aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/ObjCARC/ObjCARCOpts.cpp')
-rw-r--r--lib/Transforms/ObjCARC/ObjCARCOpts.cpp2691
1 files changed, 2691 insertions, 0 deletions
diff --git a/lib/Transforms/ObjCARC/ObjCARCOpts.cpp b/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
new file mode 100644
index 0000000000..9c14949877
--- /dev/null
+++ b/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
@@ -0,0 +1,2691 @@
+//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines ObjC ARC optimizations. ARC stands for Automatic
+/// Reference Counting and is a system for managing reference counts for objects
+/// in Objective C.
+///
+/// The optimizations performed include elimination of redundant, partially
+/// redundant, and inconsequential reference count operations, elimination of
+/// redundant weak pointer operations, and numerous minor simplifications.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "objc-arc-opts"
+#include "ObjCARC.h"
+#include "DependencyAnalysis.h"
+#include "ObjCARCAliasAnalysis.h"
+#include "ProvenanceAnalysis.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+/// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific.
+/// @{
+
+namespace {
+ /// \brief An associative container with fast insertion-order (deterministic)
+ /// iteration over its elements. Plus the special blot operation.
+ template<class KeyT, class ValueT>
+ class MapVector {
+ /// Map keys to indices in Vector.
+ typedef DenseMap<KeyT, size_t> MapTy;
+ MapTy Map;
+
+ typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
+ /// Keys and values.
+ VectorTy Vector;
+
+ public:
+ typedef typename VectorTy::iterator iterator;
+ typedef typename VectorTy::const_iterator const_iterator;
+ iterator begin() { return Vector.begin(); }
+ iterator end() { return Vector.end(); }
+ const_iterator begin() const { return Vector.begin(); }
+ const_iterator end() const { return Vector.end(); }
+
+#ifdef XDEBUG
+ ~MapVector() {
+ assert(Vector.size() >= Map.size()); // May differ due to blotting.
+ for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
+ I != E; ++I) {
+ assert(I->second < Vector.size());
+ assert(Vector[I->second].first == I->first);
+ }
+ for (typename VectorTy::const_iterator I = Vector.begin(),
+ E = Vector.end(); I != E; ++I)
+ assert(!I->first ||
+ (Map.count(I->first) &&
+ Map[I->first] == size_t(I - Vector.begin())));
+ }
+#endif
+
+ ValueT &operator[](const KeyT &Arg) {
+ std::pair<typename MapTy::iterator, bool> Pair =
+ Map.insert(std::make_pair(Arg, size_t(0)));
+ if (Pair.second) {
+ size_t Num = Vector.size();
+ Pair.first->second = Num;
+ Vector.push_back(std::make_pair(Arg, ValueT()));
+ return Vector[Num].second;
+ }
+ return Vector[Pair.first->second].second;
+ }
+
+ std::pair<iterator, bool>
+ insert(const std::pair<KeyT, ValueT> &InsertPair) {
+ std::pair<typename MapTy::iterator, bool> Pair =
+ Map.insert(std::make_pair(InsertPair.first, size_t(0)));
+ if (Pair.second) {
+ size_t Num = Vector.size();
+ Pair.first->second = Num;
+ Vector.push_back(InsertPair);
+ return std::make_pair(Vector.begin() + Num, true);
+ }
+ return std::make_pair(Vector.begin() + Pair.first->second, false);
+ }
+
+ const_iterator find(const KeyT &Key) const {
+ typename MapTy::const_iterator It = Map.find(Key);
+ if (It == Map.end()) return Vector.end();
+ return Vector.begin() + It->second;
+ }
+
+ /// This is similar to erase, but instead of removing the element from the
+ /// vector, it just zeros out the key in the vector. This leaves iterators
+ /// intact, but clients must be prepared for zeroed-out keys when iterating.
+ void blot(const KeyT &Key) {
+ typename MapTy::iterator It = Map.find(Key);
+ if (It == Map.end()) return;
+ Vector[It->second].first = KeyT();
+ Map.erase(It);
+ }
+
+ void clear() {
+ Map.clear();
+ Vector.clear();
+ }
+ };
+}
+
+/// @}
+///
+/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
+/// @{
+
+/// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon
+/// as it finds a value with multiple uses.
+static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
+ if (Arg->hasOneUse()) {
+ if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
+ return FindSingleUseIdentifiedObject(BC->getOperand(0));
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
+ if (GEP->hasAllZeroIndices())
+ return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
+ if (IsForwarding(GetBasicInstructionClass(Arg)))
+ return FindSingleUseIdentifiedObject(
+ cast<CallInst>(Arg)->getArgOperand(0));
+ if (!IsObjCIdentifiedObject(Arg))
+ return 0;
+ return Arg;
+ }
+
+ // If we found an identifiable object but it has multiple uses, but they are
+ // trivial uses, we can still consider this to be a single-use value.
+ if (IsObjCIdentifiedObject(Arg)) {
+ for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
+ UI != UE; ++UI) {
+ const User *U = *UI;
+ if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
+ return 0;
+ }
+
+ return Arg;
+ }
+
+ return 0;
+}
+
+/// \brief Test whether the given retainable object pointer escapes.
+///
+/// This differs from regular escape analysis in that a use as an
+/// argument to a call is not considered an escape.
+///
+static bool DoesRetainableObjPtrEscape(const User *Ptr) {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Target: " << *Ptr << "\n");
+
+ // Walk the def-use chains.
+ SmallVector<const Value *, 4> Worklist;
+ Worklist.push_back(Ptr);
+ // If Ptr has any operands add them as well.
+ for (User::const_op_iterator I = Ptr->op_begin(), E = Ptr->op_end(); I != E;
+ ++I) {
+ Worklist.push_back(*I);
+ }
+
+ // Ensure we do not visit any value twice.
+ SmallPtrSet<const Value *, 8> VisitedSet;
+
+ do {
+ const Value *V = Worklist.pop_back_val();
+
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Visiting: " << *V << "\n");
+
+ for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ const User *UUser = *UI;
+
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User: " << *UUser << "\n");
+
+ // Special - Use by a call (callee or argument) is not considered
+ // to be an escape.
+ switch (GetBasicInstructionClass(UUser)) {
+ case IC_StoreWeak:
+ case IC_InitWeak:
+ case IC_StoreStrong:
+ case IC_Autorelease:
+ case IC_AutoreleaseRV: {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User copies pointer "
+ "arguments. Pointer Escapes!\n");
+ // These special functions make copies of their pointer arguments.
+ return true;
+ }
+ case IC_User:
+ case IC_None:
+ // Use by an instruction which copies the value is an escape if the
+ // result is an escape.
+ if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
+ isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
+
+ if (VisitedSet.insert(UUser)) {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User copies value. "
+ "Ptr escapes if result escapes. Adding to list.\n");
+ Worklist.push_back(UUser);
+ } else {
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Already visited node."
+ "\n");
+ }
+ continue;
+ }
+ // Use by a load is not an escape.
+ if (isa<LoadInst>(UUser))
+ continue;
+ // Use by a store is not an escape if the use is the address.
+ if (const StoreInst *SI = dyn_cast<StoreInst>(UUser))
+ if (V != SI->getValueOperand())
+ continue;
+ break;
+ default:
+ // Regular calls and other stuff are not considered escapes.
+ continue;
+ }
+ // Otherwise, conservatively assume an escape.
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Assuming ptr escapes.\n");
+ return true;
+ }
+ } while (!Worklist.empty());
+
+ // No escapes found.
+ DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Ptr does not escape.\n");
+ return false;
+}
+
+/// @}
+///
+/// \defgroup ARCOpt ARC Optimization.
+/// @{
+
+// TODO: On code like this:
+//
+// objc_retain(%x)
+// stuff_that_cannot_release()
+// objc_autorelease(%x)
+// stuff_that_cannot_release()
+// objc_retain(%x)
+// stuff_that_cannot_release()
+// objc_autorelease(%x)
+//
+// The second retain and autorelease can be deleted.
+
+// TODO: It should be possible to delete
+// objc_autoreleasePoolPush and objc_autoreleasePoolPop
+// pairs if nothing is actually autoreleased between them. Also, autorelease
+// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
+// after inlining) can be turned into plain release calls.
+
+// TODO: Critical-edge splitting. If the optimial insertion point is
+// a critical edge, the current algorithm has to fail, because it doesn't
+// know how to split edges. It should be possible to make the optimizer
+// think in terms of edges, rather than blocks, and then split critical
+// edges on demand.
+
+// TODO: OptimizeSequences could generalized to be Interprocedural.
+
+// TODO: Recognize that a bunch of other objc runtime calls have
+// non-escaping arguments and non-releasing arguments, and may be
+// non-autoreleasing.
+
+// TODO: Sink autorelease calls as far as possible. Unfortunately we
+// usually can't sink them past other calls, which would be the main
+// case where it would be useful.
+
+// TODO: The pointer returned from objc_loadWeakRetained is retained.
+
+// TODO: Delete release+retain pairs (rare).
+
+STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
+STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
+STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
+STATISTIC(NumRets, "Number of return value forwarding "
+ "retain+autoreleaes eliminated");
+STATISTIC(NumRRs, "Number of retain+release paths eliminated");
+STATISTIC(NumPeeps, "Number of calls peephole-optimized");
+
+namespace {
+ /// \enum Sequence
+ ///
+ /// \brief A sequence of states that a pointer may go through in which an
+ /// objc_retain and objc_release are actually needed.
+ enum Sequence {
+ S_None,
+ S_Retain, ///< objc_retain(x).
+ S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement.
+ S_Use, ///< any use of x.
+ S_Stop, ///< like S_Release, but code motion is stopped.
+ S_Release, ///< objc_release(x).
+ S_MovableRelease ///< objc_release(x), !clang.imprecise_release.
+ };
+
+ raw_ostream &operator<<(raw_ostream &OS, const Sequence S)
+ LLVM_ATTRIBUTE_UNUSED;
+ raw_ostream &operator<<(raw_ostream &OS, const Sequence S) {
+ switch (S) {
+ case S_None:
+ return OS << "S_None";
+ case S_Retain:
+ return OS << "S_Retain";
+ case S_CanRelease:
+ return OS << "S_CanRelease";
+ case S_Use:
+ return OS << "S_Use";
+ case S_Release:
+ return OS << "S_Release";
+ case S_MovableRelease:
+ return OS << "S_MovableRelease";
+ case S_Stop:
+ return OS << "S_Stop";
+ }
+ llvm_unreachable("Unknown sequence type.");
+ }
+}
+
+static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
+ // The easy cases.
+ if (A == B)
+ return A;
+ if (A == S_None || B == S_None)
+ return S_None;
+
+ if (A > B) std::swap(A, B);
+ if (TopDown) {
+ // Choose the side which is further along in the sequence.
+ if ((A == S_Retain || A == S_CanRelease) &&
+ (B == S_CanRelease || B == S_Use))
+ return B;
+ } else {
+ // Choose the side which is further along in the sequence.
+ if ((A == S_Use || A == S_CanRelease) &&
+ (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
+ return A;
+ // If both sides are releases, choose the more conservative one.
+ if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
+ return A;
+ if (A == S_Release && B == S_MovableRelease)
+ return A;
+ }
+
+ return S_None;
+}
+
+namespace {
+ /// \brief Unidirectional information about either a
+ /// retain-decrement-use-release sequence or release-use-decrement-retain
+ /// reverese sequence.
+ struct RRInfo {
+ /// After an objc_retain, the reference count of the referenced
+ /// object is known to be positive. Similarly, before an objc_release, the
+ /// reference count of the referenced object is known to be positive. If
+ /// there are retain-release pairs in code regions where the retain count
+ /// is known to be positive, they can be eliminated, regardless of any side
+ /// effects between them.
+ ///
+ /// Also, a retain+release pair nested within another retain+release
+ /// pair all on the known same pointer value can be eliminated, regardless
+ /// of any intervening side effects.
+ ///
+ /// KnownSafe is true when either of these conditions is satisfied.
+ bool KnownSafe;
+
+ /// True if the Calls are objc_retainBlock calls (as opposed to objc_retain
+ /// calls).
+ bool IsRetainBlock;
+
+ /// True of the objc_release calls are all marked with the "tail" keyword.
+ bool IsTailCallRelease;
+
+ /// If the Calls are objc_release calls and they all have a
+ /// clang.imprecise_release tag, this is the metadata tag.
+ MDNode *ReleaseMetadata;
+
+ /// For a top-down sequence, the set of objc_retains or
+ /// objc_retainBlocks. For bottom-up, the set of objc_releases.
+ SmallPtrSet<Instruction *, 2> Calls;
+
+ /// The set of optimal insert positions for moving calls in the opposite
+ /// sequence.
+ SmallPtrSet<Instruction *, 2> ReverseInsertPts;
+
+ RRInfo() :
+ KnownSafe(false), IsRetainBlock(false),
+ IsTailCallRelease(false),
+ ReleaseMetadata(0) {}
+
+ void clear();
+ };
+}
+
+void RRInfo::clear() {
+ KnownSafe = false;
+ IsRetainBlock = false;
+ IsTailCallRelease = false;
+ ReleaseMetadata = 0;
+ Calls.clear();
+ ReverseInsertPts.clear();
+}
+
+namespace {
+ /// \brief This class summarizes several per-pointer runtime properties which
+ /// are propogated through the flow graph.
+ class PtrState {
+ /// True if the reference count is known to be incremented.
+ bool KnownPositiveRefCount;
+
+ /// True of we've seen an opportunity for partial RR elimination, such as
+ /// pushing calls into a CFG triangle or into one side of a CFG diamond.
+ bool Partial;
+
+ /// The current position in the sequence.
+ Sequence Seq : 8;
+
+ public:
+ /// Unidirectional information about the current sequence.
+ ///
+ /// TODO: Encapsulate this better.
+ RRInfo RRI;
+
+ PtrState() : KnownPositiveRefCount(false), Partial(false),
+ Seq(S_None) {}
+
+ void SetKnownPositiveRefCount() {
+ KnownPositiveRefCount = true;
+ }
+
+ void ClearRefCount() {
+ KnownPositiveRefCount = false;
+ }
+
+ bool IsKnownIncremented() const {
+ return KnownPositiveRefCount;
+ }
+
+ void SetSeq(Sequence NewSeq) {
+ Seq = NewSeq;
+ }
+
+ Sequence GetSeq() const {
+ return Seq;
+ }
+
+ void ClearSequenceProgress() {
+ ResetSequenceProgress(S_None);
+ }
+
+ void ResetSequenceProgress(Sequence NewSeq) {
+ Seq = NewSeq;
+ Partial = false;
+ RRI.clear();
+ }
+
+ void Merge(const PtrState &Other, bool TopDown);
+ };
+}
+
+void
+PtrState::Merge(const PtrState &Other, bool TopDown) {
+ Seq = MergeSeqs(Seq, Other.Seq, TopDown);
+ KnownPositiveRefCount = KnownPositiveRefCount && Other.KnownPositiveRefCount;
+
+ // We can't merge a plain objc_retain with an objc_retainBlock.
+ if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
+ Seq = S_None;
+
+ // If we're not in a sequence (anymore), drop all associated state.
+ if (Seq == S_None) {
+ Partial = false;
+ RRI.clear();
+ } else if (Partial || Other.Partial) {
+ // If we're doing a merge on a path that's previously seen a partial
+ // merge, conservatively drop the sequence, to avoid doing partial
+ // RR elimination. If the branch predicates for the two merge differ,
+ // mixing them is unsafe.
+ ClearSequenceProgress();
+ } else {
+ // Conservatively merge the ReleaseMetadata information.
+ if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
+ RRI.ReleaseMetadata = 0;
+
+ RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
+ RRI.IsTailCallRelease = RRI.IsTailCallRelease &&
+ Other.RRI.IsTailCallRelease;
+ RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
+
+ // Merge the insert point sets. If there are any differences,
+ // that makes this a partial merge.
+ Partial = RRI.ReverseInsertPts.size() != Other.RRI.ReverseInsertPts.size();
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ I = Other.RRI.ReverseInsertPts.begin(),
+ E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
+ Partial |= RRI.ReverseInsertPts.insert(*I);
+ }
+}
+
+namespace {
+ /// \brief Per-BasicBlock state.
+ class BBState {
+ /// The number of unique control paths from the entry which can reach this
+ /// block.
+ unsigned TopDownPathCount;
+
+ /// The number of unique control paths to exits from this block.
+ unsigned BottomUpPathCount;
+
+ /// A type for PerPtrTopDown and PerPtrBottomUp.
+ typedef MapVector<const Value *, PtrState> MapTy;
+
+ /// The top-down traversal uses this to record information known about a
+ /// pointer at the bottom of each block.
+ MapTy PerPtrTopDown;
+
+ /// The bottom-up traversal uses this to record information known about a
+ /// pointer at the top of each block.
+ MapTy PerPtrBottomUp;
+
+ /// Effective predecessors of the current block ignoring ignorable edges and
+ /// ignored backedges.
+ SmallVector<BasicBlock *, 2> Preds;
+ /// Effective successors of the current block ignoring ignorable edges and
+ /// ignored backedges.
+ SmallVector<BasicBlock *, 2> Succs;
+
+ public:
+ BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
+
+ typedef MapTy::iterator ptr_iterator;
+ typedef MapTy::const_iterator ptr_const_iterator;
+
+ ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
+ ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
+ ptr_const_iterator top_down_ptr_begin() const {
+ return PerPtrTopDown.begin();
+ }
+ ptr_const_iterator top_down_ptr_end() const {
+ return PerPtrTopDown.end();
+ }
+
+ ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
+ ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
+ ptr_const_iterator bottom_up_ptr_begin() const {
+ return PerPtrBottomUp.begin();
+ }
+ ptr_const_iterator bottom_up_ptr_end() const {
+ return PerPtrBottomUp.end();
+ }
+
+ /// Mark this block as being an entry block, which has one path from the
+ /// entry by definition.
+ void SetAsEntry() { TopDownPathCount = 1; }
+
+ /// Mark this block as being an exit block, which has one path to an exit by
+ /// definition.
+ void SetAsExit() { BottomUpPathCount = 1; }
+
+ PtrState &getPtrTopDownState(const Value *Arg) {
+ return PerPtrTopDown[Arg];
+ }
+
+ PtrState &getPtrBottomUpState(const Value *Arg) {
+ return PerPtrBottomUp[Arg];
+ }
+
+ void clearBottomUpPointers() {
+ PerPtrBottomUp.clear();
+ }
+
+ void clearTopDownPointers() {
+ PerPtrTopDown.clear();
+ }
+
+ void InitFromPred(const BBState &Other);
+ void InitFromSucc(const BBState &Other);
+ void MergePred(const BBState &Other);
+ void MergeSucc(const BBState &Other);
+
+ /// Return the number of possible unique paths from an entry to an exit
+ /// which pass through this block. This is only valid after both the
+ /// top-down and bottom-up traversals are complete.
+ unsigned GetAllPathCount() const {
+ assert(TopDownPathCount != 0);
+ assert(BottomUpPathCount != 0);
+ return TopDownPathCount * BottomUpPathCount;
+ }
+
+ // Specialized CFG utilities.
+ typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
+ edge_iterator pred_begin() { return Preds.begin(); }
+ edge_iterator pred_end() { return Preds.end(); }
+ edge_iterator succ_begin() { return Succs.begin(); }
+ edge_iterator succ_end() { return Succs.end(); }
+
+ void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
+ void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
+
+ bool isExit() const { return Succs.empty(); }
+ };
+}
+
+void BBState::InitFromPred(const BBState &Other) {
+ PerPtrTopDown = Other.PerPtrTopDown;
+ TopDownPathCount = Other.TopDownPathCount;
+}
+
+void BBState::InitFromSucc(const BBState &Other) {
+ PerPtrBottomUp = Other.PerPtrBottomUp;
+ BottomUpPathCount = Other.BottomUpPathCount;
+}
+
+/// The top-down traversal uses this to merge information about predecessors to
+/// form the initial state for a new block.
+void BBState::MergePred(const BBState &Other) {
+ // Other.TopDownPathCount can be 0, in which case it is either dead or a
+ // loop backedge. Loop backedges are special.
+ TopDownPathCount += Other.TopDownPathCount;
+
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
+ if (TopDownPathCount < Other.TopDownPathCount) {
+ clearTopDownPointers();
+ return;
+ }
+
+ // For each entry in the other set, if our set has an entry with the same key,
+ // merge the entries. Otherwise, copy the entry and merge it with an empty
+ // entry.
+ for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
+ ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
+ std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
+ Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
+ /*TopDown=*/true);
+ }
+
+ // For each entry in our set, if the other set doesn't have an entry with the
+ // same key, force it to merge with an empty entry.
+ for (ptr_iterator MI = top_down_ptr_begin(),
+ ME = top_down_ptr_end(); MI != ME; ++MI)
+ if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
+ MI->second.Merge(PtrState(), /*TopDown=*/true);
+}
+
+/// The bottom-up traversal uses this to merge information about successors to
+/// form the initial state for a new block.
+void BBState::MergeSucc(const BBState &Other) {
+ // Other.BottomUpPathCount can be 0, in which case it is either dead or a
+ // loop backedge. Loop backedges are special.
+ BottomUpPathCount += Other.BottomUpPathCount;
+
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
+ if (BottomUpPathCount < Other.BottomUpPathCount) {
+ clearBottomUpPointers();
+ return;
+ }
+
+ // For each entry in the other set, if our set has an entry with the
+ // same key, merge the entries. Otherwise, copy the entry and merge
+ // it with an empty entry.
+ for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
+ ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
+ std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
+ Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
+ /*TopDown=*/false);
+ }
+
+ // For each entry in our set, if the other set doesn't have an entry
+ // with the same key, force it to merge with an empty entry.
+ for (ptr_iterator MI = bottom_up_ptr_begin(),
+ ME = bottom_up_ptr_end(); MI != ME; ++MI)
+ if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
+ MI->second.Merge(PtrState(), /*TopDown=*/false);
+}
+
+namespace {
+ /// \brief The main ARC optimization pass.
+ class ObjCARCOpt : public FunctionPass {
+ bool Changed;
+ ProvenanceAnalysis PA;
+
+ /// A flag indicating whether this optimization pass should run.
+ bool Run;
+
+ /// Declarations for ObjC runtime functions, for use in creating calls to
+ /// them. These are initialized lazily to avoid cluttering up the Module
+ /// with unused declarations.
+
+ /// Declaration for ObjC runtime function
+ /// objc_retainAutoreleasedReturnValue.
+ Constant *RetainRVCallee;
+ /// Declaration for ObjC runtime function objc_autoreleaseReturnValue.
+ Constant *AutoreleaseRVCallee;
+ /// Declaration for ObjC runtime function objc_release.
+ Constant *ReleaseCallee;
+ /// Declaration for ObjC runtime function objc_retain.
+ Constant *RetainCallee;
+ /// Declaration for ObjC runtime function objc_retainBlock.
+ Constant *RetainBlockCallee;
+ /// Declaration for ObjC runtime function objc_autorelease.
+ Constant *AutoreleaseCallee;
+
+ /// Flags which determine whether each of the interesting runtine functions
+ /// is in fact used in the current function.
+ unsigned UsedInThisFunction;
+
+ /// The Metadata Kind for clang.imprecise_release metadata.
+ unsigned ImpreciseReleaseMDKind;
+
+ /// The Metadata Kind for clang.arc.copy_on_escape metadata.
+ unsigned CopyOnEscapeMDKind;
+
+ /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
+ unsigned NoObjCARCExceptionsMDKind;
+
+ Constant *getRetainRVCallee(Module *M);
+ Constant *getAutoreleaseRVCallee(Module *M);
+ Constant *getReleaseCallee(Module *M);
+ Constant *getRetainCallee(Module *M);
+ Constant *getRetainBlockCallee(Module *M);
+ Constant *getAutoreleaseCallee(Module *M);
+
+ bool IsRetainBlockOptimizable(const Instruction *Inst);
+
+ void OptimizeRetainCall(Function &F, Instruction *Retain);
+ bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
+ void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
+ InstructionClass &Class);
+ void OptimizeIndividualCalls(Function &F);
+
+ void CheckForCFGHazards(const BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BBState &MyStates) const;
+ bool VisitInstructionBottomUp(Instruction *Inst,
+ BasicBlock *BB,
+ MapVector<Value *, RRInfo> &Retains,
+ BBState &MyStates);
+ bool VisitBottomUp(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains);
+ bool VisitInstructionTopDown(Instruction *Inst,
+ DenseMap<Value *, RRInfo> &Releases,
+ BBState &MyStates);
+ bool VisitTopDown(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ DenseMap<Value *, RRInfo> &Releases);
+ bool Visit(Function &F,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases);
+
+ void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ SmallVectorImpl<Instruction *> &DeadInsts,
+ Module *M);
+
+ bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M,
+ SmallVector<Instruction *, 4> &NewRetains,
+ SmallVector<Instruction *, 4> &NewReleases,
+ SmallVector<Instruction *, 8> &DeadInsts,
+ RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove,
+ Value *Arg,
+ bool KnownSafe,
+ bool &AnyPairsCompletelyEliminated);
+
+ bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M);
+
+ void OptimizeWeakCalls(Function &F);
+
+ bool OptimizeSequences(Function &F);
+
+ void OptimizeReturns(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual bool doInitialization(Module &M);
+ virtual bool runOnFunction(Function &F);
+ virtual void releaseMemory();
+
+ public:
+ static char ID;
+ ObjCARCOpt() : FunctionPass(ID) {
+ initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
+ }
+ };
+}
+
+char ObjCARCOpt::ID = 0;
+INITIALIZE_PASS_BEGIN(ObjCARCOpt,
+ "objc-arc", "ObjC ARC optimization", false, false)
+INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
+INITIALIZE_PASS_END(ObjCARCOpt,
+ "objc-arc", "ObjC ARC optimization", false, false)
+
+Pass *llvm::createObjCARCOptPass() {
+ return new ObjCARCOpt();
+}
+
+void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<ObjCARCAliasAnalysis>();
+ AU.addRequired<AliasAnalysis>();
+ // ARC optimization doesn't currently split critical edges.
+ AU.setPreservesCFG();
+}
+
+bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
+ // Without the magic metadata tag, we have to assume this might be an
+ // objc_retainBlock call inserted to convert a block pointer to an id,
+ // in which case it really is needed.
+ if (!Inst->getMetadata(CopyOnEscapeMDKind))
+ return false;
+
+ // If the pointer "escapes" (not including being used in a call),
+ // the copy may be needed.
+ if (DoesRetainableObjPtrEscape(Inst))
+ return false;
+
+ // Otherwise, it's not needed.
+ return true;
+}
+
+Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
+ if (!RetainRVCallee) {
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *Params[] = { I8X };
+ FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ RetainRVCallee =
+ M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
+ Attribute);
+ }
+ return RetainRVCallee;
+}
+
+Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
+ if (!AutoreleaseRVCallee) {
+ LLVMContext &C = M->getContext();
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *Params[] = { I8X };
+ FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ AutoreleaseRVCallee =
+ M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
+ Attribute);
+ }
+ return AutoreleaseRVCallee;
+}
+
+Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
+ if (!ReleaseCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ ReleaseCallee =
+ M->getOrInsertFunction(
+ "objc_release",
+ FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
+ Attribute);
+ }
+ return ReleaseCallee;
+}
+
+Constant *ObjCARCOpt::getRetainCallee(Module *M) {
+ if (!RetainCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ RetainCallee =
+ M->getOrInsertFunction(
+ "objc_retain",
+ FunctionType::get(Params[0], Params, /*isVarArg=*/false),
+ Attribute);
+ }
+ return RetainCallee;
+}
+
+Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
+ if (!RetainBlockCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ // objc_retainBlock is not nounwind because it calls user copy constructors
+ // which could theoretically throw.
+ RetainBlockCallee =
+ M->getOrInsertFunction(
+ "objc_retainBlock",
+ FunctionType::get(Params[0], Params, /*isVarArg=*/false),
+ AttributeSet());
+ }
+ return RetainBlockCallee;
+}
+
+Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
+ if (!AutoreleaseCallee) {
+ LLVMContext &C = M->getContext();
+ Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
+ AttributeSet Attribute =
+ AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex,
+ Attribute::NoUnwind);
+ AutoreleaseCallee =
+ M->getOrInsertFunction(
+ "objc_autorelease",
+ FunctionType::get(Params[0], Params, /*isVarArg=*/false),
+ Attribute);
+ }
+ return AutoreleaseCallee;
+}
+
+/// Turn objc_retain into objc_retainAutoreleasedReturnValue if the operand is a
+/// return value.
+void
+ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
+ ImmutableCallSite CS(GetObjCArg(Retain));
+ const Instruction *Call = CS.getInstruction();
+ if (!Call) return;
+ if (Call->getParent() != Retain->getParent()) return;
+
+ // Check that the call is next to the retain.
+ BasicBlock::const_iterator I = Call;
+ ++I;
+ while (isNoopInstruction(I)) ++I;
+ if (&*I != Retain)
+ return;
+
+ // Turn it to an objc_retainAutoreleasedReturnValue..
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainCall: Transforming "
+ "objc_retain => objc_retainAutoreleasedReturnValue"
+ " since the operand is a return value.\n"
+ " Old: "
+ << *Retain << "\n");
+
+ cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *Retain << "\n");
+}
+
+/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
+/// not a return value. Or, if it can be paired with an
+/// objc_autoreleaseReturnValue, delete the pair and return true.
+bool
+ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
+ // Check for the argument being from an immediately preceding call or invoke.
+ const Value *Arg = GetObjCArg(RetainRV);
+ ImmutableCallSite CS(Arg);
+ if (const Instruction *Call = CS.getInstruction()) {
+ if (Call->getParent() == RetainRV->getParent()) {
+ BasicBlock::const_iterator I = Call;
+ ++I;
+ while (isNoopInstruction(I)) ++I;
+ if (&*I == RetainRV)
+ return false;
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+ BasicBlock *RetainRVParent = RetainRV->getParent();
+ if (II->getNormalDest() == RetainRVParent) {
+ BasicBlock::const_iterator I = RetainRVParent->begin();
+ while (isNoopInstruction(I)) ++I;
+ if (&*I == RetainRV)
+ return false;
+ }
+ }
+ }
+
+ // Check for being preceded by an objc_autoreleaseReturnValue on the same
+ // pointer. In this case, we can delete the pair.
+ BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
+ if (I != Begin) {
+ do --I; while (I != Begin && isNoopInstruction(I));
+ if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
+ GetObjCArg(I) == Arg) {
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Erasing " << *I << "\n"
+ << " Erasing " << *RetainRV
+ << "\n");
+
+ EraseInstruction(I);
+ EraseInstruction(RetainRV);
+ return true;
+ }
+ }
+
+ // Turn it to a plain objc_retain.
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Transforming "
+ "objc_retainAutoreleasedReturnValue => "
+ "objc_retain since the operand is not a return value.\n"
+ " Old: "
+ << *RetainRV << "\n");
+
+ cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
+
+ DEBUG(dbgs() << " New: "
+ << *RetainRV << "\n");
+
+ return false;
+}
+
+/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
+/// used as a return value.
+void
+ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
+ InstructionClass &Class) {
+ // Check for a return of the pointer value.
+ const Value *Ptr = GetObjCArg(AutoreleaseRV);
+ SmallVector<const Value *, 2> Users;
+ Users.push_back(Ptr);
+ do {
+ Ptr = Users.pop_back_val();
+ for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
+ UI != UE; ++UI) {
+ const User *I = *UI;
+ if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
+ return;
+ if (isa<BitCastInst>(I))
+ Users.push_back(I);
+ }
+ } while (!Users.empty());
+
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeAutoreleaseRVCall: Transforming "
+ "objc_autoreleaseReturnValue => "
+ "objc_autorelease since its operand is not used as a return "
+ "value.\n"
+ " Old: "
+ << *AutoreleaseRV << "\n");
+
+ CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
+ AutoreleaseRVCI->
+ setCalledFunction(getAutoreleaseCallee(F.getParent()));
+ AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
+ Class = IC_Autorelease;
+
+ DEBUG(dbgs() << " New: "
+ << *AutoreleaseRV << "\n");
+
+}
+
+/// Visit each call, one at a time, and make simplifications without doing any
+/// additional analysis.
+void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
+ // Reset all the flags in preparation for recomputing them.
+ UsedInThisFunction = 0;
+
+ // Visit all objc_* calls in F.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Visiting: Class: "
+ << Class << "; " << *Inst << "\n");
+
+ switch (Class) {
+ default: break;
+
+ // Delete no-op casts. These function calls have special semantics, but
+ // the semantics are entirely implemented via lowering in the front-end,
+ // so by the time they reach the optimizer, they are just no-op calls
+ // which return their argument.
+ //
+ // There are gray areas here, as the ability to cast reference-counted
+ // pointers to raw void* and back allows code to break ARC assumptions,
+ // however these are currently considered to be unimportant.
+ case IC_NoopCast:
+ Changed = true;
+ ++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Erasing no-op cast:"
+ " " << *Inst << "\n");
+ EraseInstruction(Inst);
+ continue;
+
+ // If the pointer-to-weak-pointer is null, it's undefined behavior.
+ case IC_StoreWeak:
+ case IC_LoadWeak:
+ case IC_LoadWeakRetained:
+ case IC_InitWeak:
+ case IC_DestroyWeak: {
+ CallInst *CI = cast<CallInst>(Inst);
+ if (isNullOrUndef(CI->getArgOperand(0))) {
+ Changed = true;
+ Type *Ty = CI->getArgOperand(0)->getType();
+ new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
+ Constant::getNullValue(Ty),
+ CI);
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+ CI->replaceAllUsesWith(NewValue);
+ CI->eraseFromParent();
+ continue;
+ }
+ break;
+ }
+ case IC_CopyWeak:
+ case IC_MoveWeak: {
+ CallInst *CI = cast<CallInst>(Inst);
+ if (isNullOrUndef(CI->getArgOperand(0)) ||
+ isNullOrUndef(CI->getArgOperand(1))) {
+ Changed = true;
+ Type *Ty = CI->getArgOperand(0)->getType();
+ new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
+ Constant::getNullValue(Ty),
+ CI);
+
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null "
+ "pointer-to-weak-pointer is undefined behavior.\n"
+ " Old = " << *CI <<
+ "\n New = " <<
+ *NewValue << "\n");
+
+ CI->replaceAllUsesWith(NewValue);
+ CI->eraseFromParent();
+ continue;
+ }
+ break;
+ }
+ case IC_Retain:
+ OptimizeRetainCall(F, Inst);
+ break;
+ case IC_RetainRV:
+ if (OptimizeRetainRVCall(F, Inst))
+ continue;
+ break;
+ case IC_AutoreleaseRV:
+ OptimizeAutoreleaseRVCall(F, Inst, Class);
+ break;
+ }
+
+ // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
+ if (IsAutorelease(Class) && Inst->use_empty()) {
+ CallInst *Call = cast<CallInst>(Inst);
+ const Value *Arg = Call->getArgOperand(0);
+ Arg = FindSingleUseIdentifiedObject(Arg);
+ if (Arg) {
+ Changed = true;
+ ++NumAutoreleases;
+
+ // Create the declaration lazily.
+ LLVMContext &C = Inst->getContext();
+ CallInst *NewCall =
+ CallInst::Create(getReleaseCallee(F.getParent()),
+ Call->getArgOperand(0), "", Call);
+ NewCall->setMetadata(ImpreciseReleaseMDKind,
+ MDNode::get(C, ArrayRef<Value *>()));
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Replacing "
+ "objc_autorelease(x) with objc_release(x) since x is "
+ "otherwise unused.\n"
+ " Old: " << *Call <<
+ "\n New: " <<
+ *NewCall << "\n");
+
+ EraseInstruction(Call);
+ Inst = NewCall;
+ Class = IC_Release;
+ }
+ }
+
+ // For functions which can never be passed stack arguments, add
+ // a tail keyword.
+ if (IsAlwaysTail(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Adding tail keyword"
+ " to function since it can never be passed stack args: " << *Inst <<
+ "\n");
+ cast<CallInst>(Inst)->setTailCall();
+ }
+
+ // Ensure that functions that can never have a "tail" keyword due to the
+ // semantics of ARC truly do not do so.
+ if (IsNeverTail(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Removing tail "
+ "keyword from function: " << *Inst <<
+ "\n");
+ cast<CallInst>(Inst)->setTailCall(false);
+ }
+
+ // Set nounwind as needed.
+ if (IsNoThrow(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Found no throw"
+ " class. Setting nounwind on: " << *Inst << "\n");
+ cast<CallInst>(Inst)->setDoesNotThrow();
+ }
+
+ if (!IsNoopOnNull(Class)) {
+ UsedInThisFunction |= 1 << Class;
+ continue;
+ }
+
+ const Value *Arg = GetObjCArg(Inst);
+
+ // ARC calls with null are no-ops. Delete them.
+ if (isNullOrUndef(Arg)) {
+ Changed = true;
+ ++NumNoops;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: ARC calls with "
+ " null are no-ops. Erasing: " << *Inst << "\n");
+ EraseInstruction(Inst);
+ continue;
+ }
+
+ // Keep track of which of retain, release, autorelease, and retain_block
+ // are actually present in this function.
+ UsedInThisFunction |= 1 << Class;
+
+ // If Arg is a PHI, and one or more incoming values to the
+ // PHI are null, and the call is control-equivalent to the PHI, and there
+ // are no relevant side effects between the PHI and the call, the call
+ // could be pushed up to just those paths with non-null incoming values.
+ // For now, don't bother splitting critical edges for this.
+ SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
+ Worklist.push_back(std::make_pair(Inst, Arg));
+ do {
+ std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
+ Inst = Pair.first;
+ Arg = Pair.second;
+
+ const PHINode *PN = dyn_cast<PHINode>(Arg);
+ if (!PN) continue;
+
+ // Determine if the PHI has any null operands, or any incoming
+ // critical edges.
+ bool HasNull = false;
+ bool HasCriticalEdges = false;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming =
+ StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
+ if (isNullOrUndef(Incoming))
+ HasNull = true;
+ else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
+ .getNumSuccessors() != 1) {
+ HasCriticalEdges = true;
+ break;
+ }
+ }
+ // If we have null operands and no critical edges, optimize.
+ if (!HasCriticalEdges && HasNull) {
+ SmallPtrSet<Instruction *, 4> DependingInstructions;
+ SmallPtrSet<const BasicBlock *, 4> Visited;
+
+ // Check that there is nothing that cares about the reference
+ // count between the call and the phi.
+ switch (Class) {
+ case IC_Retain:
+ case IC_RetainBlock:
+ // These can always be moved up.
+ break;
+ case IC_Release:
+ // These can't be moved across things that care about the retain
+ // count.
+ FindDependencies(NeedsPositiveRetainCount, Arg,
+ Inst->getParent(), Inst,
+ DependingInstructions, Visited, PA);
+ break;
+ case IC_Autorelease:
+ // These can't be moved across autorelease pool scope boundaries.
+ FindDependencies(AutoreleasePoolBoundary, Arg,
+ Inst->getParent(), Inst,
+ DependingInstructions, Visited, PA);
+ break;
+ case IC_RetainRV:
+ case IC_AutoreleaseRV:
+ // Don't move these; the RV optimization depends on the autoreleaseRV
+ // being tail called, and the retainRV being immediately after a call
+ // (which might still happen if we get lucky with codegen layout, but
+ // it's not worth taking the chance).
+ continue;
+ default:
+ llvm_unreachable("Invalid dependence flavor");
+ }
+
+ if (DependingInstructions.size() == 1 &&
+ *DependingInstructions.begin() == PN) {
+ Changed = true;
+ ++NumPartialNoops;
+ // Clone the call into each predecessor that has a non-null value.
+ CallInst *CInst = cast<CallInst>(Inst);
+ Type *ParamTy = CInst->getArgOperand(0)->getType();
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming =
+ StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
+ if (!isNullOrUndef(Incoming)) {
+ CallInst *Clone = cast<CallInst>(CInst->clone());
+ Value *Op = PN->getIncomingValue(i);
+ Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
+ if (Op->getType() != ParamTy)
+ Op = new BitCastInst(Op, ParamTy, "", InsertPos);
+ Clone->setArgOperand(0, Op);
+ Clone->insertBefore(InsertPos);
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Cloning "
+ << *CInst << "\n"
+ " And inserting "
+ "clone at " << *InsertPos << "\n");
+ Worklist.push_back(std::make_pair(Clone, Incoming));
+ }
+ }
+ // Erase the original call.
+ DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
+ EraseInstruction(CInst);
+ continue;
+ }
+ }
+ } while (!Worklist.empty());
+ }
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Finished List.\n");
+}
+
+/// Check for critical edges, loop boundaries, irreducible control flow, or
+/// other CFG structures where moving code across the edge would result in it
+/// being executed more.
+void
+ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BBState &MyStates) const {
+ // If any top-down local-use or possible-dec has a succ which is earlier in
+ // the sequence, forget it.
+ for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
+ E = MyStates.top_down_ptr_end(); I != E; ++I)
+ switch (I->second.GetSeq()) {
+ default: break;
+ case S_Use: {
+ const Value *Arg = I->first;
+ const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
+ bool SomeSuccHasSame = false;
+ bool AllSuccsHaveSame = true;
+ PtrState &S = I->second;
+ succ_const_iterator SI(TI), SE(TI, false);
+
+ for (; SI != SE; ++SI) {
+ Sequence SuccSSeq = S_None;
+ bool SuccSRRIKnownSafe = false;
+ // If VisitBottomUp has pointer information for this successor, take
+ // what we know about it.
+ DenseMap<const BasicBlock *, BBState>::iterator BBI =
+ BBStates.find(*SI);
+ assert(BBI != BBStates.end());
+ const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
+ SuccSSeq = SuccS.GetSeq();
+ SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
+ switch (SuccSSeq) {
+ case S_None:
+ case S_CanRelease: {
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
+ S.ClearSequenceProgress();
+ break;
+ }
+ continue;
+ }
+ case S_Use:
+ SomeSuccHasSame = true;
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
+ AllSuccsHaveSame = false;
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+ // If the state at the other end of any of the successor edges
+ // matches the current state, require all edges to match. This
+ // guards against loops in the middle of a sequence.
+ if (SomeSuccHasSame && !AllSuccsHaveSame)
+ S.ClearSequenceProgress();
+ break;
+ }
+ case S_CanRelease: {
+ const Value *Arg = I->first;
+ const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
+ bool SomeSuccHasSame = false;
+ bool AllSuccsHaveSame = true;
+ PtrState &S = I->second;
+ succ_const_iterator SI(TI), SE(TI, false);
+
+ for (; SI != SE; ++SI) {
+ Sequence SuccSSeq = S_None;
+ bool SuccSRRIKnownSafe = false;
+ // If VisitBottomUp has pointer information for this successor, take
+ // what we know about it.
+ DenseMap<const BasicBlock *, BBState>::iterator BBI =
+ BBStates.find(*SI);
+ assert(BBI != BBStates.end());
+ const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
+ SuccSSeq = SuccS.GetSeq();
+ SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
+ switch (SuccSSeq) {
+ case S_None: {
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
+ S.ClearSequenceProgress();
+ break;
+ }
+ continue;
+ }
+ case S_CanRelease:
+ SomeSuccHasSame = true;
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ case S_Use:
+ if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
+ AllSuccsHaveSame = false;
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+ // If the state at the other end of any of the successor edges
+ // matches the current state, require all edges to match. This
+ // guards against loops in the middle of a sequence.
+ if (SomeSuccHasSame && !AllSuccsHaveSame)
+ S.ClearSequenceProgress();
+ break;
+ }
+ }
+}
+
+bool
+ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
+ BasicBlock *BB,
+ MapVector<Value *, RRInfo> &Retains,
+ BBState &MyStates) {
+ bool NestingDetected = false;
+ InstructionClass Class = GetInstructionClass(Inst);
+ const Value *Arg = 0;
+
+ switch (Class) {
+ case IC_Release: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrBottomUpState(Arg);
+
+ // If we see two releases in a row on the same pointer. If so, make
+ // a note, and we'll cicle back to revisit it after we've
+ // hopefully eliminated the second release, which may allow us to
+ // eliminate the first release too.
+ // Theoretically we could implement removal of nested retain+release
+ // pairs by making PtrState hold a stack of states, but this is
+ // simple and avoids adding overhead for the non-nested case.
+ if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) {
+ DEBUG(dbgs() << "ObjCARCOpt::VisitInstructionBottomUp: Found nested "
+ "releases (i.e. a release pair)\n");
+ NestingDetected = true;
+ }
+
+ MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
+ S.ResetSequenceProgress(ReleaseMetadata ? S_MovableRelease : S_Release);
+ S.RRI.ReleaseMetadata = ReleaseMetadata;
+ S.RRI.KnownSafe = S.IsKnownIncremented();
+ S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
+ S.RRI.Calls.insert(Inst);
+
+ S.SetKnownPositiveRefCount();
+ break;
+ }
+ case IC_RetainBlock:
+ // An objc_retainBlock call with just a use may need to be kept,
+ // because it may be copying a block from the stack to the heap.
+ if (!IsRetainBlockOptimizable(Inst))
+ break;
+ // FALLTHROUGH
+ case IC_Retain:
+ case IC_RetainRV: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrBottomUpState(Arg);
+ S.SetKnownPositiveRefCount();
+
+ switch (S.GetSeq()) {
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ case S_Use:
+ S.RRI.ReverseInsertPts.clear();
+ // FALL THROUGH
+ case S_CanRelease:
+ // Don't do retain+release tracking for IC_RetainRV, because it's
+ // better to let it remain as the first instruction after a call.
+ if (Class != IC_RetainRV) {
+ S.RRI.IsRetainBlock = Class == IC_RetainBlock;
+ Retains[Inst] = S.RRI;
+ }
+ S.ClearSequenceProgress();
+ break;
+ case S_None:
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ return NestingDetected;
+ }
+ case IC_AutoreleasepoolPop:
+ // Conservatively, clear MyStates for all known pointers.
+ MyStates.clearBottomUpPointers();
+ return NestingDetected;
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ // These are irrelevant.
+ return NestingDetected;
+ default:
+ break;
+ }
+
+ // Consider any other possible effects of this instruction on each
+ // pointer being tracked.
+ for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
+ ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
+ const Value *Ptr = MI->first;
+ if (Ptr == Arg)
+ continue; // Handled above.
+ PtrState &S = MI->second;
+ Sequence Seq = S.GetSeq();
+
+ // Check for possible releases.
+ if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
+ S.ClearRefCount();
+ switch (Seq) {
+ case S_Use:
+ S.SetSeq(S_CanRelease);
+ continue;
+ case S_CanRelease:
+ case S_Release:
+ case S_MovableRelease:
+ case S_Stop:
+ case S_None:
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+
+ // Check for possible direct uses.
+ switch (Seq) {
+ case S_Release:
+ case S_MovableRelease:
+ if (CanUse(Inst, Ptr, PA, Class)) {
+ assert(S.RRI.ReverseInsertPts.empty());
+ // If this is an invoke instruction, we're scanning it as part of
+ // one of its successor blocks, since we can't insert code after it
+ // in its own block, and we don't want to split critical edges.
+ if (isa<InvokeInst>(Inst))
+ S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
+ else
+ S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
+ S.SetSeq(S_Use);
+ } else if (Seq == S_Release &&
+ (Class == IC_User || Class == IC_CallOrUser)) {
+ // Non-movable releases depend on any possible objc pointer use.
+ S.SetSeq(S_Stop);
+ assert(S.RRI.ReverseInsertPts.empty());
+ // As above; handle invoke specially.
+ if (isa<InvokeInst>(Inst))
+ S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
+ else
+ S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
+ }
+ break;
+ case S_Stop:
+ if (CanUse(Inst, Ptr, PA, Class))
+ S.SetSeq(S_Use);
+ break;
+ case S_CanRelease:
+ case S_Use:
+ case S_None:
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ }
+ }
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains) {
+ bool NestingDetected = false;
+ BBState &MyStates = BBStates[BB];
+
+ // Merge the states from each successor to compute the initial state
+ // for the current block.
+ BBState::edge_iterator SI(MyStates.succ_begin()),
+ SE(MyStates.succ_end());
+ if (SI != SE) {
+ const BasicBlock *Succ = *SI;
+ DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
+ assert(I != BBStates.end());
+ MyStates.InitFromSucc(I->second);
+ ++SI;
+ for (; SI != SE; ++SI) {
+ Succ = *SI;
+ I = BBStates.find(Succ);
+ assert(I != BBStates.end());
+ MyStates.MergeSucc(I->second);
+ }
+ }
+
+ // Visit all the instructions, bottom-up.
+ for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
+ Instruction *Inst = llvm::prior(I);
+
+ // Invoke instructions are visited as part of their successors (below).
+ if (isa<InvokeInst>(Inst))
+ continue;
+
+ DEBUG(dbgs() << "ObjCARCOpt::VisitButtonUp: Visiting " << *Inst << "\n");
+
+ NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
+ }
+
+ // If there's a predecessor with an invoke, visit the invoke as if it were
+ // part of this block, since we can't insert code after an invoke in its own
+ // block, and we don't want to split critical edges.
+ for (BBState::edge_iterator PI(MyStates.pred_begin()),
+ PE(MyStates.pred_end()); PI != PE; ++PI) {
+ BasicBlock *Pred = *PI;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
+ NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
+ }
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
+ DenseMap<Value *, RRInfo> &Releases,
+ BBState &MyStates) {
+ bool NestingDetected = false;
+ InstructionClass Class = GetInstructionClass(Inst);
+ const Value *Arg = 0;
+
+ switch (Class) {
+ case IC_RetainBlock:
+ // An objc_retainBlock call with just a use may need to be kept,
+ // because it may be copying a block from the stack to the heap.
+ if (!IsRetainBlockOptimizable(Inst))
+ break;
+ // FALLTHROUGH
+ case IC_Retain:
+ case IC_RetainRV: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrTopDownState(Arg);
+
+ // Don't do retain+release tracking for IC_RetainRV, because it's
+ // better to let it remain as the first instruction after a call.
+ if (Class != IC_RetainRV) {
+ // If we see two retains in a row on the same pointer. If so, make
+ // a note, and we'll cicle back to revisit it after we've
+ // hopefully eliminated the second retain, which may allow us to
+ // eliminate the first retain too.
+ // Theoretically we could implement removal of nested retain+release
+ // pairs by making PtrState hold a stack of states, but this is
+ // simple and avoids adding overhead for the non-nested case.
+ if (S.GetSeq() == S_Retain)
+ NestingDetected = true;
+
+ S.ResetSequenceProgress(S_Retain);
+ S.RRI.IsRetainBlock = Class == IC_RetainBlock;
+ S.RRI.KnownSafe = S.IsKnownIncremented();
+ S.RRI.Calls.insert(Inst);
+ }
+
+ S.SetKnownPositiveRefCount();
+
+ // A retain can be a potential use; procede to the generic checking
+ // code below.
+ break;
+ }
+ case IC_Release: {
+ Arg = GetObjCArg(Inst);
+
+ PtrState &S = MyStates.getPtrTopDownState(Arg);
+ S.ClearRefCount();
+
+ switch (S.GetSeq()) {
+ case S_Retain:
+ case S_CanRelease:
+ S.RRI.ReverseInsertPts.clear();
+ // FALL THROUGH
+ case S_Use:
+ S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
+ S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
+ Releases[Inst] = S.RRI;
+ S.ClearSequenceProgress();
+ break;
+ case S_None:
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ llvm_unreachable("top-down pointer in release state!");
+ }
+ break;
+ }
+ case IC_AutoreleasepoolPop:
+ // Conservatively, clear MyStates for all known pointers.
+ MyStates.clearTopDownPointers();
+ return NestingDetected;
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ // These are irrelevant.
+ return NestingDetected;
+ default:
+ break;
+ }
+
+ // Consider any other possible effects of this instruction on each
+ // pointer being tracked.
+ for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
+ ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
+ const Value *Ptr = MI->first;
+ if (Ptr == Arg)
+ continue; // Handled above.
+ PtrState &S = MI->second;
+ Sequence Seq = S.GetSeq();
+
+ // Check for possible releases.
+ if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
+ S.ClearRefCount();
+ switch (Seq) {
+ case S_Retain:
+ S.SetSeq(S_CanRelease);
+ assert(S.RRI.ReverseInsertPts.empty());
+ S.RRI.ReverseInsertPts.insert(Inst);
+
+ // One call can't cause a transition from S_Retain to S_CanRelease
+ // and S_CanRelease to S_Use. If we've made the first transition,
+ // we're done.
+ continue;
+ case S_Use:
+ case S_CanRelease:
+ case S_None:
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ llvm_unreachable("top-down pointer in release state!");
+ }
+ }
+
+ // Check for possible direct uses.
+ switch (Seq) {
+ case S_CanRelease:
+ if (CanUse(Inst, Ptr, PA, Class))
+ S.SetSeq(S_Use);
+ break;
+ case S_Retain:
+ case S_Use:
+ case S_None:
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ llvm_unreachable("top-down pointer in release state!");
+ }
+ }
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitTopDown(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ DenseMap<Value *, RRInfo> &Releases) {
+ bool NestingDetected = false;
+ BBState &MyStates = BBStates[BB];
+
+ // Merge the states from each predecessor to compute the initial state
+ // for the current block.
+ BBState::edge_iterator PI(MyStates.pred_begin()),
+ PE(MyStates.pred_end());
+ if (PI != PE) {
+ const BasicBlock *Pred = *PI;
+ DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
+ assert(I != BBStates.end());
+ MyStates.InitFromPred(I->second);
+ ++PI;
+ for (; PI != PE; ++PI) {
+ Pred = *PI;
+ I = BBStates.find(Pred);
+ assert(I != BBStates.end());
+ MyStates.MergePred(I->second);
+ }
+ }
+
+ // Visit all the instructions, top-down.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ Instruction *Inst = I;
+
+ DEBUG(dbgs() << "ObjCARCOpt::VisitTopDown: Visiting " << *Inst << "\n");
+
+ NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
+ }
+
+ CheckForCFGHazards(BB, BBStates, MyStates);
+ return NestingDetected;
+}
+
+static void
+ComputePostOrders(Function &F,
+ SmallVectorImpl<BasicBlock *> &PostOrder,
+ SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
+ unsigned NoObjCARCExceptionsMDKind,
+ DenseMap<const BasicBlock *, BBState> &BBStates) {
+ /// The visited set, for doing DFS walks.
+ SmallPtrSet<BasicBlock *, 16> Visited;
+
+ // Do DFS, computing the PostOrder.
+ SmallPtrSet<BasicBlock *, 16> OnStack;
+ SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
+
+ // Functions always have exactly one entry block, and we don't have
+ // any other block that we treat like an entry block.
+ BasicBlock *EntryBB = &F.getEntryBlock();
+ BBState &MyStates = BBStates[EntryBB];
+ MyStates.SetAsEntry();
+ TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
+ SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
+ Visited.insert(EntryBB);
+ OnStack.insert(EntryBB);
+ do {
+ dfs_next_succ:
+ BasicBlock *CurrBB = SuccStack.back().first;
+ TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
+ succ_iterator SE(TI, false);
+
+ while (SuccStack.back().second != SE) {
+ BasicBlock *SuccBB = *SuccStack.back().second++;
+ if (Visited.insert(SuccBB)) {
+ TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
+ SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
+ BBStates[CurrBB].addSucc(SuccBB);
+ BBState &SuccStates = BBStates[SuccBB];
+ SuccStates.addPred(CurrBB);
+ OnStack.insert(SuccBB);
+ goto dfs_next_succ;
+ }
+
+ if (!OnStack.count(SuccBB)) {
+ BBStates[CurrBB].addSucc(SuccBB);
+ BBStates[SuccBB].addPred(CurrBB);
+ }
+ }
+ OnStack.erase(CurrBB);
+ PostOrder.push_back(CurrBB);
+ SuccStack.pop_back();
+ } while (!SuccStack.empty());
+
+ Visited.clear();
+
+ // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
+ // Functions may have many exits, and there also blocks which we treat
+ // as exits due to ignored edges.
+ SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
+ for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ BasicBlock *ExitBB = I;
+ BBState &MyStates = BBStates[ExitBB];
+ if (!MyStates.isExit())
+ continue;
+
+ MyStates.SetAsExit();
+
+ PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
+ Visited.insert(ExitBB);
+ while (!PredStack.empty()) {
+ reverse_dfs_next_succ:
+ BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
+ while (PredStack.back().second != PE) {
+ BasicBlock *BB = *PredStack.back().second++;
+ if (Visited.insert(BB)) {
+ PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
+ goto reverse_dfs_next_succ;
+ }
+ }
+ ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
+ }
+ }
+}
+
+// Visit the function both top-down and bottom-up.
+bool
+ObjCARCOpt::Visit(Function &F,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases) {
+
+ // Use reverse-postorder traversals, because we magically know that loops
+ // will be well behaved, i.e. they won't repeatedly call retain on a single
+ // pointer without doing a release. We can't use the ReversePostOrderTraversal
+ // class here because we want the reverse-CFG postorder to consider each
+ // function exit point, and we want to ignore selected cycle edges.
+ SmallVector<BasicBlock *, 16> PostOrder;
+ SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
+ ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
+ NoObjCARCExceptionsMDKind,
+ BBStates);
+
+ // Use reverse-postorder on the reverse CFG for bottom-up.
+ bool BottomUpNestingDetected = false;
+ for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
+ ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
+ I != E; ++I)
+ BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
+
+ // Use reverse-postorder for top-down.
+ bool TopDownNestingDetected = false;
+ for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
+ PostOrder.rbegin(), E = PostOrder.rend();
+ I != E; ++I)
+ TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
+
+ return TopDownNestingDetected && BottomUpNestingDetected;
+}
+
+/// Move the calls in RetainsToMove and ReleasesToMove.
+void ObjCARCOpt::MoveCalls(Value *Arg,
+ RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ SmallVectorImpl<Instruction *> &DeadInsts,
+ Module *M) {
+ Type *ArgTy = Arg->getType();
+ Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
+
+ // Insert the new retain and release calls.
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ PI = ReleasesToMove.ReverseInsertPts.begin(),
+ PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
+ Instruction *InsertPt = *PI;
+ Value *MyArg = ArgTy == ParamTy ? Arg :
+ new BitCastInst(Arg, ParamTy, "", InsertPt);
+ CallInst *Call =
+ CallInst::Create(RetainsToMove.IsRetainBlock ?
+ getRetainBlockCallee(M) : getRetainCallee(M),
+ MyArg, "", InsertPt);
+ Call->setDoesNotThrow();
+ if (RetainsToMove.IsRetainBlock)
+ Call->setMetadata(CopyOnEscapeMDKind,
+ MDNode::get(M->getContext(), ArrayRef<Value *>()));
+ else
+ Call->setTailCall();
+
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Release: " << *Call
+ << "\n"
+ " At insertion point: " << *InsertPt
+ << "\n");
+ }
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ PI = RetainsToMove.ReverseInsertPts.begin(),
+ PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
+ Instruction *InsertPt = *PI;
+ Value *MyArg = ArgTy == ParamTy ? Arg :
+ new BitCastInst(Arg, ParamTy, "", InsertPt);
+ CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
+ "", InsertPt);
+ // Attach a clang.imprecise_release metadata tag, if appropriate.
+ if (MDNode *M = ReleasesToMove.ReleaseMetadata)
+ Call->setMetadata(ImpreciseReleaseMDKind, M);
+ Call->setDoesNotThrow();
+ if (ReleasesToMove.IsTailCallRelease)
+ Call->setTailCall();
+
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Retain: " << *Call
+ << "\n"
+ " At insertion point: " << *InsertPt
+ << "\n");
+ }
+
+ // Delete the original retain and release calls.
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ AI = RetainsToMove.Calls.begin(),
+ AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
+ Instruction *OrigRetain = *AI;
+ Retains.blot(OrigRetain);
+ DeadInsts.push_back(OrigRetain);
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting retain: " << *OrigRetain <<
+ "\n");
+ }
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ AI = ReleasesToMove.Calls.begin(),
+ AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
+ Instruction *OrigRelease = *AI;
+ Releases.erase(OrigRelease);
+ DeadInsts.push_back(OrigRelease);
+ DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting release: " << *OrigRelease
+ << "\n");
+ }
+}
+
+bool
+ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
+ &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M,
+ SmallVector<Instruction *, 4> &NewRetains,
+ SmallVector<Instruction *, 4> &NewReleases,
+ SmallVector<Instruction *, 8> &DeadInsts,
+ RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove,
+ Value *Arg,
+ bool KnownSafe,
+ bool &AnyPairsCompletelyEliminated) {
+ // If a pair happens in a region where it is known that the reference count
+ // is already incremented, we can similarly ignore possible decrements.
+ bool KnownSafeTD = true, KnownSafeBU = true;
+
+ // Connect the dots between the top-down-collected RetainsToMove and
+ // bottom-up-collected ReleasesToMove to form sets of related calls.
+ // This is an iterative process so that we connect multiple releases
+ // to multiple retains if needed.
+ unsigned OldDelta = 0;
+ unsigned NewDelta = 0;
+ unsigned OldCount = 0;
+ unsigned NewCount = 0;
+ bool FirstRelease = true;
+ bool FirstRetain = true;
+ for (;;) {
+ for (SmallVectorImpl<Instruction *>::const_iterator
+ NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
+ Instruction *NewRetain = *NI;
+ MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
+ assert(It != Retains.end());
+ const RRInfo &NewRetainRRI = It->second;
+ KnownSafeTD &= NewRetainRRI.KnownSafe;
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ LI = NewRetainRRI.Calls.begin(),
+ LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
+ Instruction *NewRetainRelease = *LI;
+ DenseMap<Value *, RRInfo>::const_iterator Jt =
+ Releases.find(NewRetainRelease);
+ if (Jt == Releases.end())
+ return false;
+ const RRInfo &NewRetainReleaseRRI = Jt->second;
+ assert(NewRetainReleaseRRI.Calls.count(NewRetain));
+ if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
+ OldDelta -=
+ BBStates[NewRetainRelease->getParent()].GetAllPathCount();
+
+ // Merge the ReleaseMetadata and IsTailCallRelease values.
+ if (FirstRelease) {
+ ReleasesToMove.ReleaseMetadata =
+ NewRetainReleaseRRI.ReleaseMetadata;
+ ReleasesToMove.IsTailCallRelease =
+ NewRetainReleaseRRI.IsTailCallRelease;
+ FirstRelease = false;
+ } else {
+ if (ReleasesToMove.ReleaseMetadata !=
+ NewRetainReleaseRRI.ReleaseMetadata)
+ ReleasesToMove.ReleaseMetadata = 0;
+ if (ReleasesToMove.IsTailCallRelease !=
+ NewRetainReleaseRRI.IsTailCallRelease)
+ ReleasesToMove.IsTailCallRelease = false;
+ }
+
+ // Collect the optimal insertion points.
+ if (!KnownSafe)
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
+ RE = NewRetainReleaseRRI.ReverseInsertPts.end();
+ RI != RE; ++RI) {
+ Instruction *RIP = *RI;
+ if (ReleasesToMove.ReverseInsertPts.insert(RIP))
+ NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
+ }
+ NewReleases.push_back(NewRetainRelease);
+ }
+ }
+ }
+ NewRetains.clear();
+ if (NewReleases.empty()) break;
+
+ // Back the other way.
+ for (SmallVectorImpl<Instruction *>::const_iterator
+ NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
+ Instruction *NewRelease = *NI;
+ DenseMap<Value *, RRInfo>::const_iterator It =
+ Releases.find(NewRelease);
+ assert(It != Releases.end());
+ const RRInfo &NewReleaseRRI = It->second;
+ KnownSafeBU &= NewReleaseRRI.KnownSafe;
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ LI = NewReleaseRRI.Calls.begin(),
+ LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
+ Instruction *NewReleaseRetain = *LI;
+ MapVector<Value *, RRInfo>::const_iterator Jt =
+ Retains.find(NewReleaseRetain);
+ if (Jt == Retains.end())
+ return false;
+ const RRInfo &NewReleaseRetainRRI = Jt->second;
+ assert(NewReleaseRetainRRI.Calls.count(NewRelease));
+ if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
+ unsigned PathCount =
+ BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
+ OldDelta += PathCount;
+ OldCount += PathCount;
+
+ // Merge the IsRetainBlock values.
+ if (FirstRetain) {
+ RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
+ FirstRetain = false;
+ } else if (ReleasesToMove.IsRetainBlock !=
+ NewReleaseRetainRRI.IsRetainBlock)
+ // It's not possible to merge the sequences if one uses
+ // objc_retain and the other uses objc_retainBlock.
+ return false;
+
+ // Collect the optimal insertion points.
+ if (!KnownSafe)
+ for (SmallPtrSet<Instruction *, 2>::const_iterator
+ RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
+ RE = NewReleaseRetainRRI.ReverseInsertPts.end();
+ RI != RE; ++RI) {
+ Instruction *RIP = *RI;
+ if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
+ PathCount = BBStates[RIP->getParent()].GetAllPathCount();
+ NewDelta += PathCount;
+ NewCount += PathCount;
+ }
+ }
+ NewRetains.push_back(NewReleaseRetain);
+ }
+ }
+ }
+ NewReleases.clear();
+ if (NewRetains.empty()) break;
+ }
+
+ // If the pointer is known incremented or nested, we can safely delete the
+ // pair regardless of what's between them.
+ if (KnownSafeTD || KnownSafeBU) {
+ RetainsToMove.ReverseInsertPts.clear();
+ ReleasesToMove.ReverseInsertPts.clear();
+ NewCount = 0;
+ } else {
+ // Determine whether the new insertion points we computed preserve the
+ // balance of retain and release calls through the program.
+ // TODO: If the fully aggressive solution isn't valid, try to find a
+ // less aggressive solution which is.
+ if (NewDelta != 0)
+ return false;
+ }
+
+ // Determine whether the original call points are balanced in the retain and
+ // release calls through the program. If not, conservatively don't touch
+ // them.
+ // TODO: It's theoretically possible to do code motion in this case, as
+ // long as the existing imbalances are maintained.
+ if (OldDelta != 0)
+ return false;
+
+ Changed = true;
+ assert(OldCount != 0 && "Unreachable code?");
+ NumRRs += OldCount - NewCount;
+ // Set to true if we completely removed any RR pairs.
+ AnyPairsCompletelyEliminated = NewCount == 0;
+
+ // We can move calls!
+ return true;
+}
+
+/// Identify pairings between the retains and releases, and delete and/or move
+/// them.
+bool
+ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
+ &BBStates,
+ MapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ Module *M) {
+ bool AnyPairsCompletelyEliminated = false;
+ RRInfo RetainsToMove;
+ RRInfo ReleasesToMove;
+ SmallVector<Instruction *, 4> NewRetains;
+ SmallVector<Instruction *, 4> NewReleases;
+ SmallVector<Instruction *, 8> DeadInsts;
+
+ // Visit each retain.
+ for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
+ E = Retains.end(); I != E; ++I) {
+ Value *V = I->first;
+ if (!V) continue; // blotted
+
+ Instruction *Retain = cast<Instruction>(V);
+
+ DEBUG(dbgs() << "ObjCARCOpt::PerformCodePlacement: Visiting: " << *Retain
+ << "\n");
+
+ Value *Arg = GetObjCArg(Retain);
+
+ // If the object being released is in static or stack storage, we know it's
+ // not being managed by ObjC reference counting, so we can delete pairs
+ // regardless of what possible decrements or uses lie between them.
+ bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
+
+ // A constant pointer can't be pointing to an object on the heap. It may
+ // be reference-counted, but it won't be deleted.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
+ if (const GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(
+ StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
+ if (GV->isConstant())
+ KnownSafe = true;
+
+ // Connect the dots between the top-down-collected RetainsToMove and
+ // bottom-up-collected ReleasesToMove to form sets of related calls.
+ NewRetains.push_back(Retain);
+ bool PerformMoveCalls =
+ ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains,
+ NewReleases, DeadInsts, RetainsToMove,
+ ReleasesToMove, Arg, KnownSafe,
+ AnyPairsCompletelyEliminated);
+
+ if (PerformMoveCalls) {
+ // Ok, everything checks out and we're all set. Let's move/delete some
+ // code!
+ MoveCalls(Arg, RetainsToMove, ReleasesToMove,
+ Retains, Releases, DeadInsts, M);
+ }
+
+ // Clean up state for next retain.
+ NewReleases.clear();
+ NewRetains.clear();
+ RetainsToMove.clear();
+ ReleasesToMove.clear();
+ }
+
+ // Now that we're done moving everything, we can delete the newly dead
+ // instructions, as we no longer need them as insert points.
+ while (!DeadInsts.empty())
+ EraseInstruction(DeadInsts.pop_back_val());
+
+ return AnyPairsCompletelyEliminated;
+}
+
+/// Weak pointer optimizations.
+void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
+ // First, do memdep-style RLE and S2L optimizations. We can't use memdep
+ // itself because it uses AliasAnalysis and we need to do provenance
+ // queries instead.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Visiting: " << *Inst <<
+ "\n");
+
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+ if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
+ continue;
+
+ // Delete objc_loadWeak calls with no users.
+ if (Class == IC_LoadWeak && Inst->use_empty()) {
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // TODO: For now, just look for an earlier available version of this value
+ // within the same block. Theoretically, we could do memdep-style non-local
+ // analysis too, but that would want caching. A better approach would be to
+ // use the technique that EarlyCSE uses.
+ inst_iterator Current = llvm::prior(I);
+ BasicBlock *CurrentBB = Current.getBasicBlockIterator();
+ for (BasicBlock::iterator B = CurrentBB->begin(),
+ J = Current.getInstructionIterator();
+ J != B; --J) {
+ Instruction *EarlierInst = &*llvm::prior(J);
+ InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
+ switch (EarlierClass) {
+ case IC_LoadWeak:
+ case IC_LoadWeakRetained: {
+ // If this is loading from the same pointer, replace this load's value
+ // with that one.
+ CallInst *Call = cast<CallInst>(Inst);
+ CallInst *EarlierCall = cast<CallInst>(EarlierInst);
+ Value *Arg = Call->getArgOperand(0);
+ Value *EarlierArg = EarlierCall->getArgOperand(0);
+ switch (PA.getAA()->alias(Arg, EarlierArg)) {
+ case AliasAnalysis::MustAlias:
+ Changed = true;
+ // If the load has a builtin retain, insert a plain retain for it.
+ if (Class == IC_LoadWeakRetained) {
+ CallInst *CI =
+ CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
+ "", Call);
+ CI->setTailCall();
+ }
+ // Zap the fully redundant load.
+ Call->replaceAllUsesWith(EarlierCall);
+ Call->eraseFromParent();
+ goto clobbered;
+ case AliasAnalysis::MayAlias:
+ case AliasAnalysis::PartialAlias:
+ goto clobbered;
+ case AliasAnalysis::NoAlias:
+ break;
+ }
+ break;
+ }
+ case IC_StoreWeak:
+ case IC_InitWeak: {
+ // If this is storing to the same pointer and has the same size etc.
+ // replace this load's value with the stored value.
+ CallInst *Call = cast<CallInst>(Inst);
+ CallInst *EarlierCall = cast<CallInst>(EarlierInst);
+ Value *Arg = Call->getArgOperand(0);
+ Value *EarlierArg = EarlierCall->getArgOperand(0);
+ switch (PA.getAA()->alias(Arg, EarlierArg)) {
+ case AliasAnalysis::MustAlias:
+ Changed = true;
+ // If the load has a builtin retain, insert a plain retain for it.
+ if (Class == IC_LoadWeakRetained) {
+ CallInst *CI =
+ CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
+ "", Call);
+ CI->setTailCall();
+ }
+ // Zap the fully redundant load.
+ Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
+ Call->eraseFromParent();
+ goto clobbered;
+ case AliasAnalysis::MayAlias:
+ case AliasAnalysis::PartialAlias:
+ goto clobbered;
+ case AliasAnalysis::NoAlias:
+ break;
+ }
+ break;
+ }
+ case IC_MoveWeak:
+ case IC_CopyWeak:
+ // TOOD: Grab the copied value.
+ goto clobbered;
+ case IC_AutoreleasepoolPush:
+ case IC_None:
+ case IC_User:
+ // Weak pointers are only modified through the weak entry points
+ // (and arbitrary calls, which could call the weak entry points).
+ break;
+ default:
+ // Anything else could modify the weak pointer.
+ goto clobbered;
+ }
+ }
+ clobbered:;
+ }
+
+ // Then, for each destroyWeak with an alloca operand, check to see if
+ // the alloca and all its users can be zapped.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+ InstructionClass Class = GetBasicInstructionClass(Inst);
+ if (Class != IC_DestroyWeak)
+ continue;
+
+ CallInst *Call = cast<CallInst>(Inst);
+ Value *Arg = Call->getArgOperand(0);
+ if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
+ for (Value::use_iterator UI = Alloca->use_begin(),
+ UE = Alloca->use_end(); UI != UE; ++UI) {
+ const Instruction *UserInst = cast<Instruction>(*UI);
+ switch (GetBasicInstructionClass(UserInst)) {
+ case IC_InitWeak:
+ case IC_StoreWeak:
+ case IC_DestroyWeak:
+ continue;
+ default:
+ goto done;
+ }
+ }
+ Changed = true;
+ for (Value::use_iterator UI = Alloca->use_begin(),
+ UE = Alloca->use_end(); UI != UE; ) {
+ CallInst *UserInst = cast<CallInst>(*UI++);
+ switch (GetBasicInstructionClass(UserInst)) {
+ case IC_InitWeak:
+ case IC_StoreWeak:
+ // These functions return their second argument.
+ UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
+ break;
+ case IC_DestroyWeak:
+ // No return value.
+ break;
+ default:
+ llvm_unreachable("alloca really is used!");
+ }
+ UserInst->eraseFromParent();
+ }
+ Alloca->eraseFromParent();
+ done:;
+ }
+ }
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Finished List.\n\n");
+
+}
+
+/// Identify program paths which execute sequences of retains and releases which
+/// can be eliminated.
+bool ObjCARCOpt::OptimizeSequences(Function &F) {
+ /// Releases, Retains - These are used to store the results of the main flow
+ /// analysis. These use Value* as the key instead of Instruction* so that the
+ /// map stays valid when we get around to rewriting code and calls get
+ /// replaced by arguments.
+ DenseMap<Value *, RRInfo> Releases;
+ MapVector<Value *, RRInfo> Retains;
+
+ /// This is used during the traversal of the function to track the
+ /// states for each identified object at each block.
+ DenseMap<const BasicBlock *, BBState> BBStates;
+
+ // Analyze the CFG of the function, and all instructions.
+ bool NestingDetected = Visit(F, BBStates, Retains, Releases);
+
+ // Transform.
+ return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
+ NestingDetected;
+}
+
+/// Look for this pattern:
+/// \code
+/// %call = call i8* @something(...)
+/// %2 = call i8* @objc_retain(i8* %call)
+/// %3 = call i8* @objc_autorelease(i8* %2)
+/// ret i8* %3
+/// \endcode
+/// And delete the retain and autorelease.
+///
+/// Otherwise if it's just this:
+/// \code
+/// %3 = call i8* @objc_autorelease(i8* %2)
+/// ret i8* %3
+/// \endcode
+/// convert the autorelease to autoreleaseRV.
+void ObjCARCOpt::OptimizeReturns(Function &F) {
+ if (!F.getReturnType()->isPointerTy())
+ return;
+
+ SmallPtrSet<Instruction *, 4> DependingInstructions;
+ SmallPtrSet<const BasicBlock *, 4> Visited;
+ for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
+ BasicBlock *BB = FI;
+ ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Visiting: " << *Ret << "\n");
+
+ if (!Ret) continue;
+
+ const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
+ FindDependencies(NeedsPositiveRetainCount, Arg,
+ BB, Ret, DependingInstructions, Visited, PA);
+ if (DependingInstructions.size() != 1)
+ goto next_block;
+
+ {
+ CallInst *Autorelease =
+ dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
+ if (!Autorelease)
+ goto next_block;
+ InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
+ if (!IsAutorelease(AutoreleaseClass))
+ goto next_block;
+ if (GetObjCArg(Autorelease) != Arg)
+ goto next_block;
+
+ DependingInstructions.clear();
+ Visited.clear();
+
+ // Check that there is nothing that can affect the reference
+ // count between the autorelease and the retain.
+ FindDependencies(CanChangeRetainCount, Arg,
+ BB, Autorelease, DependingInstructions, Visited, PA);
+ if (DependingInstructions.size() != 1)
+ goto next_block;
+
+ {
+ CallInst *Retain =
+ dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
+
+ // Check that we found a retain with the same argument.
+ if (!Retain ||
+ !IsRetain(GetBasicInstructionClass(Retain)) ||
+ GetObjCArg(Retain) != Arg)
+ goto next_block;
+
+ DependingInstructions.clear();
+ Visited.clear();
+
+ // Convert the autorelease to an autoreleaseRV, since it's
+ // returning the value.
+ if (AutoreleaseClass == IC_Autorelease) {
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Converting autorelease "
+ "=> autoreleaseRV since it's returning a value.\n"
+ " In: " << *Autorelease
+ << "\n");
+ Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
+ DEBUG(dbgs() << " Out: " << *Autorelease
+ << "\n");
+ Autorelease->setTailCall(); // Always tail call autoreleaseRV.
+ AutoreleaseClass = IC_AutoreleaseRV;
+ }
+
+ // Check that there is nothing that can affect the reference
+ // count between the retain and the call.
+ // Note that Retain need not be in BB.
+ FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
+ DependingInstructions, Visited, PA);
+ if (DependingInstructions.size() != 1)
+ goto next_block;
+
+ {
+ CallInst *Call =
+ dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
+
+ // Check that the pointer is the return value of the call.
+ if (!Call || Arg != Call)
+ goto next_block;
+
+ // Check that the call is a regular call.
+ InstructionClass Class = GetBasicInstructionClass(Call);
+ if (Class != IC_CallOrUser && Class != IC_Call)
+ goto next_block;
+
+ // If so, we can zap the retain and autorelease.
+ Changed = true;
+ ++NumRets;
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Erasing: " << *Retain
+ << "\n Erasing: "
+ << *Autorelease << "\n");
+ EraseInstruction(Retain);
+ EraseInstruction(Autorelease);
+ }
+ }
+ }
+
+ next_block:
+ DependingInstructions.clear();
+ Visited.clear();
+ }
+
+ DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Finished List.\n\n");
+
+}
+
+bool ObjCARCOpt::doInitialization(Module &M) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ Run = ModuleHasARC(M);
+ if (!Run)
+ return false;
+
+ // Identify the imprecise release metadata kind.
+ ImpreciseReleaseMDKind =
+ M.getContext().getMDKindID("clang.imprecise_release");
+ CopyOnEscapeMDKind =
+ M.getContext().getMDKindID("clang.arc.copy_on_escape");
+ NoObjCARCExceptionsMDKind =
+ M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
+
+ // Intuitively, objc_retain and others are nocapture, however in practice
+ // they are not, because they return their argument value. And objc_release
+ // calls finalizers which can have arbitrary side effects.
+
+ // These are initialized lazily.
+ RetainRVCallee = 0;
+ AutoreleaseRVCallee = 0;
+ ReleaseCallee = 0;
+ RetainCallee = 0;
+ RetainBlockCallee = 0;
+ AutoreleaseCallee = 0;
+
+ return false;
+}
+
+bool ObjCARCOpt::runOnFunction(Function &F) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ if (!Run)
+ return false;
+
+ Changed = false;
+
+ DEBUG(dbgs() << "ObjCARCOpt: Visiting Function: " << F.getName() << "\n");
+
+ PA.setAA(&getAnalysis<AliasAnalysis>());
+
+ // This pass performs several distinct transformations. As a compile-time aid
+ // when compiling code that isn't ObjC, skip these if the relevant ObjC
+ // library functions aren't declared.
+
+ // Preliminary optimizations. This also computs UsedInThisFunction.
+ OptimizeIndividualCalls(F);
+
+ // Optimizations for weak pointers.
+ if (UsedInThisFunction & ((1 << IC_LoadWeak) |
+ (1 << IC_LoadWeakRetained) |
+ (1 << IC_StoreWeak) |
+ (1 << IC_InitWeak) |
+ (1 << IC_CopyWeak) |
+ (1 << IC_MoveWeak) |
+ (1 << IC_DestroyWeak)))
+ OptimizeWeakCalls(F);
+
+ // Optimizations for retain+release pairs.
+ if (UsedInThisFunction & ((1 << IC_Retain) |
+ (1 << IC_RetainRV) |
+ (1 << IC_RetainBlock)))
+ if (UsedInThisFunction & (1 << IC_Release))
+ // Run OptimizeSequences until it either stops making changes or
+ // no retain+release pair nesting is detected.
+ while (OptimizeSequences(F)) {}
+
+ // Optimizations if objc_autorelease is used.
+ if (UsedInThisFunction & ((1 << IC_Autorelease) |
+ (1 << IC_AutoreleaseRV)))
+ OptimizeReturns(F);
+
+ DEBUG(dbgs() << "\n");
+
+ return Changed;
+}
+
+void ObjCARCOpt::releaseMemory() {
+ PA.clear();
+}
+
+/// @}
+///