aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/PredicateSimplifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/PredicateSimplifier.cpp')
-rw-r--r--lib/Transforms/Scalar/PredicateSimplifier.cpp2704
1 files changed, 0 insertions, 2704 deletions
diff --git a/lib/Transforms/Scalar/PredicateSimplifier.cpp b/lib/Transforms/Scalar/PredicateSimplifier.cpp
deleted file mode 100644
index b8ac1828db..0000000000
--- a/lib/Transforms/Scalar/PredicateSimplifier.cpp
+++ /dev/null
@@ -1,2704 +0,0 @@
-//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Path-sensitive optimizer. In a branch where x == y, replace uses of
-// x with y. Permits further optimization, such as the elimination of
-// the unreachable call:
-//
-// void test(int *p, int *q)
-// {
-// if (p != q)
-// return;
-//
-// if (*p != *q)
-// foo(); // unreachable
-// }
-//
-//===----------------------------------------------------------------------===//
-//
-// The InequalityGraph focusses on four properties; equals, not equals,
-// less-than and less-than-or-equals-to. The greater-than forms are also held
-// just to allow walking from a lesser node to a greater one. These properties
-// are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
-//
-// These relationships define a graph between values of the same type. Each
-// Value is stored in a map table that retrieves the associated Node. This
-// is how EQ relationships are stored; the map contains pointers from equal
-// Value to the same node. The node contains a most canonical Value* form
-// and the list of known relationships with other nodes.
-//
-// If two nodes are known to be inequal, then they will contain pointers to
-// each other with an "NE" relationship. If node getNode(%x) is less than
-// getNode(%y), then the %x node will contain <%y, GT> and %y will contain
-// <%x, LT>. This allows us to tie nodes together into a graph like this:
-//
-// %a < %b < %c < %d
-//
-// with four nodes representing the properties. The InequalityGraph provides
-// querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
-// To find a relationship, we start with one of the nodes any binary search
-// through its list to find where the relationships with the second node start.
-// Then we iterate through those to find the first relationship that dominates
-// our context node.
-//
-// To create these properties, we wait until a branch or switch instruction
-// implies that a particular value is true (or false). The VRPSolver is
-// responsible for analyzing the variable and seeing what new inferences
-// can be made from each property. For example:
-//
-// %P = icmp ne i32* %ptr, null
-// %a = and i1 %P, %Q
-// br i1 %a label %cond_true, label %cond_false
-//
-// For the true branch, the VRPSolver will start with %a EQ true and look at
-// the definition of %a and find that it can infer that %P and %Q are both
-// true. From %P being true, it can infer that %ptr NE null. For the false
-// branch it can't infer anything from the "and" instruction.
-//
-// Besides branches, we can also infer properties from instruction that may
-// have undefined behaviour in certain cases. For example, the dividend of
-// a division may never be zero. After the division instruction, we may assume
-// that the dividend is not equal to zero.
-//
-//===----------------------------------------------------------------------===//
-//
-// The ValueRanges class stores the known integer bounds of a Value. When we
-// encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
-// %b = [0, 254].
-//
-// It never stores an empty range, because that means that the code is
-// unreachable. It never stores a single-element range since that's an equality
-// relationship and better stored in the InequalityGraph, nor an empty range
-// since that is better stored in UnreachableBlocks.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "predsimplify"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/ConstantRange.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include <algorithm>
-#include <deque>
-#include <stack>
-using namespace llvm;
-
-STATISTIC(NumVarsReplaced, "Number of argument substitutions");
-STATISTIC(NumInstruction , "Number of instructions removed");
-STATISTIC(NumSimple , "Number of simple replacements");
-STATISTIC(NumBlocks , "Number of blocks marked unreachable");
-STATISTIC(NumSnuggle , "Number of comparisons snuggled");
-
-static const ConstantRange empty(1, false);
-
-namespace {
- class DomTreeDFS {
- public:
- class Node {
- friend class DomTreeDFS;
- public:
- typedef std::vector<Node *>::iterator iterator;
- typedef std::vector<Node *>::const_iterator const_iterator;
-
- unsigned getDFSNumIn() const { return DFSin; }
- unsigned getDFSNumOut() const { return DFSout; }
-
- BasicBlock *getBlock() const { return BB; }
-
- iterator begin() { return Children.begin(); }
- iterator end() { return Children.end(); }
-
- const_iterator begin() const { return Children.begin(); }
- const_iterator end() const { return Children.end(); }
-
- bool dominates(const Node *N) const {
- return DFSin <= N->DFSin && DFSout >= N->DFSout;
- }
-
- bool DominatedBy(const Node *N) const {
- return N->dominates(this);
- }
-
- /// Sorts by the number of descendants. With this, you can iterate
- /// through a sorted list and the first matching entry is the most
- /// specific match for your basic block. The order provided is stable;
- /// DomTreeDFS::Nodes with the same number of descendants are sorted by
- /// DFS in number.
- bool operator<(const Node &N) const {
- unsigned spread = DFSout - DFSin;
- unsigned N_spread = N.DFSout - N.DFSin;
- if (spread == N_spread) return DFSin < N.DFSin;
- return spread < N_spread;
- }
- bool operator>(const Node &N) const { return N < *this; }
-
- private:
- unsigned DFSin, DFSout;
- BasicBlock *BB;
-
- std::vector<Node *> Children;
- };
-
- // XXX: this may be slow. Instead of using "new" for each node, consider
- // putting them in a vector to keep them contiguous.
- explicit DomTreeDFS(DominatorTree *DT) {
- std::stack<std::pair<Node *, DomTreeNode *> > S;
-
- Entry = new Node;
- Entry->BB = DT->getRootNode()->getBlock();
- S.push(std::make_pair(Entry, DT->getRootNode()));
-
- NodeMap[Entry->BB] = Entry;
-
- while (!S.empty()) {
- std::pair<Node *, DomTreeNode *> &Pair = S.top();
- Node *N = Pair.first;
- DomTreeNode *DTNode = Pair.second;
- S.pop();
-
- for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end();
- I != E; ++I) {
- Node *NewNode = new Node;
- NewNode->BB = (*I)->getBlock();
- N->Children.push_back(NewNode);
- S.push(std::make_pair(NewNode, *I));
-
- NodeMap[NewNode->BB] = NewNode;
- }
- }
-
- renumber();
-
-#ifndef NDEBUG
- DEBUG(dump());
-#endif
- }
-
-#ifndef NDEBUG
- virtual
-#endif
- ~DomTreeDFS() {
- std::stack<Node *> S;
-
- S.push(Entry);
- while (!S.empty()) {
- Node *N = S.top(); S.pop();
-
- for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
- S.push(*I);
-
- delete N;
- }
- }
-
- /// getRootNode - This returns the entry node for the CFG of the function.
- Node *getRootNode() const { return Entry; }
-
- /// getNodeForBlock - return the node for the specified basic block.
- Node *getNodeForBlock(BasicBlock *BB) const {
- if (!NodeMap.count(BB)) return 0;
- return const_cast<DomTreeDFS*>(this)->NodeMap[BB];
- }
-
- /// dominates - returns true if the basic block for I1 dominates that of
- /// the basic block for I2. If the instructions belong to the same basic
- /// block, the instruction first instruction sequentially in the block is
- /// considered dominating.
- bool dominates(Instruction *I1, Instruction *I2) {
- BasicBlock *BB1 = I1->getParent(),
- *BB2 = I2->getParent();
- if (BB1 == BB2) {
- if (isa<TerminatorInst>(I1)) return false;
- if (isa<TerminatorInst>(I2)) return true;
- if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
- if (!isa<PHINode>(I1) && isa<PHINode>(I2)) return false;
-
- for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end();
- I != E; ++I) {
- if (&*I == I1) return true;
- else if (&*I == I2) return false;
- }
- assert(!"Instructions not found in parent BasicBlock?");
- } else {
- Node *Node1 = getNodeForBlock(BB1),
- *Node2 = getNodeForBlock(BB2);
- return Node1 && Node2 && Node1->dominates(Node2);
- }
- return false; // Not reached
- }
-
- private:
- /// renumber - calculates the depth first search numberings and applies
- /// them onto the nodes.
- void renumber() {
- std::stack<std::pair<Node *, Node::iterator> > S;
- unsigned n = 0;
-
- Entry->DFSin = ++n;
- S.push(std::make_pair(Entry, Entry->begin()));
-
- while (!S.empty()) {
- std::pair<Node *, Node::iterator> &Pair = S.top();
- Node *N = Pair.first;
- Node::iterator &I = Pair.second;
-
- if (I == N->end()) {
- N->DFSout = ++n;
- S.pop();
- } else {
- Node *Next = *I++;
- Next->DFSin = ++n;
- S.push(std::make_pair(Next, Next->begin()));
- }
- }
- }
-
-#ifndef NDEBUG
- virtual void dump() const {
- dump(errs());
- }
-
- void dump(raw_ostream &os) const {
- os << "Predicate simplifier DomTreeDFS: \n";
- dump(Entry, 0, os);
- os << "\n\n";
- }
-
- void dump(Node *N, int depth, raw_ostream &os) const {
- ++depth;
- for (int i = 0; i < depth; ++i) { os << " "; }
- os << "[" << depth << "] ";
-
- os << N->getBlock()->getNameStr() << " (" << N->getDFSNumIn()
- << ", " << N->getDFSNumOut() << ")\n";
-
- for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
- dump(*I, depth, os);
- }
-#endif
-
- Node *Entry;
- std::map<BasicBlock *, Node *> NodeMap;
- };
-
- // SLT SGT ULT UGT EQ
- // 0 1 0 1 0 -- GT 10
- // 0 1 0 1 1 -- GE 11
- // 0 1 1 0 0 -- SGTULT 12
- // 0 1 1 0 1 -- SGEULE 13
- // 0 1 1 1 0 -- SGT 14
- // 0 1 1 1 1 -- SGE 15
- // 1 0 0 1 0 -- SLTUGT 18
- // 1 0 0 1 1 -- SLEUGE 19
- // 1 0 1 0 0 -- LT 20
- // 1 0 1 0 1 -- LE 21
- // 1 0 1 1 0 -- SLT 22
- // 1 0 1 1 1 -- SLE 23
- // 1 1 0 1 0 -- UGT 26
- // 1 1 0 1 1 -- UGE 27
- // 1 1 1 0 0 -- ULT 28
- // 1 1 1 0 1 -- ULE 29
- // 1 1 1 1 0 -- NE 30
- enum LatticeBits {
- EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
- };
- enum LatticeVal {
- GT = SGT_BIT | UGT_BIT,
- GE = GT | EQ_BIT,
- LT = SLT_BIT | ULT_BIT,
- LE = LT | EQ_BIT,
- NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
- SGTULT = SGT_BIT | ULT_BIT,
- SGEULE = SGTULT | EQ_BIT,
- SLTUGT = SLT_BIT | UGT_BIT,
- SLEUGE = SLTUGT | EQ_BIT,
- ULT = SLT_BIT | SGT_BIT | ULT_BIT,
- UGT = SLT_BIT | SGT_BIT | UGT_BIT,
- SLT = SLT_BIT | ULT_BIT | UGT_BIT,
- SGT = SGT_BIT | ULT_BIT | UGT_BIT,
- SLE = SLT | EQ_BIT,
- SGE = SGT | EQ_BIT,
- ULE = ULT | EQ_BIT,
- UGE = UGT | EQ_BIT
- };
-
-#ifndef NDEBUG
- /// validPredicate - determines whether a given value is actually a lattice
- /// value. Only used in assertions or debugging.
- static bool validPredicate(LatticeVal LV) {
- switch (LV) {
- case GT: case GE: case LT: case LE: case NE:
- case SGTULT: case SGT: case SGEULE:
- case SLTUGT: case SLT: case SLEUGE:
- case ULT: case UGT:
- case SLE: case SGE: case ULE: case UGE:
- return true;
- default:
- return false;
- }
- }
-#endif
-
- /// reversePredicate - reverse the direction of the inequality
- static LatticeVal reversePredicate(LatticeVal LV) {
- unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
-
- if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
- reverse |= (SLT_BIT|SGT_BIT);
-
- if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
- reverse |= (ULT_BIT|UGT_BIT);
-
- LatticeVal Rev = static_cast<LatticeVal>(reverse);
- assert(validPredicate(Rev) && "Failed reversing predicate.");
- return Rev;
- }
-
- /// ValueNumbering stores the scope-specific value numbers for a given Value.
- class ValueNumbering {
-
- /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
- /// includes the comparison operators necessary to allow you to store it
- /// in a sorted vector.
- class VNPair {
- public:
- Value *V;
- unsigned index;
- DomTreeDFS::Node *Subtree;
-
- VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree)
- : V(V), index(index), Subtree(Subtree) {}
-
- bool operator==(const VNPair &RHS) const {
- return V == RHS.V && Subtree == RHS.Subtree;
- }
-
- bool operator<(const VNPair &RHS) const {
- if (V != RHS.V) return V < RHS.V;
- return *Subtree < *RHS.Subtree;
- }
-
- bool operator<(Value *RHS) const {
- return V < RHS;
- }
-
- bool operator>(Value *RHS) const {
- return V > RHS;
- }
-
- friend bool operator<(Value *RHS, const VNPair &pair) {
- return pair.operator>(RHS);
- }
- };
-
- typedef std::vector<VNPair> VNMapType;
- VNMapType VNMap;
-
- /// The canonical choice for value number at index.
- std::vector<Value *> Values;
-
- DomTreeDFS *DTDFS;
-
- public:
-#ifndef NDEBUG
- virtual ~ValueNumbering() {}
- virtual void dump() {
- print(errs());
- }
-
- void print(raw_ostream &os) {
- for (unsigned i = 1; i <= Values.size(); ++i) {
- os << i << " = ";
- WriteAsOperand(os, Values[i-1]);
- os << " {";
- for (unsigned j = 0; j < VNMap.size(); ++j) {
- if (VNMap[j].index == i) {
- WriteAsOperand(os, VNMap[j].V);
- os << " (" << VNMap[j].Subtree->getDFSNumIn() << ") ";
- }
- }
- os << "}\n";
- }
- }
-#endif
-
- /// compare - returns true if V1 is a better canonical value than V2.
- bool compare(Value *V1, Value *V2) const {
- if (isa<Constant>(V1))
- return !isa<Constant>(V2);
- else if (isa<Constant>(V2))
- return false;
- else if (isa<Argument>(V1))
- return !isa<Argument>(V2);
- else if (isa<Argument>(V2))
- return false;
-
- Instruction *I1 = dyn_cast<Instruction>(V1);
- Instruction *I2 = dyn_cast<Instruction>(V2);
-
- if (!I1 || !I2)
- return V1->getNumUses() < V2->getNumUses();
-
- return DTDFS->dominates(I1, I2);
- }
-
- ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {}
-
- /// valueNumber - finds the value number for V under the Subtree. If
- /// there is no value number, returns zero.
- unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
- if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) ||
- V->getType() == Type::getVoidTy(V->getContext())) return 0;
-
- VNMapType::iterator E = VNMap.end();
- VNPair pair(V, 0, Subtree);
- VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
- while (I != E && I->V == V) {
- if (I->Subtree->dominates(Subtree))
- return I->index;
- ++I;
- }
- return 0;
- }
-
- /// getOrInsertVN - always returns a value number, creating it if necessary.
- unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
- if (unsigned n = valueNumber(V, Subtree))
- return n;
- else
- return newVN(V);
- }
-
- /// newVN - creates a new value number. Value V must not already have a
- /// value number assigned.
- unsigned newVN(Value *V) {
- assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
- "Bad Value for value numbering.");
- assert(V->getType() != Type::getVoidTy(V->getContext()) &&
- "Won't value number a void value");
-
- Values.push_back(V);
-
- VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
- VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
- assert((I == VNMap.end() || value(I->index) != V) &&
- "Attempt to create a duplicate value number.");
- VNMap.insert(I, pair);
-
- return Values.size();
- }
-
- /// value - returns the Value associated with a value number.
- Value *value(unsigned index) const {
- assert(index != 0 && "Zero index is reserved for not found.");
- assert(index <= Values.size() && "Index out of range.");
- return Values[index-1];
- }
-
- /// canonicalize - return a Value that is equal to V under Subtree.
- Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) {
- if (isa<Constant>(V)) return V;
-
- if (unsigned n = valueNumber(V, Subtree))
- return value(n);
- else
- return V;
- }
-
- /// addEquality - adds that value V belongs to the set of equivalent
- /// values defined by value number n under Subtree.
- void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) {
- assert(canonicalize(value(n), Subtree) == value(n) &&
- "Node's 'canonical' choice isn't best within this subtree.");
-
- // Suppose that we are given "%x -> node #1 (%y)". The problem is that
- // we may already have "%z -> node #2 (%x)" somewhere above us in the
- // graph. We need to find those edges and add "%z -> node #1 (%y)"
- // to keep the lookups canonical.
-
- std::vector<Value *> ToRepoint(1, V);
-
- if (unsigned Conflict = valueNumber(V, Subtree)) {
- for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end();
- I != E; ++I) {
- if (I->index == Conflict && I->Subtree->dominates(Subtree))
- ToRepoint.push_back(I->V);
- }
- }
-
- for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
- VE = ToRepoint.end(); VI != VE; ++VI) {
- Value *V = *VI;
-
- VNPair pair(V, n, Subtree);
- VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
- VNMapType::iterator I = std::lower_bound(B, E, pair);
- if (I != E && I->V == V && I->Subtree == Subtree)
- I->index = n; // Update best choice
- else
- VNMap.insert(I, pair); // New Value
-
- // XXX: we currently don't have to worry about updating values with
- // more specific Subtrees, but we will need to for PHI node support.
-
-#ifndef NDEBUG
- Value *V_n = value(n);
- if (isa<Constant>(V) && isa<Constant>(V_n)) {
- assert(V == V_n && "Constant equals different constant?");
- }
-#endif
- }
- }
-
- /// remove - removes all references to value V.
- void remove(Value *V) {
- VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
- VNPair pair(V, 0, DTDFS->getRootNode());
- VNMapType::iterator J = std::upper_bound(B, E, pair);
- VNMapType::iterator I = J;
-
- while (I != B && (I == E || I->V == V)) --I;
-
- VNMap.erase(I, J);
- }
- };
-
- /// The InequalityGraph stores the relationships between values.
- /// Each Value in the graph is assigned to a Node. Nodes are pointer
- /// comparable for equality. The caller is expected to maintain the logical
- /// consistency of the system.
- ///
- /// The InequalityGraph class may invalidate Node*s after any mutator call.
- /// @brief The InequalityGraph stores the relationships between values.
- class InequalityGraph {
- ValueNumbering &VN;
- DomTreeDFS::Node *TreeRoot;
-
- InequalityGraph(); // DO NOT IMPLEMENT
- InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
- public:
- InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot)
- : VN(VN), TreeRoot(TreeRoot) {}
-
- class Node;
-
- /// An Edge is contained inside a Node making one end of the edge implicit
- /// and contains a pointer to the other end. The edge contains a lattice
- /// value specifying the relationship and an DomTreeDFS::Node specifying
- /// the root in the dominator tree to which this edge applies.
- class Edge {
- public:
- Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST)
- : To(T), LV(V), Subtree(ST) {}
-
- unsigned To;
- LatticeVal LV;
- DomTreeDFS::Node *Subtree;
-
- bool operator<(const Edge &edge) const {
- if (To != edge.To) return To < edge.To;
- return *Subtree < *edge.Subtree;
- }
-
- bool operator<(unsigned to) const {
- return To < to;
- }
-
- bool operator>(unsigned to) const {
- return To > to;
- }
-
- friend bool operator<(unsigned to, const Edge &edge) {
- return edge.operator>(to);
- }
- };
-
- /// A single node in the InequalityGraph. This stores the canonical Value
- /// for the node, as well as the relationships with the neighbours.
- ///
- /// @brief A single node in the InequalityGraph.
- class Node {
- friend class InequalityGraph;
-
- typedef SmallVector<Edge, 4> RelationsType;
- RelationsType Relations;
-
- // TODO: can this idea improve performance?
- //friend class std::vector<Node>;
- //Node(Node &N) { RelationsType.swap(N.RelationsType); }
-
- public:
- typedef RelationsType::iterator iterator;
- typedef RelationsType::const_iterator const_iterator;
-
-#ifndef NDEBUG
- virtual ~Node() {}
- virtual void dump() const {
- dump(errs());
- }
- private:
- void dump(raw_ostream &os) const {
- static const std::string names[32] =
- { "000000", "000001", "000002", "000003", "000004", "000005",
- "000006", "000007", "000008", "000009", " >", " >=",
- " s>u<", "s>=u<=", " s>", " s>=", "000016", "000017",
- " s<u>", "s<=u>=", " <", " <=", " s<", " s<=",
- "000024", "000025", " u>", " u>=", " u<", " u<=",
- " !=", "000031" };
- for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
- os << names[NI->LV] << " " << NI->To
- << " (" << NI->Subtree->getDFSNumIn() << "), ";
- }
- }
- public:
-#endif
-
- iterator begin() { return Relations.begin(); }
- iterator end() { return Relations.end(); }
- const_iterator begin() const { return Relations.begin(); }
- const_iterator end() const { return Relations.end(); }
-
- iterator find(unsigned n, DomTreeDFS::Node *Subtree) {
- iterator E = end();
- for (iterator I = std::lower_bound(begin(), E, n);
- I != E && I->To == n; ++I) {
- if (Subtree->DominatedBy(I->Subtree))
- return I;
- }
- return E;
- }
-
- const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const {
- const_iterator E = end();
- for (const_iterator I = std::lower_bound(begin(), E, n);
- I != E && I->To == n; ++I) {
- if (Subtree->DominatedBy(I->Subtree))
- return I;
- }
- return E;
- }
-
- /// update - updates the lattice value for a given node, creating a new
- /// entry if one doesn't exist. The new lattice value must not be
- /// inconsistent with any previously existing value.
- void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) {
- assert(validPredicate(R) && "Invalid predicate.");
-
- Edge edge(n, R, Subtree);
- iterator B = begin(), E = end();
- iterator I = std::lower_bound(B, E, edge);
-
- iterator J = I;
- while (J != E && J->To == n) {
- if (Subtree->DominatedBy(J->Subtree))
- break;
- ++J;
- }
-
- if (J != E && J->To == n) {
- edge.LV = static_cast<LatticeVal>(J->LV & R);
- assert(validPredicate(edge.LV) && "Invalid union of lattice values.");
-
- if (edge.LV == J->LV)
- return; // This update adds nothing new.
- }
-
- if (I != B) {
- // We also have to tighten any edge beneath our update.
- for (iterator K = I - 1; K->To == n; --K) {
- if (K->Subtree->DominatedBy(Subtree)) {
- LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV);
- assert(validPredicate(LV) && "Invalid union of lattice values");
- K->LV = LV;
- }
- if (K == B) break;
- }
- }
-
- // Insert new edge at Subtree if it isn't already there.
- if (I == E || I->To != n || Subtree != I->Subtree)
- Relations.insert(I, edge);
- }
- };
-
- private:
-
- std::vector<Node> Nodes;
-
- public:
- /// node - returns the node object at a given value number. The pointer
- /// returned may be invalidated on the next call to node().
- Node *node(unsigned index) {
- assert(VN.value(index)); // This triggers the necessary checks.
- if (Nodes.size() < index) Nodes.resize(index);
- return &Nodes[index-1];
- }
-
- /// isRelatedBy - true iff n1 op n2
- bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
- LatticeVal LV) {
- if (n1 == n2) return LV & EQ_BIT;
-
- Node *N1 = node(n1);
- Node::iterator I = N1->find(n2, Subtree), E = N1->end();
- if (I != E) return (I->LV & LV) == I->LV;
-
- return false;
- }
-
- // The add* methods assume that your input is logically valid and may
- // assertion-fail or infinitely loop if you attempt a contradiction.
-
- /// addInequality - Sets n1 op n2.
- /// It is also an error to call this on an inequality that is already true.
- void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
- LatticeVal LV1) {
- assert(n1 != n2 && "A node can't be inequal to itself.");
-
- if (LV1 != NE)
- assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
- "Contradictory inequality.");
-
- // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
- // add %a < %n2 too. This keeps the graph fully connected.
- if (LV1 != NE) {
- // Break up the relationship into signed and unsigned comparison parts.
- // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
- // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
- // should have the EQ_BIT iff it's set for both op1 and op2.
-
- unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
- unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
-
- for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
- if (I->LV != NE && I->To != n2) {
-
- DomTreeDFS::Node *Local_Subtree = NULL;
- if (Subtree->DominatedBy(I->Subtree))
- Local_Subtree = Subtree;
- else if (I->Subtree->DominatedBy(Subtree))
- Local_Subtree = I->Subtree;
-
- if (Local_Subtree) {
- unsigned new_relationship = 0;
- LatticeVal ILV = reversePredicate(I->LV);
- unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
- unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
-
- if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
- new_relationship |= ILV_s;
- if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
- new_relationship |= ILV_u;
-
- if (new_relationship) {
- if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
- new_relationship |= (SLT_BIT|SGT_BIT);
- if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
- new_relationship |= (ULT_BIT|UGT_BIT);
- if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
- new_relationship |= EQ_BIT;
-
- LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
-
- node(I->To)->update(n2, NewLV, Local_Subtree);
- node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
- }
- }
- }
- }
-
- for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
- if (I->LV != NE && I->To != n1) {
- DomTreeDFS::Node *Local_Subtree = NULL;
- if (Subtree->DominatedBy(I->Subtree))
- Local_Subtree = Subtree;
- else if (I->Subtree->DominatedBy(Subtree))
- Local_Subtree = I->Subtree;
-
- if (Local_Subtree) {
- unsigned new_relationship = 0;
- unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
- unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
-
- if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
- new_relationship |= ILV_s;
-
- if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
- new_relationship |= ILV_u;
-
- if (new_relationship) {
- if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
- new_relationship |= (SLT_BIT|SGT_BIT);
- if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
- new_relationship |= (ULT_BIT|UGT_BIT);
- if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
- new_relationship |= EQ_BIT;
-
- LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
-
- node(n1)->update(I->To, NewLV, Local_Subtree);
- node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
- }
- }
- }
- }
- }
-
- node(n1)->update(n2, LV1, Subtree);
- node(n2)->update(n1, reversePredicate(LV1), Subtree);
- }
-
- /// remove - removes a node from the graph by removing all references to
- /// and from it.
- void remove(unsigned n) {
- Node *N = node(n);
- for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
- Node::iterator Iter = node(NI->To)->find(n, TreeRoot);
- do {
- node(NI->To)->Relations.erase(Iter);
- Iter = node(NI->To)->find(n, TreeRoot);
- } while (Iter != node(NI->To)->end());
- }
- N->Relations.clear();
- }
-
-#ifndef NDEBUG
- virtual ~InequalityGraph() {}
- virtual void dump() {
- dump(errs());
- }
-
- void dump(raw_ostream &os) {
- for (unsigned i = 1; i <= Nodes.size(); ++i) {
- os << i << " = {";
- node(i)->dump(os);
- os << "}\n";
- }
- }
-#endif
- };
-
- class VRPSolver;
-
- /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
- /// in the InequalityGraph.
- class ValueRanges {
- ValueNumbering &VN;
- TargetData *TD;
- LLVMContext *Context;
-
- class ScopedRange {
- typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
- RangeListType;
- RangeListType RangeList;
-
- static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
- const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
- return *LHS.first < *RHS.first;
- }
-
- public:
-#ifndef NDEBUG
- virtual ~ScopedRange() {}
- virtual void dump() const {
- dump(errs());
- }
-
- void dump(raw_ostream &os) const {
- os << "{";
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- os << &I->second << " (" << I->first->getDFSNumIn() << "), ";
- }
- os << "}";
- }
-#endif
-
- typedef RangeListType::iterator iterator;
- typedef RangeListType::const_iterator const_iterator;
-
- iterator begin() { return RangeList.begin(); }
- iterator end() { return RangeList.end(); }
- const_iterator begin() const { return RangeList.begin(); }
- const_iterator end() const { return RangeList.end(); }
-
- iterator find(DomTreeDFS::Node *Subtree) {
- iterator E = end();
- iterator I = std::lower_bound(begin(), E,
- std::make_pair(Subtree, empty), swo);
-
- while (I != E && !I->first->dominates(Subtree)) ++I;
- return I;
- }
-
- const_iterator find(DomTreeDFS::Node *Subtree) const {
- const_iterator E = end();
- const_iterator I = std::lower_bound(begin(), E,
- std::make_pair(Subtree, empty), swo);
-
- while (I != E && !I->first->dominates(Subtree)) ++I;
- return I;
- }
-
- void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
- assert(!CR.isEmptySet() && "Empty ConstantRange.");
- assert(!CR.isSingleElement() && "Refusing to store single element.");
-
- iterator E = end();
- iterator I =
- std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
-
- if (I != end() && I->first == Subtree) {
- ConstantRange CR2 = I->second.intersectWith(CR);
- assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
- "Invalid union of ranges.");
- I->second = CR2;
- } else
- RangeList.insert(I, std::make_pair(Subtree, CR));
- }
- };
-
- std::vector<ScopedRange> Ranges;
-
- void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subt