diff options
Diffstat (limited to 'lib/Transforms/Scalar/Reassociate.cpp')
-rw-r--r-- | lib/Transforms/Scalar/Reassociate.cpp | 681 |
1 files changed, 681 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp new file mode 100644 index 0000000000..142ede38e1 --- /dev/null +++ b/lib/Transforms/Scalar/Reassociate.cpp @@ -0,0 +1,681 @@ +//===- Reassociate.cpp - Reassociate binary expressions -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass reassociates commutative expressions in an order that is designed +// to promote better constant propagation, GCSE, LICM, PRE... +// +// For example: 4 + (x + 5) -> x + (4 + 5) +// +// In the implementation of this algorithm, constants are assigned rank = 0, +// function arguments are rank = 1, and other values are assigned ranks +// corresponding to the reverse post order traversal of current function +// (starting at 2), which effectively gives values in deep loops higher rank +// than values not in loops. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "reassociate" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Pass.h" +#include "llvm/Type.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/Statistic.h" +#include <algorithm> +using namespace llvm; + +namespace { + Statistic<> NumLinear ("reassociate","Number of insts linearized"); + Statistic<> NumChanged("reassociate","Number of insts reassociated"); + Statistic<> NumSwapped("reassociate","Number of insts with operands swapped"); + Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated"); + + struct ValueEntry { + unsigned Rank; + Value *Op; + ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} + }; + inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { + return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. + } + + class Reassociate : public FunctionPass { + std::map<BasicBlock*, unsigned> RankMap; + std::map<Value*, unsigned> ValueRankMap; + bool MadeChange; + public: + bool runOnFunction(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + } + private: + void BuildRankMap(Function &F); + unsigned getRank(Value *V); + void RewriteExprTree(BinaryOperator *I, unsigned Idx, + std::vector<ValueEntry> &Ops); + void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops); + void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops); + void LinearizeExpr(BinaryOperator *I); + void ReassociateBB(BasicBlock *BB); + }; + + RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions"); +} + +// Public interface to the Reassociate pass +FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } + + +static bool isUnmovableInstruction(Instruction *I) { + if (I->getOpcode() == Instruction::PHI || + I->getOpcode() == Instruction::Alloca || + I->getOpcode() == Instruction::Load || + I->getOpcode() == Instruction::Malloc || + I->getOpcode() == Instruction::Invoke || + I->getOpcode() == Instruction::Call || + I->getOpcode() == Instruction::Div || + I->getOpcode() == Instruction::Rem) + return true; + return false; +} + +void Reassociate::BuildRankMap(Function &F) { + unsigned i = 2; + + // Assign distinct ranks to function arguments + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) + ValueRankMap[I] = ++i; + + ReversePostOrderTraversal<Function*> RPOT(&F); + for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), + E = RPOT.end(); I != E; ++I) { + BasicBlock *BB = *I; + unsigned BBRank = RankMap[BB] = ++i << 16; + + // Walk the basic block, adding precomputed ranks for any instructions that + // we cannot move. This ensures that the ranks for these instructions are + // all different in the block. + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (isUnmovableInstruction(I)) + ValueRankMap[I] = ++BBRank; + } +} + +unsigned Reassociate::getRank(Value *V) { + if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument... + + Instruction *I = dyn_cast<Instruction>(V); + if (I == 0) return 0; // Otherwise it's a global or constant, rank 0. + + unsigned &CachedRank = ValueRankMap[I]; + if (CachedRank) return CachedRank; // Rank already known? + + // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that + // we can reassociate expressions for code motion! Since we do not recurse + // for PHI nodes, we cannot have infinite recursion here, because there + // cannot be loops in the value graph that do not go through PHI nodes. + unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; + for (unsigned i = 0, e = I->getNumOperands(); + i != e && Rank != MaxRank; ++i) + Rank = std::max(Rank, getRank(I->getOperand(i))); + + // If this is a not or neg instruction, do not count it for rank. This + // assures us that X and ~X will have the same rank. + if (!I->getType()->isIntegral() || + (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) + ++Rank; + + //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = " + //<< Rank << "\n"); + + return CachedRank = Rank; +} + +/// isReassociableOp - Return true if V is an instruction of the specified +/// opcode and if it only has one use. +static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { + if (V->hasOneUse() && isa<Instruction>(V) && + cast<Instruction>(V)->getOpcode() == Opcode) + return cast<BinaryOperator>(V); + return 0; +} + +/// LowerNegateToMultiply - Replace 0-X with X*-1. +/// +static Instruction *LowerNegateToMultiply(Instruction *Neg) { + Constant *Cst; + if (Neg->getType()->isFloatingPoint()) + Cst = ConstantFP::get(Neg->getType(), -1); + else + Cst = ConstantInt::getAllOnesValue(Neg->getType()); + + std::string NegName = Neg->getName(); Neg->setName(""); + Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName, + Neg); + Neg->replaceAllUsesWith(Res); + Neg->eraseFromParent(); + return Res; +} + +// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'. +// Note that if D is also part of the expression tree that we recurse to +// linearize it as well. Besides that case, this does not recurse into A,B, or +// C. +void Reassociate::LinearizeExpr(BinaryOperator *I) { + BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0)); + BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1)); + assert(isReassociableOp(LHS, I->getOpcode()) && + isReassociableOp(RHS, I->getOpcode()) && + "Not an expression that needs linearization?"); + + DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I); + + // Move the RHS instruction to live immediately before I, avoiding breaking + // dominator properties. + RHS->moveBefore(I); + + // Move operands around to do the linearization. + I->setOperand(1, RHS->getOperand(0)); + RHS->setOperand(0, LHS); + I->setOperand(0, RHS); + + ++NumLinear; + MadeChange = true; + DEBUG(std::cerr << "Linearized: " << *I); + + // If D is part of this expression tree, tail recurse. + if (isReassociableOp(I->getOperand(1), I->getOpcode())) + LinearizeExpr(I); +} + + +/// LinearizeExprTree - Given an associative binary expression tree, traverse +/// all of the uses putting it into canonical form. This forces a left-linear +/// form of the the expression (((a+b)+c)+d), and collects information about the +/// rank of the non-tree operands. +/// +/// This returns the rank of the RHS operand, which is known to be the highest +/// rank value in the expression tree. +/// +void Reassociate::LinearizeExprTree(BinaryOperator *I, + std::vector<ValueEntry> &Ops) { + Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); + unsigned Opcode = I->getOpcode(); + + // First step, linearize the expression if it is in ((A+B)+(C+D)) form. + BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode); + BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode); + + // If this is a multiply expression tree and it contains internal negations, + // transform them into multiplies by -1 so they can be reassociated. + if (I->getOpcode() == Instruction::Mul) { + if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) { + LHS = LowerNegateToMultiply(cast<Instruction>(LHS)); + LHSBO = isReassociableOp(LHS, Opcode); + } + if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) { + RHS = LowerNegateToMultiply(cast<Instruction>(RHS)); + RHSBO = isReassociableOp(RHS, Opcode); + } + } + + if (!LHSBO) { + if (!RHSBO) { + // Neither the LHS or RHS as part of the tree, thus this is a leaf. As + // such, just remember these operands and their rank. + Ops.push_back(ValueEntry(getRank(LHS), LHS)); + Ops.push_back(ValueEntry(getRank(RHS), RHS)); + return; + } else { + // Turn X+(Y+Z) -> (Y+Z)+X + std::swap(LHSBO, RHSBO); + std::swap(LHS, RHS); + bool Success = !I->swapOperands(); + assert(Success && "swapOperands failed"); + MadeChange = true; + } + } else if (RHSBO) { + // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not + // part of the expression tree. + LinearizeExpr(I); + LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0)); + RHS = I->getOperand(1); + RHSBO = 0; + } + + // Okay, now we know that the LHS is a nested expression and that the RHS is + // not. Perform reassociation. + assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!"); + + // Move LHS right before I to make sure that the tree expression dominates all + // values. + LHSBO->moveBefore(I); + + // Linearize the expression tree on the LHS. + LinearizeExprTree(LHSBO, Ops); + + // Remember the RHS operand and its rank. + Ops.push_back(ValueEntry(getRank(RHS), RHS)); +} + +// RewriteExprTree - Now that the operands for this expression tree are +// linearized and optimized, emit them in-order. This function is written to be +// tail recursive. +void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i, + std::vector<ValueEntry> &Ops) { + if (i+2 == Ops.size()) { + if (I->getOperand(0) != Ops[i].Op || + I->getOperand(1) != Ops[i+1].Op) { + DEBUG(std::cerr << "RA: " << *I); + I->setOperand(0, Ops[i].Op); + I->setOperand(1, Ops[i+1].Op); + DEBUG(std::cerr << "TO: " << *I); + MadeChange = true; + ++NumChanged; + } + return; + } + assert(i+2 < Ops.size() && "Ops index out of range!"); + + if (I->getOperand(1) != Ops[i].Op) { + DEBUG(std::cerr << "RA: " << *I); + I->setOperand(1, Ops[i].Op); + DEBUG(std::cerr << "TO: " << *I); + MadeChange = true; + ++NumChanged; + } + RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops); +} + + + +// NegateValue - Insert instructions before the instruction pointed to by BI, +// that computes the negative version of the value specified. The negative +// version of the value is returned, and BI is left pointing at the instruction +// that should be processed next by the reassociation pass. +// +static Value *NegateValue(Value *V, Instruction *BI) { + // We are trying to expose opportunity for reassociation. One of the things + // that we want to do to achieve this is to push a negation as deep into an + // expression chain as possible, to expose the add instructions. In practice, + // this means that we turn this: + // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D + // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate + // the constants. We assume that instcombine will clean up the mess later if + // we introduce tons of unnecessary negation instructions... + // + if (Instruction *I = dyn_cast<Instruction>(V)) + if (I->getOpcode() == Instruction::Add && I->hasOneUse()) { + // Push the negates through the add. + I->setOperand(0, NegateValue(I->getOperand(0), BI)); + I->setOperand(1, NegateValue(I->getOperand(1), BI)); + + // We must move the add instruction here, because the neg instructions do + // not dominate the old add instruction in general. By moving it, we are + // assured that the neg instructions we just inserted dominate the + // instruction we are about to insert after them. + // + I->moveBefore(BI); + I->setName(I->getName()+".neg"); + return I; + } + + // Insert a 'neg' instruction that subtracts the value from zero to get the + // negation. + // + return BinaryOperator::createNeg(V, V->getName() + ".neg", BI); +} + +/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is +/// only used by an add, transform this into (X+(0-Y)) to promote better +/// reassociation. +static Instruction *BreakUpSubtract(Instruction *Sub) { + // Don't bother to break this up unless either the LHS is an associable add or + // if this is only used by one. + if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) && + !isReassociableOp(Sub->getOperand(1), Instruction::Add) && + !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add))) + return 0; + + // Convert a subtract into an add and a neg instruction... so that sub + // instructions can be commuted with other add instructions... + // + // Calculate the negative value of Operand 1 of the sub instruction... + // and set it as the RHS of the add instruction we just made... + // + std::string Name = Sub->getName(); + Sub->setName(""); + Value *NegVal = NegateValue(Sub->getOperand(1), Sub); + Instruction *New = + BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub); + + // Everyone now refers to the add instruction. + Sub->replaceAllUsesWith(New); + Sub->eraseFromParent(); + + DEBUG(std::cerr << "Negated: " << *New); + return New; +} + +/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used +/// by one, change this into a multiply by a constant to assist with further +/// reassociation. +static Instruction *ConvertShiftToMul(Instruction *Shl) { + if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) && + !(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul))) + return 0; + + Constant *MulCst = ConstantInt::get(Shl->getType(), 1); + MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); + + std::string Name = Shl->getName(); Shl->setName(""); + Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst, + Name, Shl); + Shl->replaceAllUsesWith(Mul); + Shl->eraseFromParent(); + return Mul; +} + +// Scan backwards and forwards among values with the same rank as element i to +// see if X exists. If X does not exist, return i. +static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i, + Value *X) { + unsigned XRank = Ops[i].Rank; + unsigned e = Ops.size(); + for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) + if (Ops[j].Op == X) + return j; + // Scan backwards + for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) + if (Ops[j].Op == X) + return j; + return i; +} + +void Reassociate::OptimizeExpression(unsigned Opcode, + std::vector<ValueEntry> &Ops) { + // Now that we have the linearized expression tree, try to optimize it. + // Start by folding any constants that we found. + bool IterateOptimization = false; + if (Ops.size() == 1) return; + + if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op)) + if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) { + Ops.pop_back(); + Ops.back().Op = ConstantExpr::get(Opcode, V1, V2); + OptimizeExpression(Opcode, Ops); + return; + } + + // Check for destructive annihilation due to a constant being used. + if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op)) + switch (Opcode) { + default: break; + case Instruction::And: + if (CstVal->isNullValue()) { // ... & 0 -> 0 + Ops[0].Op = CstVal; + Ops.erase(Ops.begin()+1, Ops.end()); + ++NumAnnihil; + return; + } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ... + Ops.pop_back(); + } + break; + case Instruction::Mul: + if (CstVal->isNullValue()) { // ... * 0 -> 0 + Ops[0].Op = CstVal; + Ops.erase(Ops.begin()+1, Ops.end()); + ++NumAnnihil; + return; + } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) { + Ops.pop_back(); // ... * 1 -> ... + } + break; + case Instruction::Or: + if (CstVal->isAllOnesValue()) { // ... | -1 -> -1 + Ops[0].Op = CstVal; + Ops.erase(Ops.begin()+1, Ops.end()); + ++NumAnnihil; + return; + } + // FALLTHROUGH! + case Instruction::Add: + case Instruction::Xor: + if (CstVal->isNullValue()) // ... [|^+] 0 -> ... + Ops.pop_back(); + break; + } + if (Ops.size() == 1) return; + + // Handle destructive annihilation do to identities between elements in the + // argument list here. + switch (Opcode) { + default: break; + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. + // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { + // First, check for X and ~X in the operand list. + assert(i < Ops.size()); + if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. + Value *X = BinaryOperator::getNotArgument(Ops[i].Op); + unsigned FoundX = FindInOperandList(Ops, i, X); + if (FoundX != i) { + if (Opcode == Instruction::And) { // ...&X&~X = 0 + Ops[0].Op = Constant::getNullValue(X->getType()); + Ops.erase(Ops.begin()+1, Ops.end()); + ++NumAnnihil; + return; + } else if (Opcode == Instruction::Or) { // ...|X|~X = -1 + Ops[0].Op = ConstantIntegral::getAllOnesValue(X->getType()); + Ops.erase(Ops.begin()+1, Ops.end()); + ++NumAnnihil; + return; + } + } + } + + // Next, check for duplicate pairs of values, which we assume are next to + // each other, due to our sorting criteria. + assert(i < Ops.size()); + if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { + if (Opcode == Instruction::And || Opcode == Instruction::Or) { + // Drop duplicate values. + Ops.erase(Ops.begin()+i); + --i; --e; + IterateOptimization = true; + ++NumAnnihil; + } else { + assert(Opcode == Instruction::Xor); + if (e == 2) { + Ops[0].Op = Constant::getNullValue(Ops[0].Op->getType()); + Ops.erase(Ops.begin()+1, Ops.end()); + ++NumAnnihil; + return; + } + // ... X^X -> ... + Ops.erase(Ops.begin()+i, Ops.begin()+i+2); + i -= 1; e -= 2; + IterateOptimization = true; + ++NumAnnihil; + } + } + } + break; + + case Instruction::Add: + // Scan the operand lists looking for X and -X pairs. If we find any, we + // can simplify the expression. X+-X == 0 + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { + assert(i < Ops.size()); + // Check for X and -X in the operand list. + if (BinaryOperator::isNeg(Ops[i].Op)) { + Value *X = BinaryOperator::getNegArgument(Ops[i].Op); + unsigned FoundX = FindInOperandList(Ops, i, X); + if (FoundX != i) { + // Remove X and -X from the operand list. + if (Ops.size() == 2) { + Ops[0].Op = Constant::getNullValue(X->getType()); + Ops.pop_back(); + ++NumAnnihil; + return; + } else { + Ops.erase(Ops.begin()+i); + if (i < FoundX) + --FoundX; + else + --i; // Need to back up an extra one. + Ops.erase(Ops.begin()+FoundX); + IterateOptimization = true; + ++NumAnnihil; + --i; // Revisit element. + e -= 2; // Removed two elements. + } + } + } + } + break; + //case Instruction::Mul: + } + + if (IterateOptimization) + OptimizeExpression(Opcode, Ops); +} + +/// PrintOps - Print out the expression identified in the Ops list. +/// +static void PrintOps(unsigned Opcode, const std::vector<ValueEntry> &Ops, + BasicBlock *BB) { + Module *M = BB->getParent()->getParent(); + std::cerr << Instruction::getOpcodeName(Opcode) << " " + << *Ops[0].Op->getType(); + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M) + << "," << Ops[i].Rank; +} + +/// ReassociateBB - Inspect all of the instructions in this basic block, +/// reassociating them as we go. +void Reassociate::ReassociateBB(BasicBlock *BB) { + for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) { + if (BI->getOpcode() == Instruction::Shl && + isa<ConstantInt>(BI->getOperand(1))) + if (Instruction *NI = ConvertShiftToMul(BI)) { + MadeChange = true; + BI = NI; + } + + // Reject cases where it is pointless to do this. + if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint()) + continue; // Floating point ops are not associative. + + // If this is a subtract instruction which is not already in negate form, + // see if we can convert it to X+-Y. + if (BI->getOpcode() == Instruction::Sub) { + if (!BinaryOperator::isNeg(BI)) { + if (Instruction *NI = BreakUpSubtract(BI)) { + MadeChange = true; + BI = NI; + } + } else { + // Otherwise, this is a negation. See if the operand is a multiply tree + // and if this is not an inner node of a multiply tree. + if (isReassociableOp(BI->getOperand(1), Instruction::Mul) && + (!BI->hasOneUse() || + !isReassociableOp(BI->use_back(), Instruction::Mul))) { + BI = LowerNegateToMultiply(BI); + MadeChange = true; + } + } + } + + // If this instruction is a commutative binary operator, process it. + if (!BI->isAssociative()) continue; + BinaryOperator *I = cast<BinaryOperator>(BI); + + // If this is an interior node of a reassociable tree, ignore it until we + // get to the root of the tree, to avoid N^2 analysis. + if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode())) + continue; + + // If this is an add tree that is used by a sub instruction, ignore it + // until we process the subtract. + if (I->hasOneUse() && I->getOpcode() == Instruction::Add && + cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub) + continue; + + // First, walk the expression tree, linearizing the tree, collecting + std::vector<ValueEntry> Ops; + LinearizeExprTree(I, Ops); + + DEBUG(std::cerr << "RAIn:\t"; PrintOps(I->getOpcode(), Ops, BB); + std::cerr << "\n"); + + // Now that we have linearized the tree to a list and have gathered all of + // the operands and their ranks, sort the operands by their rank. Use a + // stable_sort so that values with equal ranks will have their relative + // positions maintained (and so the compiler is deterministic). Note that + // this sorts so that the highest ranking values end up at the beginning of + // the vector. + std::stable_sort(Ops.begin(), Ops.end()); + + // OptimizeExpression - Now that we have the expression tree in a convenient + // sorted form, optimize it globally if possible. + OptimizeExpression(I->getOpcode(), Ops); + + // We want to sink immediates as deeply as possible except in the case where + // this is a multiply tree used only by an add, and the immediate is a -1. + // In this case we reassociate to put the negation on the outside so that we + // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y + if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && + cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add && + isa<ConstantInt>(Ops.back().Op) && + cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { + Ops.insert(Ops.begin(), Ops.back()); + Ops.pop_back(); + } + + DEBUG(std::cerr << "RAOut:\t"; PrintOps(I->getOpcode(), Ops, BB); + std::cerr << "\n"); + + if (Ops.size() == 1) { + // This expression tree simplified to something that isn't a tree, + // eliminate it. + I->replaceAllUsesWith(Ops[0].Op); + } else { + // Now that we ordered and optimized the expressions, splat them back into + // the expression tree, removing any unneeded nodes. + RewriteExprTree(I, 0, Ops); + } + } +} + + +bool Reassociate::runOnFunction(Function &F) { + // Recalculate the rank map for F + BuildRankMap(F); + + MadeChange = false; + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) + ReassociateBB(FI); + + // We are done with the rank map... + RankMap.clear(); + ValueRankMap.clear(); + return MadeChange; +} + |