst(Arg, ParamTy, "", InsertPt);
- CallInst *Call =
- CallInst::Create(RetainsToMove.IsRetainBlock ?
- getRetainBlockCallee(M) : getRetainCallee(M),
- MyArg, "", InsertPt);
- Call->setDoesNotThrow();
- if (RetainsToMove.IsRetainBlock)
- Call->setMetadata(CopyOnEscapeMDKind,
- MDNode::get(M->getContext(), ArrayRef<Value *>()));
- else
- Call->setTailCall();
- }
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- PI = RetainsToMove.ReverseInsertPts.begin(),
- PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
- Instruction *InsertPt = *PI;
- Value *MyArg = ArgTy == ParamTy ? Arg :
- new BitCastInst(Arg, ParamTy, "", InsertPt);
- CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
- "", InsertPt);
- // Attach a clang.imprecise_release metadata tag, if appropriate.
- if (MDNode *M = ReleasesToMove.ReleaseMetadata)
- Call->setMetadata(ImpreciseReleaseMDKind, M);
- Call->setDoesNotThrow();
- if (ReleasesToMove.IsTailCallRelease)
- Call->setTailCall();
- }
-
- // Delete the original retain and release calls.
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- AI = RetainsToMove.Calls.begin(),
- AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
- Instruction *OrigRetain = *AI;
- Retains.blot(OrigRetain);
- DeadInsts.push_back(OrigRetain);
- }
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- AI = ReleasesToMove.Calls.begin(),
- AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
- Instruction *OrigRelease = *AI;
- Releases.erase(OrigRelease);
- DeadInsts.push_back(OrigRelease);
- }
-}
-
-/// PerformCodePlacement - Identify pairings between the retains and releases,
-/// and delete and/or move them.
-bool
-ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
- &BBStates,
- MapVector<Value *, RRInfo> &Retains,
- DenseMap<Value *, RRInfo> &Releases,
- Module *M) {
- bool AnyPairsCompletelyEliminated = false;
- RRInfo RetainsToMove;
- RRInfo ReleasesToMove;
- SmallVector<Instruction *, 4> NewRetains;
- SmallVector<Instruction *, 4> NewReleases;
- SmallVector<Instruction *, 8> DeadInsts;
-
- // Visit each retain.
- for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
- E = Retains.end(); I != E; ++I) {
- Value *V = I->first;
- if (!V) continue; // blotted
-
- Instruction *Retain = cast<Instruction>(V);
- Value *Arg = GetObjCArg(Retain);
-
- // If the object being released is in static or stack storage, we know it's
- // not being managed by ObjC reference counting, so we can delete pairs
- // regardless of what possible decrements or uses lie between them.
- bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
-
- // A constant pointer can't be pointing to an object on the heap. It may
- // be reference-counted, but it won't be deleted.
- if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
- if (const GlobalVariable *GV =
- dyn_cast<GlobalVariable>(
- StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
- if (GV->isConstant())
- KnownSafe = true;
-
- // If a pair happens in a region where it is known that the reference count
- // is already incremented, we can similarly ignore possible decrements.
- bool KnownSafeTD = true, KnownSafeBU = true;
-
- // Connect the dots between the top-down-collected RetainsToMove and
- // bottom-up-collected ReleasesToMove to form sets of related calls.
- // This is an iterative process so that we connect multiple releases
- // to multiple retains if needed.
- unsigned OldDelta = 0;
- unsigned NewDelta = 0;
- unsigned OldCount = 0;
- unsigned NewCount = 0;
- bool FirstRelease = true;
- bool FirstRetain = true;
- NewRetains.push_back(Retain);
- for (;;) {
- for (SmallVectorImpl<Instruction *>::const_iterator
- NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
- Instruction *NewRetain = *NI;
- MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
- assert(It != Retains.end());
- const RRInfo &NewRetainRRI = It->second;
- KnownSafeTD &= NewRetainRRI.KnownSafe;
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- LI = NewRetainRRI.Calls.begin(),
- LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
- Instruction *NewRetainRelease = *LI;
- DenseMap<Value *, RRInfo>::const_iterator Jt =
- Releases.find(NewRetainRelease);
- if (Jt == Releases.end())
- goto next_retain;
- const RRInfo &NewRetainReleaseRRI = Jt->second;
- assert(NewRetainReleaseRRI.Calls.count(NewRetain));
- if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
- OldDelta -=
- BBStates[NewRetainRelease->getParent()].GetAllPathCount();
-
- // Merge the ReleaseMetadata and IsTailCallRelease values.
- if (FirstRelease) {
- ReleasesToMove.ReleaseMetadata =
- NewRetainReleaseRRI.ReleaseMetadata;
- ReleasesToMove.IsTailCallRelease =
- NewRetainReleaseRRI.IsTailCallRelease;
- FirstRelease = false;
- } else {
- if (ReleasesToMove.ReleaseMetadata !=
- NewRetainReleaseRRI.ReleaseMetadata)
- ReleasesToMove.ReleaseMetadata = 0;
- if (ReleasesToMove.IsTailCallRelease !=
- NewRetainReleaseRRI.IsTailCallRelease)
- ReleasesToMove.IsTailCallRelease = false;
- }
-
- // Collect the optimal insertion points.
- if (!KnownSafe)
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
- RE = NewRetainReleaseRRI.ReverseInsertPts.end();
- RI != RE; ++RI) {
- Instruction *RIP = *RI;
- if (ReleasesToMove.ReverseInsertPts.insert(RIP))
- NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
- }
- NewReleases.push_back(NewRetainRelease);
- }
- }
- }
- NewRetains.clear();
- if (NewReleases.empty()) break;
-
- // Back the other way.
- for (SmallVectorImpl<Instruction *>::const_iterator
- NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
- Instruction *NewRelease = *NI;
- DenseMap<Value *, RRInfo>::const_iterator It =
- Releases.find(NewRelease);
- assert(It != Releases.end());
- const RRInfo &NewReleaseRRI = It->second;
- KnownSafeBU &= NewReleaseRRI.KnownSafe;
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- LI = NewReleaseRRI.Calls.begin(),
- LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
- Instruction *NewReleaseRetain = *LI;
- MapVector<Value *, RRInfo>::const_iterator Jt =
- Retains.find(NewReleaseRetain);
- if (Jt == Retains.end())
- goto next_retain;
- const RRInfo &NewReleaseRetainRRI = Jt->second;
- assert(NewReleaseRetainRRI.Calls.count(NewRelease));
- if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
- unsigned PathCount =
- BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
- OldDelta += PathCount;
- OldCount += PathCount;
-
- // Merge the IsRetainBlock values.
- if (FirstRetain) {
- RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
- FirstRetain = false;
- } else if (ReleasesToMove.IsRetainBlock !=
- NewReleaseRetainRRI.IsRetainBlock)
- // It's not possible to merge the sequences if one uses
- // objc_retain and the other uses objc_retainBlock.
- goto next_retain;
-
- // Collect the optimal insertion points.
- if (!KnownSafe)
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
- RE = NewReleaseRetainRRI.ReverseInsertPts.end();
- RI != RE; ++RI) {
- Instruction *RIP = *RI;
- if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
- PathCount = BBStates[RIP->getParent()].GetAllPathCount();
- NewDelta += PathCount;
- NewCount += PathCount;
- }
- }
- NewRetains.push_back(NewReleaseRetain);
- }
- }
- }
- NewReleases.clear();
- if (NewRetains.empty()) break;
- }
-
- // If the pointer is known incremented or nested, we can safely delete the
- // pair regardless of what's between them.
- if (KnownSafeTD || KnownSafeBU) {
- RetainsToMove.ReverseInsertPts.clear();
- ReleasesToMove.ReverseInsertPts.clear();
- NewCount = 0;
- } else {
- // Determine whether the new insertion points we computed preserve the
- // balance of retain and release calls through the program.
- // TODO: If the fully aggressive solution isn't valid, try to find a
- // less aggressive solution which is.
- if (NewDelta != 0)
- goto next_retain;
- }
-
- // Determine whether the original call points are balanced in the retain and
- // release calls through the program. If not, conservatively don't touch
- // them.
- // TODO: It's theoretically possible to do code motion in this case, as
- // long as the existing imbalances are maintained.
- if (OldDelta != 0)
- goto next_retain;
-
- // Ok, everything checks out and we're all set. Let's move some code!
- Changed = true;
- assert(OldCount != 0 && "Unreachable code?");
- AnyPairsCompletelyEliminated = NewCount == 0;
- NumRRs += OldCount - NewCount;
- MoveCalls(Arg, RetainsToMove, ReleasesToMove,
- Retains, Releases, DeadInsts, M);
-
- next_retain:
- NewReleases.clear();
- NewRetains.clear();
- RetainsToMove.clear();
- ReleasesToMove.clear();
- }
-
- // Now that we're done moving everything, we can delete the newly dead
- // instructions, as we no longer need them as insert points.
- while (!DeadInsts.empty())
- EraseInstruction(DeadInsts.pop_back_val());
-
- return AnyPairsCompletelyEliminated;
-}
-
-/// OptimizeWeakCalls - Weak pointer optimizations.
-void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
- // First, do memdep-style RLE and S2L optimizations. We can't use memdep
- // itself because it uses AliasAnalysis and we need to do provenance
- // queries instead.
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
- InstructionClass Class = GetBasicInstructionClass(Inst);
- if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
- continue;
-
- // Delete objc_loadWeak calls with no users.
- if (Class == IC_LoadWeak && Inst->use_empty()) {
- Inst->eraseFromParent();
- continue;
- }
-
- // TODO: For now, just look for an earlier available version of this value
- // within the same block. Theoretically, we could do memdep-style non-local
- // analysis too, but that would want caching. A better approach would be to
- // use the technique that EarlyCSE uses.
- inst_iterator Current = llvm::prior(I);
- BasicBlock *CurrentBB = Current.getBasicBlockIterator();
- for (BasicBlock::iterator B = CurrentBB->begin(),
- J = Current.getInstructionIterator();
- J != B; --J) {
- Instruction *EarlierInst = &*llvm::prior(J);
- InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
- switch (EarlierClass) {
- case IC_LoadWeak:
- case IC_LoadWeakRetained: {
- // If this is loading from the same pointer, replace this load's value
- // with that one.
- CallInst *Call = cast<CallInst>(Inst);
- CallInst *EarlierCall = cast<CallInst>(EarlierInst);
- Value *Arg = Call->getArgOperand(0);
- Value *EarlierArg = EarlierCall->getArgOperand(0);
- switch (PA.getAA()->alias(Arg, EarlierArg)) {
- case AliasAnalysis::MustAlias:
- Changed = true;
- // If the load has a builtin retain, insert a plain retain for it.
- if (Class == IC_LoadWeakRetained) {
- CallInst *CI =
- CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
- "", Call);
- CI->setTailCall();
- }
- // Zap the fully redundant load.
- Call->replaceAllUsesWith(EarlierCall);
- Call->eraseFromParent();
- goto clobbered;
- case AliasAnalysis::MayAlias:
- case AliasAnalysis::PartialAlias:
- goto clobbered;
- case AliasAnalysis::NoAlias:
- break;
- }
- break;
- }
- case IC_StoreWeak:
- case IC_InitWeak: {
- // If this is storing to the same pointer and has the same size etc.
- // replace this load's value with the stored value.
- CallInst *Call = cast<CallInst>(Inst);
- CallInst *EarlierCall = cast<CallInst>(EarlierInst);
- Value *Arg = Call->getArgOperand(0);
- Value *EarlierArg = EarlierCall->getArgOperand(0);
- switch (PA.getAA()->alias(Arg, EarlierArg)) {
- case AliasAnalysis::MustAlias:
- Changed = true;
- // If the load has a builtin retain, insert a plain retain for it.
- if (Class == IC_LoadWeakRetained) {
- CallInst *CI =
- CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
- "", Call);
- CI->setTailCall();
- }
- // Zap the fully redundant load.
- Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
- Call->eraseFromParent();
- goto clobbered;
- case AliasAnalysis::MayAlias:
- case AliasAnalysis::PartialAlias:
- goto clobbered;
- case AliasAnalysis::NoAlias:
- break;
- }
- break;
- }
- case IC_MoveWeak:
- case IC_CopyWeak:
- // TOOD: Grab the copied value.
- goto clobbered;
- case IC_AutoreleasepoolPush:
- case IC_None:
- case IC_User:
- // Weak pointers are only modified through the weak entry points
- // (and arbitrary calls, which could call the weak entry points).
- break;
- default:
- // Anything else could modify the weak pointer.
- goto clobbered;
- }
- }
- clobbered:;
- }
-
- // Then, for each destroyWeak with an alloca operand, check to see if
- // the alloca and all its users can be zapped.
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
- InstructionClass Class = GetBasicInstructionClass(Inst);
- if (Class != IC_DestroyWeak)
- continue;
-
- CallInst *Call = cast<CallInst>(Inst);
- Value *Arg = Call->getArgOperand(0);
- if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
- for (Value::use_iterator UI = Alloca->use_begin(),
- UE = Alloca->use_end(); UI != UE; ++UI) {
- const Instruction *UserInst = cast<Instruction>(*UI);
- switch (GetBasicInstructionClass(UserInst)) {
- case IC_InitWeak:
- case IC_StoreWeak:
- case IC_DestroyWeak:
- continue;
- default:
- goto done;
- }
- }
- Changed = true;
- for (Value::use_iterator UI = Alloca->use_begin(),
- UE = Alloca->use_end(); UI != UE; ) {
- CallInst *UserInst = cast<CallInst>(*UI++);
- switch (GetBasicInstructionClass(UserInst)) {
- case IC_InitWeak:
- case IC_StoreWeak:
- // These functions return their second argument.
- UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
- break;
- case IC_DestroyWeak:
- // No return value.
- break;
- default:
- llvm_unreachable("alloca really is used!");
- }
- UserInst->eraseFromParent();
- }
- Alloca->eraseFromParent();
- done:;
- }
- }
-}
-
-/// OptimizeSequences - Identify program paths which execute sequences of
-/// retains and releases which can be eliminated.
-bool ObjCARCOpt::OptimizeSequences(Function &F) {
- /// Releases, Retains - These are used to store the results of the main flow
- /// analysis. These use Value* as the key instead of Instruction* so that the
- /// map stays valid when we get around to rewriting code and calls get
- /// replaced by arguments.
- DenseMap<Value *, RRInfo> Releases;
- MapVector<Value *, RRInfo> Retains;
-
- /// BBStates, This is used during the traversal of the function to track the
- /// states for each identified object at each block.
- DenseMap<const BasicBlock *, BBState> BBStates;
-
- // Analyze the CFG of the function, and all instructions.
- bool NestingDetected = Visit(F, BBStates, Retains, Releases);
-
- // Transform.
- return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
- NestingDetected;
-}
-
-/// OptimizeReturns - Look for this pattern:
-/// \code
-/// %call = call i8* @something(...)
-/// %2 = call i8* @objc_retain(i8* %call)
-/// %3 = call i8* @objc_autorelease(i8* %2)
-/// ret i8* %3
-/// \endcode
-/// And delete the retain and autorelease.
-///
-/// Otherwise if it's just this:
-/// \code
-/// %3 = call i8* @objc_autorelease(i8* %2)
-/// ret i8* %3
-/// \endcode
-/// convert the autorelease to autoreleaseRV.
-void ObjCARCOpt::OptimizeReturns(Function &F) {
- if (!F.getReturnType()->isPointerTy())
- return;
-
- SmallPtrSet<Instruction *, 4> DependingInstructions;
- SmallPtrSet<const BasicBlock *, 4> Visited;
- for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
- BasicBlock *BB = FI;
- ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
- if (!Ret) continue;
-
- const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
- FindDependencies(NeedsPositiveRetainCount, Arg,
- BB, Ret, DependingInstructions, Visited, PA);
- if (DependingInstructions.size() != 1)
- goto next_block;
-
- {
- CallInst *Autorelease =
- dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
- if (!Autorelease)
- goto next_block;
- InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
- if (!IsAutorelease(AutoreleaseClass))
- goto next_block;
- if (GetObjCArg(Autorelease) != Arg)
- goto next_block;
-
- DependingInstructions.clear();
- Visited.clear();
-
- // Check that there is nothing that can affect the reference
- // count between the autorelease and the retain.
- FindDependencies(CanChangeRetainCount, Arg,
- BB, Autorelease, DependingInstructions, Visited, PA);
- if (DependingInstructions.size() != 1)
- goto next_block;
-
- {
- CallInst *Retain =
- dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
-
- // Check that we found a retain with the same argument.
- if (!Retain ||
- !IsRetain(GetBasicInstructionClass(Retain)) ||
- GetObjCArg(Retain) != Arg)
- goto next_block;
-
- DependingInstructions.clear();
- Visited.clear();
-
- // Convert the autorelease to an autoreleaseRV, since it's
- // returning the value.
- if (AutoreleaseClass == IC_Autorelease) {
- Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
- AutoreleaseClass = IC_AutoreleaseRV;
- }
-
- // Check that there is nothing that can affect the reference
- // count between the retain and the call.
- // Note that Retain need not be in BB.
- FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
- DependingInstructions, Visited, PA);
- if (DependingInstructions.size() != 1)
- goto next_block;
-
- {
- CallInst *Call =
- dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
-
- // Check that the pointer is the return value of the call.
- if (!Call || Arg != Call)
- goto next_block;
-
- // Check that the call is a regular call.
- InstructionClass Class = GetBasicInstructionClass(Call);
- if (Class != IC_CallOrUser && Class != IC_Call)
- goto next_block;
-
- // If so, we can zap the retain and autorelease.
- Changed = true;
- ++NumRets;
- EraseInstruction(Retain);
- EraseInstruction(Autorelease);
- }
- }
- }
-
- next_block:
- DependingInstructions.clear();
- Visited.clear();
- }
-}
-
-bool ObjCARCOpt::doInitialization(Module &M) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- Run = ModuleHasARC(M);
- if (!Run)
- return false;
-
- // Identify the imprecise release metadata kind.
- ImpreciseReleaseMDKind =
- M.getContext().getMDKindID("clang.imprecise_release");
- CopyOnEscapeMDKind =
- M.getContext().getMDKindID("clang.arc.copy_on_escape");
- NoObjCARCExceptionsMDKind =
- M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
-
- // Intuitively, objc_retain and others are nocapture, however in practice
- // they are not, because they return their argument value. And objc_release
- // calls finalizers which can have arbitrary side effects.
-
- // These are initialized lazily.
- RetainRVCallee = 0;
- AutoreleaseRVCallee = 0;
- ReleaseCallee = 0;
- RetainCallee = 0;
- RetainBlockCallee = 0;
- AutoreleaseCallee = 0;
-
- return false;
-}
-
-bool ObjCARCOpt::runOnFunction(Function &F) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!Run)
- return false;
-
- Changed = false;
-
- PA.setAA(&getAnalysis<AliasAnalysis>());
-
- // This pass performs several distinct transformations. As a compile-time aid
- // when compiling code that isn't ObjC, skip these if the relevant ObjC
- // library functions aren't declared.
-
- // Preliminary optimizations. This also computs UsedInThisFunction.
- OptimizeIndividualCalls(F);
-
- // Optimizations for weak pointers.
- if (UsedInThisFunction & ((1 << IC_LoadWeak) |
- (1 << IC_LoadWeakRetained) |
- (1 << IC_StoreWeak) |
- (1 << IC_InitWeak) |
- (1 << IC_CopyWeak) |
- (1 << IC_MoveWeak) |
- (1 << IC_DestroyWeak)))
- OptimizeWeakCalls(F);
-
- // Optimizations for retain+release pairs.
- if (UsedInThisFunction & ((1 << IC_Retain) |
- (1 << IC_RetainRV) |
- (1 << IC_RetainBlock)))
- if (UsedInThisFunction & (1 << IC_Release))
- // Run OptimizeSequences until it either stops making changes or
- // no retain+release pair nesting is detected.
- while (OptimizeSequences(F)) {}
-
- // Optimizations if objc_autorelease is used.
- if (UsedInThisFunction & ((1 << IC_Autorelease) |
- (1 << IC_AutoreleaseRV)))
- OptimizeReturns(F);
-
- return Changed;
-}
-
-void ObjCARCOpt::releaseMemory() {
- PA.clear();
-}
-
-//===----------------------------------------------------------------------===//
-// ARC contraction.
-//===----------------------------------------------------------------------===//
-
-// TODO: ObjCARCContract could insert PHI nodes when uses aren't
-// dominated by single calls.
-
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Operator.h"
-
-STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
-
-namespace {
- /// ObjCARCContract - Late ARC optimizations. These change the IR in a way
- /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
- class ObjCARCContract : public FunctionPass {
- bool Changed;
- AliasAnalysis *AA;
- DominatorTree *DT;
- ProvenanceAnalysis PA;
-
- /// Run - A flag indicating whether this optimization pass should run.
- bool Run;
-
- /// StoreStrongCallee, etc. - Declarations for ObjC runtime
- /// functions, for use in creating calls to them. These are initialized
- /// lazily to avoid cluttering up the Module with unused declarations.
- Constant *StoreStrongCallee,
- *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
-
- /// RetainRVMarker - The inline asm string to insert between calls and
- /// RetainRV calls to make the optimization work on targets which need it.
- const MDString *RetainRVMarker;
-
- /// StoreStrongCalls - The set of inserted objc_storeStrong calls. If
- /// at the end of walking the function we have found no alloca
- /// instructions, these calls can be marked "tail".
- SmallPtrSet<CallInst *, 8> StoreStrongCalls;
-
- Constant *getStoreStrongCallee(Module *M);
- Constant *getRetainAutoreleaseCallee(Module *M);
- Constant *getRetainAutoreleaseRVCallee(Module *M);
-
- bool ContractAutorelease(Function &F, Instruction *Autorelease,
- InstructionClass Class,
- SmallPtrSet<Instruction *, 4>
- &DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4>
- &Visited);
-
- void ContractRelease(Instruction *Release,
- inst_iterator &Iter);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
-
- public:
- static char ID;
- ObjCARCContract() : FunctionPass(ID) {
- initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
- }
- };
-}
-
-char ObjCARCContract::ID = 0;
-INITIALIZE_PASS_BEGIN(ObjCARCContract,
- "objc-arc-contract", "ObjC ARC contraction", false, false)
-INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
-INITIALIZE_PASS_END(ObjCARCContract,
- "objc-arc-contract", "ObjC ARC contraction", false, false)
-
-Pass *llvm::createObjCARCContractPass() {
- return new ObjCARCContract();
-}
-
-void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<DominatorTree>();
- AU.setPreservesCFG();
-}
-
-Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
- if (!StoreStrongCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *I8XX = PointerType::getUnqual(I8X);
- Type *Params[] = { I8XX, I8X };
-
- AttributeSet Attributes = AttributeSet()
- .addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind))
- .addAttr(M->getContext(), 1, Attributes::get(C, Attributes::NoCapture));
-
- StoreStrongCallee =
- M->getOrInsertFunction(
- "objc_storeStrong",
- FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
- Attributes);
- }
- return StoreStrongCallee;
-}
-
-Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
- if (!RetainAutoreleaseCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
- AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainAutoreleaseCallee =
- M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
- }
- return RetainAutoreleaseCallee;
-}
-
-Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
- if (!RetainAutoreleaseRVCallee) {
- LLVMContext &C = M->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *Params[] = { I8X };
- FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
- AttributeSet Attributes =
- AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex,
- Attributes::get(C, Attributes::NoUnwind));
- RetainAutoreleaseRVCallee =
- M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
- Attributes);
- }
- return RetainAutoreleaseRVCallee;
-}
-
-/// ContractAutorelease - Merge an autorelease with a retain into a fused call.
-bool
-ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
- InstructionClass Class,
- SmallPtrSet<Instruction *, 4>
- &DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4>
- &Visited) {
- const Value *Arg = GetObjCArg(Autorelease);
-
- // Check that there are no instructions between the retain and the autorelease
- // (such as an autorelease_pop) which may change the count.
- CallInst *Retain = 0;
- if (Class == IC_AutoreleaseRV)
- FindDependencies(RetainAutoreleaseRVDep, Arg,
- Autorelease->getParent(), Autorelease,
- DependingInstructions, Visited, PA);
- else
- FindDependencies(RetainAutoreleaseDep, Arg,
- Autorelease->getParent(), Autorelease,
- DependingInstructions, Visited, PA);
-
- Visited.clear();
- if (DependingInstructions.size() != 1) {
- DependingInstructions.clear();
- return false;
- }
-
- Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
- DependingInstructions.clear();
-
- if (!Retain ||
- GetBasicInstructionClass(Retain) != IC_Retain ||
- GetObjCArg(Retain) != Arg)
- return false;
-
- Changed = true;
- ++NumPeeps;
-
- if (Class == IC_AutoreleaseRV)
- Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
- else
- Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
-
- EraseInstruction(Autorelease);
- return true;
-}
-
-/// ContractRelease - Attempt to merge an objc_release with a store, load, and
-/// objc_retain to form an objc_storeStrong. This can be a little tricky because
-/// the instructions don't always appear in order, and there may be unrelated
-/// intervening instructions.
-void ObjCARCContract::ContractRelease(Instruction *Release,
- inst_iterator &Iter) {
- LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
- if (!Load || !Load->isSimple()) return;
-
- // For now, require everything to be in one basic block.
- BasicBlock *BB = Release->getParent();
- if (Load->getParent() != BB) return;
-
- // Walk down to find the store and the release, which may be in either order.
- BasicBlock::iterator I = Load, End = BB->end();
- ++I;
- AliasAnalysis::Location Loc = AA->getLocation(Load);
- StoreInst *Store = 0;
- bool SawRelease = false;
- for (; !Store || !SawRelease; ++I) {
- if (I == End)
- return;
-
- Instruction *Inst = I;
- if (Inst == Release) {
- SawRelease = true;
- continue;
- }
-
- InstructionClass Class = GetBasicInstructionClass(Inst);
-
- // Unrelated retains are harmless.
- if (IsRetain(Class))
- continue;
-
- if (Store) {
- // The store is the point where we're going to put the objc_storeStrong,
- // so make sure there are no uses after it.
- if (CanUse(Inst, Load, PA, Class))
- return;
- } else if (AA->getModRefInfo(Inst, Loc) & AliasAnalysis::Mod) {
- // We are moving the load down to the store, so check for anything
- // else which writes to the memory between the load and the store.
- Store = dyn_cast<StoreInst>(Inst);
- if (!Store || !Store->isSimple()) return;
- if (Store->getPointerOperand() != Loc.Ptr) return;
- }
- }
-
- Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
-
- // Walk up to find the retain.
- I = Store;
- BasicBlock::iterator Begin = BB->begin();
- while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
- --I;
- Instruction *Retain = I;
- if (GetBasicInstructionClass(Retain) != IC_Retain) return;
- if (GetObjCArg(Retain) != New) return;
-
- Changed = true;
- ++NumStoreStrongs;
-
- LLVMContext &C = Release->getContext();
- Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- Type *I8XX = PointerType::getUnqual(I8X);
-
- Value *Args[] = { Load->getPointerOperand(), New };
- if (Args[0]->getType() != I8XX)
- Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
- if (Args[1]->getType() != I8X)
- Args[1] = new BitCastInst(Args[1], I8X, "", Store);
- CallInst *StoreStrong =
- CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
- Args, "", Store);
- StoreStrong->setDoesNotThrow();
- StoreStrong->setDebugLoc(Store->getDebugLoc());
-
- // We can't set the tail flag yet, because we haven't yet determined
- // whether there are any escaping allocas. Remember this call, so that
- // we can set the tail flag once we know it's safe.
- StoreStrongCalls.insert(StoreStrong);
-
- if (&*Iter == Store) ++Iter;
- Store->eraseFromParent();
- Release->eraseFromParent();
- EraseInstruction(Retain);
- if (Load->use_empty())
- Load->eraseFromParent();
-}
-
-bool ObjCARCContract::doInitialization(Module &M) {
- // If nothing in the Module uses ARC, don't do anything.
- Run = ModuleHasARC(M);
- if (!Run)
- return false;
-
- // These are initialized lazily.
- StoreStrongCallee = 0;
- RetainAutoreleaseCallee = 0;
- RetainAutoreleaseRVCallee = 0;
-
- // Initialize RetainRVMarker.
- RetainRVMarker = 0;
- if (NamedMDNode *NMD =
- M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
- if (NMD->getNumOperands() == 1) {
- const MDNode *N = NMD->getOperand(0);
- if (N->getNumOperands() == 1)
- if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
- RetainRVMarker = S;
- }
-
- return false;
-}
-
-bool ObjCARCContract::runOnFunction(Function &F) {
- if (!EnableARCOpts)
- return false;
-
- // If nothing in the Module uses ARC, don't do anything.
- if (!Run)
- return false;
-
- Changed = false;
- AA = &getAnalysis<AliasAnalysis>();
- DT = &getAnalysis<DominatorTree>();
-
- PA.setAA(&getAnalysis<AliasAnalysis>());
-
- // Track whether it's ok to mark objc_storeStrong calls with the "tail"
- // keyword. Be conservative if the function has variadic arguments.
- // It seems that functions which "return twice" are also unsafe for the
- // "tail" argument, because they are setjmp, which could need to
- // return to an earlier stack state.
- bool TailOkForStoreStrongs = !F.isVarArg() &&
- !F.callsFunctionThatReturnsTwice();
-
- // For ObjC library calls which return their argument, replace uses of the
- // argument with uses of the call return value, if it dominates the use. This
- // reduces register pressure.
- SmallPtrSet<Instruction *, 4> DependingInstructions;
- SmallPtrSet<const BasicBlock *, 4> Visited;
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
- Instruction *Inst = &*I++;
-
- // Only these library routines return their argument. In particular,
- // objc_retainBlock does not necessarily return its argument.
- InstructionClass Class = GetBasicInstructionClass(Inst);
- switch (Class) {
- case IC_Retain:
- case IC_FusedRetainAutorelease:
- case IC_FusedRetainAutoreleaseRV:
- break;
- case IC_Autorelease:
- case IC_AutoreleaseRV:
- if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
- continue;
- break;
- case IC_RetainRV: {
- // If we're compiling for a target which needs a special inline-asm
- // marker to do the retainAutoreleasedReturnValue optimization,
- // insert it now.
- if (!RetainRVMarker)
- break;
- BasicBlock::iterator BBI = Inst;
- BasicBlock *InstParent = Inst->getParent();
-
- // Step up to see if the call immediately precedes the RetainRV call.
- // If it's an invoke, we have to cross a block boundary. And we have
- // to carefully dodge no-op instructions.
- do {
- if (&*BBI == InstParent->begin()) {
- BasicBlock *Pred = InstParent->getSinglePredecessor();
- if (!Pred)
- goto decline_rv_optimization;
- BBI = Pred->getTerminator();
- break;
- }
- --BBI;
- } while (isNoopInstruction(BBI));
-
- if (&*BBI == GetObjCArg(Inst)) {
- Changed = true;
- InlineAsm *IA =
- InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
- /*isVarArg=*/false),
- RetainRVMarker->getString(),
- /*Constraints=*/"", /*hasSideEffects=*/true);
- CallInst::Create(IA, "", Inst);
- }
- decline_rv_optimization:
- break;
- }
- case IC_InitWeak: {
- // objc_initWeak(p, null) => *p = null
- CallInst *CI = cast<CallInst>(Inst);
- if (isNullOrUndef(CI->getArgOperand(1))) {
- Value *Null =
- ConstantPointerNull::get(cast<PointerType>(CI->getType()));
- Changed = true;
- new StoreInst(Null, CI->getArgOperand(0), CI);
- CI->replaceAllUsesWith(Null);
- CI->eraseFromParent();
- }
- continue;
- }
- case IC_Release:
- ContractRelease(Inst, I);
- continue;
- case IC_User:
- // Be conservative if the function has any alloca instructions.
- // Technically we only care about escaping alloca instructions,
- // but this is sufficient to handle some interesting cases.
- if (isa<AllocaInst>(Inst))
- TailOkForStoreStrongs = false;
- continue;
- default:
- continue;
- }
-
- // Don't use GetObjCArg because we don't want to look through bitcasts
- // and such; to do the replacement, the argument must have type i8*.
- const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
- for (;;) {
- // If we're compiling bugpointed code, don't get in trouble.
- if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
- break;
- // Look through the uses of the pointer.
- for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
- UI != UE; ) {
- Use &U = UI.getUse();
- unsigned OperandNo = UI.getOperandNo();
- ++UI; // Increment UI now, because we may unlink its element.
-
- // If the call's return value dominates a use of the call's argument
- // value, rewrite the use to use the return value. We check for
- // reachability here because an unreachable call is considered to
- // trivially dominate itself, which would lead us to rewriting its
- // argument in terms of its return value, which would lead to
- // infinite loops in GetObjCArg.
- if (DT->isReachableFromEntry(U) && DT->dominates(Inst, U)) {
- Changed = true;
- Instruction *Replacement = Inst;
- Type *UseTy = U.get()->getType();
- if (PHINode *PHI = dyn_cast<PHINode>(U.getUser())) {
- // For PHI nodes, insert the bitcast in the predecessor block.
- unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
- BasicBlock *BB = PHI->getIncomingBlock(ValNo);
- if (Replacement->getType() != UseTy)
- Replacement = new BitCastInst(Replacement, UseTy, "",
- &BB->back());
- // While we're here, rewrite all edges for this PHI, rather
- // than just one use at a time, to minimize the number of
- // bitcasts we emit.
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
- if (PHI->getIncomingBlock(i) == BB) {
- // Keep the UI iterator valid.
- if (&PHI->getOperandUse(
- PHINode::getOperandNumForIncomingValue(i)) ==
- &UI.getUse())
- ++UI;
- PHI->setIncomingValue(i, Replacement);
- }
- } else {
- if (Replacement->getType() != UseTy)
- Replacement = new BitCastInst(Replacement, UseTy, "",
- cast<Instruction>(U.getUser()));
- U.set(Replacement);
- }
- }
- }
-
- // If Arg is a no-op casted pointer, strip one level of casts and iterate.
- if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
- Arg = BI->getOperand(0);
- else if (isa<GEPOperator>(Arg) &&
- cast<GEPOperator>(Arg)->hasAllZeroIndices())
- Arg = cast<GEPOperator>(Arg)->getPointerOperand();
- else if (isa<GlobalAlias>(Arg) &&
- !cast<GlobalAlias>(Arg)->mayBeOverridden())
- Arg = cast<GlobalAlias>(Arg)->getAliasee();
- else
- break;
- }
- }
-
- // If this function has no escaping allocas or suspicious vararg usage,
- // objc_storeStrong calls can be marked with the "tail" keyword.
- if (TailOkForStoreStrongs)
- for (SmallPtrSet<CallInst *, 8>::iterator I = StoreStrongCalls.begin(),
- E = StoreStrongCalls.end(); I != E; ++I)
- (*I)->setTailCall();
- StoreStrongCalls.clear();
-
- return Changed;
-}
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp
index 569439aaf4..0da3746950 100644
--- a/lib/Transforms/Scalar/Reassociate.cpp
+++ b/lib/Transforms/Scalar/Reassociate.cpp
@@ -28,12 +28,12 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Scalar/Reg2Mem.cpp b/lib/Transforms/Scalar/Reg2Mem.cpp
index 5524e01230..07f540a301 100644
--- a/lib/Transforms/Scalar/Reg2Mem.cpp
+++ b/lib/Transforms/Scalar/Reg2Mem.cpp
@@ -19,11 +19,11 @@
#define DEBUG_TYPE "reg2mem"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
index 28aaddc50e..e30a2746b0 100644
--- a/lib/Transforms/Scalar/SCCP.cpp
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -26,11 +26,11 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/InstVisitor.h"
-#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
@@ -271,13 +271,6 @@ public:
return I->second;
}
- /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
- DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
- StructValueState.find(std::make_pair(V, i));
- assert(I != StructValueState.end() && "V is not in valuemap!");
- return I->second;
- }*/
-
/// getTrackedRetVals - Get the inferred return value map.
///
const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
@@ -710,9 +703,6 @@ void SCCPSolver::visitPHINode(PHINode &PN) {
markConstant(&PN, OperandVal); // Acquire operand value
}
-
-
-
void SCCPSolver::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) return; // ret void
@@ -1185,7 +1175,7 @@ void SCCPSolver::Solve() {
DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
- // bottom to constant
+ // bottom to constant, or to overdefined.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined
diff --git a/lib/Transforms/Scalar/SROA.cpp b/lib/Transforms/Scalar/SROA.cpp
index 1c220ca0f6..810a553c74 100644
--- a/lib/Transforms/Scalar/SROA.cpp
+++ b/lib/Transforms/Scalar/SROA.cpp
@@ -33,24 +33,22 @@
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
-#include "llvm/DataLayout.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Operator.h"
#include "llvm/InstVisitor.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
@@ -411,9 +409,9 @@ static Value *foldSelectInst(SelectInst &SI) {
// early on.
if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
return SI.getOperand(1+CI->isZero());
- if (SI.getOperand(1) == SI.getOperand(2)) {
+ if (SI.getOperand(1) == SI.getOperand(2))
return SI.getOperand(1);
- }
+
return 0;
}
@@ -621,7 +619,7 @@ private:
}
// Disable SRoA for any intrinsics except for lifetime invariants.
- // FIXME: What about debug instrinsics? This matches old behavior, but
+ // FIXME: What about debug intrinsics? This matches old behavior, but
// doesn't make sense.
void visitIntrinsicInst(IntrinsicInst &II) {
if (!IsOffsetKnown)
@@ -1099,13 +1097,12 @@ Type *AllocaPartitioning::getCommonType(iterator I) const {
continue;
Type *UserTy = 0;
- if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser()))
UserTy = LI->getType();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
+ else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser()))
UserTy = SI->getValueOperand()->getType();
- } else {
+ else
return 0; // Bail if we have weird uses.
- }
if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
// If the type is larger than the partition, skip it. We only encounter
@@ -1141,8 +1138,7 @@ void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
- for (const_use_iterator UI = use_begin(I), UE = use_end(I);
- UI != UE; ++UI) {
+ for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
if (!UI->U)
continue; // Skip dead uses.
OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
@@ -1170,8 +1166,7 @@ void AllocaPartitioning::print(raw_ostream &OS) const {
}
OS << "Partitioning of alloca: " << AI << "\n";
- unsigned Num = 0;
- for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
print(OS, I);
printUsers(OS, I);
}
@@ -1242,7 +1237,7 @@ public:
for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
E = DVIs.end(); I != E; ++I) {
DbgValueInst *DVI = *I;
- Value *Arg = NULL;
+ Value *Arg = 0;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// If an argument is zero extended then use argument directly. The ZExt
// may be zapped by an optimization pass in future.
@@ -1277,7 +1272,7 @@ namespace {
/// 1) It takes allocations of aggregates and analyzes the ways in which they
/// are used to try to split them into smaller allocations, ideally of
/// a single scalar data type. It will split up memcpy and memset accesses
-/// as necessary and try to isolate invidual scalar accesses.
+/// as necessary and try to isolate individual scalar accesses.
/// 2) It will transform accesses into forms which are suitable for SSA value
/// promotion. This can be replacing a memset with a scalar store of an
/// integer value, or it can involve speculating operations on a PHI or
@@ -1439,8 +1434,7 @@ private:
// We can only transform this if it is safe to push the loads into the
// predecessor blocks. The only thing to watch out for is that we can't put
// a possibly trapping load in the predecessor if it is a critical edge.
- for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
- ++Idx) {
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
Value *InVal = PN.getIncomingValue(Idx);
@@ -1483,7 +1477,7 @@ private:
PN.getName() + ".sroa.speculated");
// Get the TBAA tag and alignment to use from one of the loads. It doesn't
- // matter which one we get and if any differ, it doesn't matter.
+ // matter which one we get and if any differ.
LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
unsigned Align = SomeLoad->getAlignment();
@@ -1576,13 +1570,13 @@ private:
void visitSelectInst(SelectInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
- IRBuilder<> IRB(&SI);
// If the select isn't safe to speculate, just use simple logic to emit it.
SmallVector<LoadInst *, 4> Loads;
if (!isSafeSelectToSpeculate(SI, Loads))
return;
+ IRBuilder<> IRB(&SI);
Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
AllocaPartitioning::iterator PIs[2];
AllocaPartitioning::PartitionUse PUs[2];
@@ -1642,44 +1636,6 @@ private:
};
}
-/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
-///
-/// If the provided GEP is all-constant, the total byte offset formed by the
-/// GEP is computed and Offset is set to it. If the GEP has any non-constant
-/// operands, the function returns false and the value of Offset is unmodified.
-static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
- APInt &Offset) {
- APInt GEPOffset(Offset.getBitWidth(), 0);
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- return false;
- if (OpC->isZero()) continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = TD.getStructLayout(STy);
- GEPOffset += APInt(Offset.getBitWidth(),
- SL->getElementOffset(ElementIdx));
- continue;
- }
-
- APInt TypeSize(Offset.getBitWidth(),
- TD.getTypeAllocSize(GTI.getIndexedType()));
- if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
- assert((VTy->getScalarSizeInBits() % 8) == 0 &&
- "vector element size is not a multiple of 8, cannot GEP over it");
- TypeSize = VTy->getScalarSizeInBits() / 8;
- }
-
- GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
- }
- Offset = GEPOffset;
- return true;
-}
-
/// \brief Build a GEP out of a base pointer and indices.
///
/// This will return the BasePtr if that is valid, or build a new GEP
@@ -1762,7 +1718,7 @@ static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
// extremely poorly defined currently. The long-term goal is to remove GEPing
// over a vector from the IR completely.
if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
- unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
+ unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType());
if (ElementSizeInBits % 8)
return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
@@ -1854,7 +1810,7 @@ static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
/// The strategy for finding the more natural GEPs is to peel off layers of the
/// pointer, walking back through bit casts and GEPs, searching for a base
/// pointer from which we can compute a natural GEP with the desired
-/// properities. The algorithm tries to fold as many constant indices into
+/// properties. The algorithm tries to fold as many constant indices into
/// a single GEP as possible, thus making each GEP more independent of the
/// surrounding code.
static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
@@ -1882,7 +1838,7 @@ static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
// First fold any existing GEPs into the offset.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
APInt GEPOffset(Offset.getBitWidth(), 0);
- if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
+ if (!GEP->accumulateConstantOffset(TD, GEPOffset))
break;
Offset += GEPOffset;
Ptr = GEP->getPointerOperand();
@@ -2009,15 +1965,14 @@ static bool isVectorPromotionViable(const DataLayout &TD,
if (!Ty)
return false;
- uint64_t VecSize = TD.getTypeSizeInBits(Ty);
- uint64_t ElementSize = Ty->getScalarSizeInBits();
+ uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType());
// While the definition of LLVM vectors is bitpacked, we don't support sizes
// that aren't byte sized.
if (ElementSize % 8)
return false;
- assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
- VecSize /= 8;
+ assert((TD.getTypeSizeInBits(Ty) % 8) == 0 &&
+ "vector size not a multiple of element size?");
ElementSize /= 8;
for (; I != E; ++I) {
@@ -2101,9 +2056,9 @@ static bool isIntegerWideningViable(const DataLayout &TD,
uint64_t Size = TD.getTypeStoreSize(AllocaTy);
- // Check the uses to ensure the uses are (likely) promoteable integer uses.
+ // Check the uses to ensure the uses are (likely) promotable integer uses.
// Also ensure that the alloca has a covering load or store. We don't want
- // to widen the integer operotains only to fail to promote due to some other
+ // to widen the integer operations only to fail to promote due to some other
// unsplittable entry (which we may make splittable later).
bool WholeAllocaOp = false;
for (; I != E; ++I) {
@@ -2150,7 +2105,7 @@ static bool isIntegerWideningViable(const DataLayout &TD,
!canConvertValue(TD, ValueTy, AllocaTy))
return false;
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
- if (MI->isVolatile())
+ if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
return false;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
@@ -2223,6 +2178,84 @@ static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
return V;
}
+static Value *extractVector(IRBuilder<> &IRB, Value *V,
+ unsigned BeginIndex, unsigned EndIndex,
+ const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ if (NumElements == VecTy->getNumElements())
+ return V;
+
+ if (NumElements == 1) {
+ V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
+ Name + ".extract");
+ DEBUG(dbgs() << " extract: " << *V << "\n");
+ return V;
+ }
+
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(NumElements);
+ for (unsigned i = BeginIndex; i != EndIndex; ++i)
+ Mask.push_back(IRB.getInt32(i));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".extract");
+ DEBUG(dbgs() << " shuffle: " << *V << "\n");
+ return V;
+}
+
+static Value *insertVector(IRBuilder<> &IRB, Value *Old, Value *V,
+ unsigned BeginIndex, const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(Old->getType());
+ assert(VecTy && "Can only insert a vector into a vector");
+
+ VectorType *Ty = dyn_cast<VectorType>(V->getType());
+ if (!Ty) {
+ // Single element to insert.
+ V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
+ Name + ".insert");
+ DEBUG(dbgs() << " insert: " << *V << "\n");
+ return V;
+ }
+
+ assert(Ty->getNumElements() <= VecTy->getNumElements() &&
+ "Too many elements!");
+ if (Ty->getNumElements() == VecTy->getNumElements()) {
+ assert(V->getType() == VecTy && "Vector type mismatch");
+ return V;
+ }
+ unsigned EndIndex = BeginIndex + Ty->getNumElements();
+
+ // When inserting a smaller vector into the larger to store, we first
+ // use a shuffle vector to widen it with undef elements, and then
+ // a second shuffle vector to select between the loaded vector and the
+ // incoming vector.
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(VecTy->getNumElements());
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i - BeginIndex));
+ else
+ Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".expand");
+ DEBUG(dbgs() << " shuffle1: " << *V << "\n");
+
+ Mask.clear();
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i));
+ else
+ Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
+ V = IRB.CreateShuffleVector(V, Old, ConstantVector::get(Mask),
+ Name + "insert");
+ DEBUG(dbgs() << " shuffle2: " << *V << "\n");
+ return V;
+}
+
namespace {
/// \brief Visitor to rewrite instructions using a partition of an alloca to
/// use a new alloca.
@@ -2244,7 +2277,7 @@ class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
// If we are rewriting an alloca partition which can be written as pure
// vector operations, we stash extra information here. When VecTy is
- // non-null, we have some strict guarantees about the rewriten alloca:
+ // non-null, we have some strict guarantees about the rewritten alloca:
// - The new alloca is exactly the size of the vector type here.
// - The accesses all either map to the entire vector or to a single
// element.
@@ -2292,9 +2325,9 @@ public:
++NumVectorized;
VecTy = cast<VectorType>(NewAI.getAllocatedType());
ElementTy = VecTy->getElementType();
- assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
+ assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
"Only multiple-of-8 sized vector elements are viable");
- ElementSize = VecTy->getScalarSizeInBits() / 8;
+ ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
} else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
NewAllocaBeginOffset, P, I, E)) {
IntTy = Type::getIntNTy(NewAI.getContext(),
@@ -2388,29 +2421,14 @@ private:
Pass.DeadInsts.insert(I);
}
- Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
+ Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB) {
unsigned BeginIndex = getIndex(BeginOffset);
unsigned EndIndex = getIndex(EndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
- if (NumElements == 1) {
- V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
- getName(".extract"));
- DEBUG(dbgs() << " extract: " << *V << "\n");
- } else if (NumElements < VecTy->getNumElements()) {
- SmallVector<Constant*, 8> Mask;
- Mask.reserve(NumElements);
- for (unsigned i = BeginIndex; i != EndIndex; ++i)
- Mask.push_back(IRB.getInt32(i));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask),
- getName(".extract"));
- DEBUG(dbgs() << " shuffle: " << *V << "\n");
- }
- return V;
+
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ return extractVector(IRB, V, BeginIndex, EndIndex, getName(".vec"));
}
Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
@@ -2431,7 +2449,6 @@ private:
DEBUG(dbgs() << " original: " << LI << "\n");
Value *OldOp = LI.getOperand(0);
assert(OldOp == OldPtr);
- IRBuilder<> IRB(&LI);
uint64_t Size = EndOffset - BeginOffset;
bool IsSplitIntLoad = Size < TD.getTypeStoreSize(LI.getType());
@@ -2452,12 +2469,13 @@ private:
return true;
}
+ IRBuilder<> IRB(&LI);
Type *TargetTy = IsSplitIntLoad ? Type::getIntNTy(LI.getContext(), Size * 8)
: LI.getType();
bool IsPtrAdjusted = false;
Value *V;
if (VecTy) {
- V = rewriteVectorizedLoadInst(IRB, LI, OldOp);
+ V = rewriteVectorizedLoadInst(IRB);
} else if (IntTy && LI.getType()->isIntegerTy()) {
V = rewriteIntegerLoad(IRB, LI);
} else if (BeginOffset == NewAllocaBeginOffset &&
@@ -2518,44 +2536,12 @@ private:
: VectorType::get(ElementTy, NumElements);
if (V->getType() != PartitionTy)
V = convertValue(TD, IRB, V, PartitionTy);
- if (NumElements < VecTy->getNumElements()) {
- // We need to mix in the existing elements.
- LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- getName(".load"));
- if (NumElements == 1) {
- V = IRB.CreateInsertElement(LI, V, IRB.getInt32(BeginIndex),
- getName(".insert"));
- DEBUG(dbgs() << " insert: " << *V << "\n");
- } else {
- // When inserting a smaller vector into the larger to store, we first
- // use a shuffle vector to widen it with undef elements, and then
- // a second shuffle vector to select between the loaded vector and the
- // incoming vector.
- SmallVector<Constant*, 8> Mask;
- Mask.reserve(VecTy->getNumElements());
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- if (i >= BeginIndex && i < EndIndex)
- Mask.push_back(IRB.getInt32(i - BeginIndex));
- else
- Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask),
- getName(".expand"));
- DEBUG(dbgs() << " shuffle1: " << *V << "\n");
-
- Mask.clear();
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- if (i >= BeginIndex && i < EndIndex)
- Mask.push_back(IRB.getInt32(i));
- else
- Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
- V = IRB.CreateShuffleVector(V, LI, ConstantVector::get(Mask),
- getName("insert"));
- DEBUG(dbgs() << " shuffle2: " << *V << "\n");
- }
- } else {
- V = convertValue(TD, IRB, V, VecTy);
- }
+
+ // Mix in the existing elements.
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ V = insertVector(IRB, Old, V, BeginIndex, getName(".vec"));
+
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Pass.DeadInsts.insert(&SI);
@@ -2607,7 +2593,7 @@ private:
TD.getTypeStoreSizeInBits(V->getType()) &&
"Non-byte-multiple bit width");
assert(V->getType()->getIntegerBitWidth() ==
- TD.getTypeSizeInBits(OldAI.getAllocatedType()) &&
+ TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
"Only alloca-wide stores can be split and recomposed");
IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
@@ -2639,6 +2625,40 @@ private:
return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
}
+ /// \brief Compute an integer value from splatting an i8 across the given
+ /// number of bytes.
+ ///
+ /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
+ /// call this routine.
+ /// FIXME: Heed the advice above.
+ ///
+ /// \param V The i8 value to splat.
+ /// \param Size The number of bytes in the output (assuming i8 is one byte)
+ Value *getIntegerSplat(IRBuilder<> &IRB, Value *V, unsigned Size) {
+ assert(Size > 0 && "Expected a positive number of bytes.");
+ IntegerType *VTy = cast<IntegerType>(V->getType());
+ assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
+ if (Size == 1)
+ return V;
+
+ Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
+ V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
+ ConstantExpr::getUDiv(
+ Constant::getAllOnesValue(SplatIntTy),
+ ConstantExpr::getZExt(
+ Constant::getAllOnesValue(V->getType()),
+ SplatIntTy)),
+ getName(".isplat"));
+ return V;
+ }
+
+ /// \brief Compute a vector splat for a given element value.
+ Value *getVectorSplat(IRBuilder<> &IRB, Value *V, unsigned NumElements) {
+ V = IRB.CreateVectorSplat(NumElements, V, NamePrefix);
+ DEBUG(dbgs() << " splat: " << *V << "\n");
+ return V;
+ }
+
bool visitMemSetInst(MemSetInst &II) {
DEBUG(dbgs() << " original: " << II << "\n");
IRBuilder<> IRB(&II);
@@ -2667,7 +2687,8 @@ private:
(BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaEndOffset ||
!AllocaTy->isSingleValueType() ||
- !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
+ !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
+ TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
CallInst *New
@@ -2683,53 +2704,62 @@ private:
// If we can represent this as a simple value, we have to build the actual
// value to store, which requires expanding the byte present in memset to
// a sensible representation for the alloca type. This is essentially
- // splatting the byte to a sufficiently wide integer, bitcasting to the
- // desired scalar type, and splatting it across any desired vector type.
- uint64_t Size = EndOffset - BeginOffset;
- Value *V = II.getValue();
- IntegerType *VTy = cast<IntegerType>(V->getType());
- Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
- if (Size*8 > VTy->getBitWidth())
- V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
- ConstantExpr::getUDiv(
- Constant::getAllOnesValue(SplatIntTy),
- ConstantExpr::getZExt(
- Constant::getAllOnesValue(V->getType()),
- SplatIntTy)),
- getName(".isplat"));
-
- // If this is an element-wide memset of a vectorizable alloca, insert it.
- if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset)) {
- if (V->getType() != ScalarTy)
- V = convertValue(TD, IRB, V, ScalarTy);
- StoreInst *Store = IRB.CreateAlignedStore(
- IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
- NewAI.getAlignment(),
- getName(".load")),
- V, IRB.getInt32(getIndex(BeginOffset)),
- getName(".insert")),
- &NewAI, NewAI.getAlignment());
- (void)Store;
- DEBUG(dbgs() << " to: " << *Store << "\n");
- return true;
- }
+ // splatting the byte to a sufficiently wide integer, splatting it across
+ // any desired vector width, and bitcasting to the final type.
+ Value *V;
+
+ if (VecTy) {
+ // If this is a memset of a vectorized alloca, insert it.
+ assert(ElementTy == ScalarTy);
+
+ unsigned BeginIndex = getIndex(BeginOffset);
+ unsigned EndIndex = getIndex(EndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ Value *Splat = getIntegerSplat(IRB, II.getValue(),
+ TD.getTypeSizeInBits(ElementTy)/8);
+ Splat = convertValue(TD, IRB, Splat, ElementTy);
+ if (NumElements > 1)
+ Splat = getVectorSplat(IRB, Splat, NumElements);
- // If this is a memset on an alloca where we can widen stores, insert the
- // set integer.
- if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset)) {
- assert(!II.isVolatile());
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".oldload"));
- Old = convertValue(TD, IRB, Old, IntTy);
- assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
- uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
- }
+ V = insertVector(IRB, Old, Splat, BeginIndex, getName(".vec"));
+ } else if (IntTy) {
+ // If this is a memset on an alloca where we can widen stores, insert the
+ // set integer.
+ assert(!II.isVolatile());
+
+ uint64_t Size = EndOffset - BeginOffset;
+ V = getIntegerSplat(IRB, II.getValue(), Size);
+
+ if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaBeginOffset)) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Old = convertValue(TD, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
+ } else {
+ assert(V->getType() == IntTy &&
+ "Wrong type for an alloca wide integer!");
+ }
+ V = convertValue(TD, IRB, V, AllocaTy);
+ } else {
+ // Established these invariants above.
+ assert(BeginOffset == NewAllocaBeginOffset);
+ assert(EndOffset == NewAllocaEndOffset);
+
+ V = getIntegerSplat(IRB, II.getValue(),
+ TD.getTypeSizeInBits(ScalarTy)/8);
+ if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
+ V = getVectorSplat(IRB, V, AllocaVecTy->getNumElements());
- if (V->getType() != AllocaTy)
V = convertValue(TD, IRB, V, AllocaTy);
+ }
Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
II.isVolatile());
@@ -2814,37 +2844,22 @@ private:
// Record this instruction for deletion.
Pass.DeadInsts.insert(&II);
- bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
- EndOffset == NewAllocaEndOffset;
- bool IsVectorElement = VecTy && !IsWholeAlloca;
- uint64_t Size = EndOffset - BeginOffset;
- IntegerType *SubIntTy
- = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
-
- Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
- : II.getRawDest()->getType();
- if (!EmitMemCpy) {
- if (IsVectorElement)
- OtherPtrTy = VecTy->getElementType()->getPointerTo();
- else if (IntTy && !IsWholeAlloca)
- OtherPtrTy = SubIntTy->getPointerTo();
- else
- OtherPtrTy = NewAI.getType();
- }
-
- // Compute the other pointer, folding as much as possible to produce
- // a single, simple GEP in most cases.
- Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
- OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
- getName("." + OtherPtr->getName()));
-
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after rewriting this instruction.
+ Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
if (AllocaInst *AI
= dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Pass.Worklist.insert(AI);
if (EmitMemCpy) {
+ Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
+ : II.getRawDest()->getType();
+
+ // Compute the other pointer, folding as much as possible to produce
+ // a single, simple GEP in most cases.
+ OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
+ getName("." + OtherPtr->getName()));
+
Value *OurPtr
= getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
: II.getRawSource()->getType());
@@ -2865,18 +2880,38 @@ private:
if (!Align)
Align = 1;
- Value *SrcPtr = OtherPtr;
+ bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
+ EndOffset == NewAllocaEndOffset;
+ uint64_t Size = EndOffset - BeginOffset;
+ unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
+ unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
+ unsigned NumElements = EndIndex - BeginIndex;
+ IntegerType *SubIntTy
+ = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
+
+ Type *OtherPtrTy = NewAI.getType();
+ if (VecTy && !IsWholeAlloca) {
+ if (NumElements == 1)
+ OtherPtrTy = VecTy->getElementType();
+ else
+ OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
+
+ OtherPtrTy = OtherPtrTy->getPointerTo();
+ } else if (IntTy && !IsWholeAlloca) {
+ OtherPtrTy = SubIntTy->getPointerTo();
+ }
+
+ Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
+ getName("." + OtherPtr->getName()));
Value *DstPtr = &NewAI;
if (!IsDest)
std::swap(SrcPtr, DstPtr);
Value *Src;
- if (IsVectorElement && !IsDest) {
- // We have to extract rather than load.
- Src = IRB.CreateExtractElement(
- IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
- IRB.getInt32(getIndex(BeginOffset)),
- getName(".copyextract"));
+ if (VecTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".load"));
+ Src = extractVector(IRB, Src, BeginIndex, EndIndex, getName(".vec"));
} else if (IntTy && !IsWholeAlloca && !IsDest) {
Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".load"));
@@ -2889,7 +2924,11 @@ private:
getName(".copyload"));
}
- if (IntTy && !IsWholeAlloca && IsDest) {
+ if (VecTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ getName(".oldload"));
+ Src = insertVector(IRB, Old, Src, BeginIndex, getName(".vec"));
+ } else if (IntTy && !IsWholeAlloca && IsDest) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".oldload"));
Old = convertValue(TD, IRB, Old, IntTy);
@@ -2899,14 +2938,6 @@ private:
Src = convertValue(TD, IRB, Src, NewAllocaTy);
}
- if (IsVectorElement && IsDest) {
- // We have to insert into a loaded copy before storing.
- Src = IRB.CreateInsertElement(
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
- Src, IRB.getInt32(getIndex(BeginOffset)),
- getName(".insert"));
- }
-
StoreInst *Store = cast<StoreInst>(
IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
(void)Store;
@@ -2934,6 +2965,7 @@ private:
else
New = IRB.CreateLifetimeEnd(Ptr, Size);
+ (void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return true;
}
@@ -3110,9 +3142,8 @@ private:
void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
assert(Ty->isSingleValueType());
// Load the single value and insert it using the indices.
- Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
- Name + ".gep"),
- Name + ".load");
+ Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
+ Value *Load = IRB.CreateLoad(GEP, Name + ".load");
Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
DEBUG(dbgs() << " to: " << *Load << "\n");
}
@@ -3385,7 +3416,7 @@ bool SROA::rewriteAllocaPartition(AllocaInst &AI,
// Check for the case where we're going to rewrite to a new alloca of the
// exact same type as the original, and with the same access offsets. In that
// case, re-use the existing alloca, but still run through the rewriter to
- // performe phi and select speculation.
+ // perform phi and select speculation.
AllocaInst *NewAI;
if (AllocaTy == AI.getAllocatedType()) {
assert(PI->BeginOffset == 0 &&
@@ -3552,7 +3583,7 @@ void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
/// If there is a domtree available, we attempt to promote using the full power
/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
/// based on the SSAUpdater utilities. This function returns whether any
-/// promotion occured.
+/// promotion occurred.
bool SROA::promoteAllocas(Function &F) {
if (PromotableAllocas.empty())
return false;
diff --git a/lib/Transforms/Scalar/Scalar.cpp b/lib/Transforms/Scalar/Scalar.cpp
index 762bb15c59..8a9c7da113 100644
--- a/lib/Transforms/Scalar/Scalar.cpp
+++ b/lib/Transforms/Scalar/Scalar.cpp
@@ -18,7 +18,7 @@
#include "llvm-c/Transforms/Scalar.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/InitializePasses.h"
#include "llvm/PassManager.h"
@@ -50,11 +50,6 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeLowerAtomicPass(Registry);
initializeLowerExpectIntrinsicPass(Registry);
initializeMemCpyOptPass(Registry);
- initializeObjCARCAliasAnalysisPass(Registry);
- initializeObjCARCAPElimPass(Registry);
- initializeObjCARCExpandPass(Registry);
- initializeObjCARCContractPass(Registry);
- initializeObjCARCOptPass(Registry);
initializeReassociatePass(Registry);
initializeRegToMemPass(Registry);
initializeSCCPPass(Registry);
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index c8656fbd8e..e590a374ea 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -27,19 +27,19 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
#include "llvm/DIBuilder.h"
-#include "llvm/DataLayout.h"
#include "llvm/DebugInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index 9160f04fe2..c243d34fd7 100644
--- a/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -26,15 +26,15 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Attributes.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -48,12 +48,19 @@ namespace {
}
virtual bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetTransformInfo>();
+ }
};
}
char CFGSimplifyPass::ID = 0;
-INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
- "Simplify the CFG", false, false)
+INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG",
+ false, false)
// Public interface to the CFGSimplification pass
FunctionPass *llvm::createCFGSimplificationPass() {
@@ -111,13 +118,11 @@ static bool markAliveBlocks(BasicBlock *BB,
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
+ Reachable.insert(BB);
bool Changed = false;
do {
BB = Worklist.pop_back_val();
- if (!Reachable.insert(BB))
- continue;
-
// Do a quick scan of the basic block, turning any obviously unreachable
// instructions into LLVM unreachable insts. The instruction combining pass
// canonicalizes unreachable insts into stores to null or undef.
@@ -176,7 +181,8 @@ static bool markAliveBlocks(BasicBlock *BB,
Changed |= ConstantFoldTerminator(BB, true);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- Worklist.push_back(*SI);
+ if (Reachable.insert(*SI))
+ Worklist.push_back(*SI);
} while (!Worklist.empty());
return Changed;
}
@@ -294,8 +300,8 @@ static bool mergeEmptyReturnBlocks(Function &F) {
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
-static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
- const TargetTransformInfo *TTI) {
+static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
+ const DataLayout *TD) {
bool Changed = false;
bool LocalChange = true;
while (LocalChange) {
@@ -304,7 +310,7 @@ static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
- if (SimplifyCFG(BBIt++, TD, TTI)) {
+ if (SimplifyCFG(BBIt++, TTI, TD)) {
LocalChange = true;
++NumSimpl;
}
@@ -318,12 +324,11 @@ static bool iterativelySimplifyCFG(Function &F, const DataLayout *TD,
// simplify the CFG.
//
bool CFGSimplifyPass::runOnFunction(Function &F) {
+ const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
- const TargetTransformInfo *TTI =
- getAnalysisIfAvailable<TargetTransformInfo>();
bool EverChanged = removeUnreachableBlocksFromFn(F);
EverChanged |= mergeEmptyReturnBlocks(F);
- EverChanged |= iterativelySimplifyCFG(F, TD, TTI);
+ EverChanged |= iterativelySimplifyCFG(F, TTI, TD);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
@@ -337,7 +342,7 @@ bool CFGSimplifyPass::runOnFunction(Function &F) {
return true;
do {
- EverChanged = iterativelySimplifyCFG(F, TD, TTI);
+ EverChanged = iterativelySimplifyCFG(F, TTI, TD);
EverChanged |= removeUnreachableBlocksFromFn(F);
} while (EverChanged);
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index d4643b9d80..916b37d4a8 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -23,10 +23,10 @@
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
-#include "llvm/DataLayout.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -165,7 +165,7 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
// Ignore non-calls.
CallInst *CI = dyn_cast<CallInst>(I++);
- if (!CI) continue;
+ if (!CI || CI->hasFnAttr(Attribute::NoBuiltin)) continue;
// Ignore indirect calls and calls to non-external functions.
Function *Callee = CI->getCalledFunction();
diff --git a/lib/Transforms/Scalar/Sink.cpp b/lib/Transforms/Scalar/Sink.cpp
index cde9c178ad..d4595bb373 100644
--- a/lib/Transforms/Scalar/Sink.cpp
+++ b/lib/Transforms/Scalar/Sink.cpp
@@ -20,7 +20,7 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/IntrinsicInst.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/lib/Transforms/Scalar/TailRecursionElimination.cpp b/lib/Transforms/Scalar/TailRecursionElimination.cpp
index e357378524..2002e680d1 100644
--- a/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -58,12 +58,13 @@
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CallSite.h"
@@ -79,11 +80,15 @@ STATISTIC(NumAccumAdded, "Number of accumulators introduced");
namespace {
struct TailCallElim : public FunctionPass {
+ const TargetTransformInfo *TTI;
+
static char ID; // Pass identification, replacement for typeid
TailCallElim() : FunctionPass(ID) {
initializeTailCallElimPass(*PassRegistry::getPassRegistry());
}
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
virtual bool runOnFunction(Function &F);
private:
@@ -109,14 +114,21 @@ namespace {
}
char TailCallElim::ID = 0;
-INITIALIZE_PASS(TailCallElim, "tailcallelim",
- "Tail Call Elimination", false, false)
+INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
+ "Tail Call Elimination", false, false)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
+ "Tail Call Elimination", false, false)
// Public interface to the TailCallElimination pass
FunctionPass *llvm::createTailCallEliminationPass() {
return new TailCallElim();
}
+void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetTransformInfo>();
+}
+
/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
/// callees of this function. We only do very simple analysis right now, this
/// could be expanded in the future to use mod/ref information for particular
@@ -151,6 +163,7 @@ bool TailCallElim::runOnFunction(Function &F) {
// right, so don't even try to convert it...
if (F.getFunctionType()->isVarArg()) return false;
+ TTI = &getAnalysis<TargetTransformInfo>();
BasicBlock *OldEntry = 0;
bool TailCallsAreMarkedTail = false;
SmallVector<PHINode*, 8> ArgumentPHIs;
@@ -391,7 +404,8 @@ TailCallElim::FindTRECandidate(Instruction *TI,
if (BB == &F->getEntryBlock() &&
FirstNonDbg(BB->front()) == CI &&
FirstNonDbg(llvm::next(BB->begin())) == TI &&
- callIsSmall(CI)) {
+ CI->getCalledFunction() &&
+ !TTI->isLoweredToCall(CI->getCalledFunction())) {
// A single-block function with just a call and a return. Check that
// the arguments match.
CallSite::arg_iterator I = CallSite(CI).arg_begin(),