aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineCasts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstCombineCasts.cpp376
1 files changed, 204 insertions, 172 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 19de62c81f..d162223a6f 100644
--- a/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -13,7 +13,7 @@
#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/DataLayout.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
@@ -30,7 +30,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Scale = 0;
return ConstantInt::get(Val->getType(), 0);
}
-
+
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
// Cannot look past anything that might overflow.
OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
@@ -47,19 +47,19 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Offset = 0;
return I->getOperand(0);
}
-
+
if (I->getOpcode() == Instruction::Mul) {
// This value is scaled by 'RHS'.
Scale = RHS->getZExtValue();
Offset = 0;
return I->getOperand(0);
}
-
+
if (I->getOpcode() == Instruction::Add) {
- // We have X+C. Check to see if we really have (X*C2)+C1,
+ // We have X+C. Check to see if we really have (X*C2)+C1,
// where C1 is divisible by C2.
unsigned SubScale;
- Value *SubVal =
+ Value *SubVal =
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
Offset += RHS->getZExtValue();
Scale = SubScale;
@@ -82,7 +82,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
if (!TD) return 0;
PointerType *PTy = cast<PointerType>(CI.getType());
-
+
BuilderTy AllocaBuilder(*Builder);
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
@@ -104,13 +104,19 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
if (CastElTySize == 0 || AllocElTySize == 0) return 0;
+ // If the allocation has multiple uses, only promote it if we're not
+ // shrinking the amount of memory being allocated.
+ uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy);
+ uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy);
+ if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0;
+
// See if we can satisfy the modulus by pulling a scale out of the array
// size argument.
unsigned ArraySizeScale;
uint64_t ArrayOffset;
Value *NumElements = // See if the array size is a decomposable linear expr.
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
-
+
// If we can now satisfy the modulus, by using a non-1 scale, we really can
// do the xform.
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
@@ -125,17 +131,17 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// Insert before the alloca, not before the cast.
Amt = AllocaBuilder.CreateMul(Amt, NumElements);
}
-
+
if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Offset, true);
Amt = AllocaBuilder.CreateAdd(Amt, Off);
}
-
+
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
New->setAlignment(AI.getAlignment());
New->takeName(&AI);
-
+
// If the allocation has multiple real uses, insert a cast and change all
// things that used it to use the new cast. This will also hack on CI, but it
// will die soon.
@@ -148,10 +154,10 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
return ReplaceInstUsesWith(CI, New);
}
-/// EvaluateInDifferentType - Given an expression that
+/// EvaluateInDifferentType - Given an expression that
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
/// insert the code to evaluate the expression.
-Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
+Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V)) {
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
@@ -181,7 +187,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
break;
- }
+ }
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
@@ -190,7 +196,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
// new.
if (I->getOperand(0)->getType() == Ty)
return I->getOperand(0);
-
+
// Otherwise, must be the same type of cast, so just reinsert a new one.
// This also handles the case of zext(trunc(x)) -> zext(x).
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
@@ -212,11 +218,11 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Res = NPN;
break;
}
- default:
+ default:
// TODO: Can handle more cases here.
llvm_unreachable("Unreachable!");
}
-
+
Res->takeName(I);
return InsertNewInstWith(Res, *I);
}
@@ -224,7 +230,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
-static Instruction::CastOps
+static Instruction::CastOps
isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
@@ -253,7 +259,7 @@ isEliminableCastPair(
if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
(Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
Res = 0;
-
+
return Instruction::CastOps(Res);
}
@@ -265,18 +271,18 @@ bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
Type *Ty) {
// Noop casts and casts of constants should be eliminated trivially.
if (V->getType() == Ty || isa<Constant>(V)) return false;
-
+
// If this is another cast that can be eliminated, we prefer to have it
// eliminated.
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastPair(CI, opc, Ty, TD))
return false;
-
+
// If this is a vector sext from a compare, then we don't want to break the
// idiom where each element of the extended vector is either zero or all ones.
if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
return false;
-
+
return true;
}
@@ -288,7 +294,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
- if (Instruction::CastOps opc =
+ if (Instruction::CastOps opc =
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
@@ -311,7 +317,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
}
-
+
return 0;
}
@@ -330,15 +336,15 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
Type *OrigTy = V->getType();
-
+
// If this is an extension from the dest type, we can eliminate it, even if it
// has multiple uses.
- if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
I->getOperand(0)->getType() == Ty)
return true;
@@ -423,29 +429,29 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// TODO: Can handle more cases here.
break;
}
-
+
return false;
}
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
-
- // See if we can simplify any instructions used by the input whose sole
+
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *DestTy = CI.getType(), *SrcTy = Src->getType();
-
+
// Attempt to truncate the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
CanEvaluateTruncated(Src, DestTy)) {
-
+
// If this cast is a truncate, evaluting in a different type always
// eliminates the cast, so it is always a win.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
@@ -462,7 +468,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
-
+
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Value *A = 0; ConstantInt *Cst = 0;
if (Src->hasOneUse() &&
@@ -472,7 +478,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
// between ASize and ResultSize.
unsigned ASize = A->getType()->getPrimitiveSizeInBits();
-
+
// If the shift amount is larger than the size of A, then the result is
// known to be zero because all the input bits got shifted out.
if (Cst->getZExtValue() >= ASize)
@@ -485,7 +491,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Shift->takeName(Src);
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
}
-
+
// Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
// type isn't non-native.
if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
@@ -508,7 +514,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// cast to integer to avoid the comparison.
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
const APInt &Op1CV = Op1C->getValue();
-
+
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
@@ -538,14 +544,14 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
+ if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
// This only works for EQ and NE
ICI->isEquality()) {
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
-
+
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
if (!DoXform) return ICI;
@@ -559,7 +565,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
-
+
uint32_t ShiftAmt = KnownZeroMask.logBase2();
Value *In = ICI->getOperand(0);
if (ShiftAmt) {
@@ -568,12 +574,12 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
In->getName()+".lobit");
}
-
+
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One);
}
-
+
if (CI.getType() == In->getType())
return ReplaceInstUsesWith(CI, In);
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
@@ -646,19 +652,19 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
BitsToClear = 0;
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If the input is a truncate from the destination type, we can trivially
// eliminate it.
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
-
+
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
-
+
unsigned Opc = I->getOpcode(), Tmp;
switch (Opc) {
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
@@ -678,7 +684,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// These can all be promoted if neither operand has 'bits to clear'.
if (BitsToClear == 0 && Tmp == 0)
return true;
-
+
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
// other side, BitsToClear is ok.
if (Tmp == 0 &&
@@ -691,10 +697,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
APInt::getHighBitsSet(VSize, BitsToClear)))
return true;
}
-
+
// Otherwise, we don't know how to analyze this BitsToClear case yet.
return false;
-
+
case Instruction::LShr:
// We can promote lshr(x, cst) if we can promote x. This requires the
// ultimate 'and' to clear out the high zero bits we're clearing out though.
@@ -716,7 +722,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
Tmp != BitsToClear)
return false;
return true;
-
+
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
@@ -739,48 +745,48 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
}
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
- // If this zero extend is only used by a truncate, let the truncate by
+ // If this zero extend is only used by a truncate, let the truncate be
// eliminated before we try to optimize this zext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
-
+
// If one of the common conversion will work, do it.
if (Instruction *Result = commonCastTransforms(CI))
return Result;
- // See if we can simplify any instructions used by the input whose sole
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
-
+
// Attempt to extend the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
unsigned BitsToClear;
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
+ CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
"Unreasonable BitsToClear");
-
+
// Okay, we can transform this! Insert the new expression now.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid zero extend: " << CI);
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
assert(Res->getType() == DestTy);
-
+
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
+
// If the high bits are already filled with zeros, just replace this
// cast with the result.
if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
DestBitSize-SrcBitsKept)))
return ReplaceInstUsesWith(CI, Res);
-
+
// We need to emit an AND to clear the high bits.
Constant *C = ConstantInt::get(Res->getType(),
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
@@ -792,7 +798,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// 'and' which will be much cheaper than the pair of casts.
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
// TODO: Subsume this into EvaluateInDifferentType.
-
+
// Get the sizes of the types involved. We know that the intermediate type
// will be smaller than A or C, but don't know the relation between A and C.
Value *A = CSrc->getOperand(0);
@@ -809,7 +815,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
}
-
+
if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
@@ -818,7 +824,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (SrcSize > DstSize) {
Value *Trunc = Builder->CreateTrunc(A, CI.getType());
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
- return BinaryOperator::CreateAnd(Trunc,
+ return BinaryOperator::CreateAnd(Trunc,
ConstantInt::get(Trunc->getType(),
AndValue));
}
@@ -876,7 +882,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Value *New = Builder->CreateZExt(X, CI.getType());
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
}
-
+
return 0;
}
@@ -989,14 +995,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// If this is a constant, it can be trivially promoted.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If this is a truncate from the dest type, we can trivially eliminate it.
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
-
+
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
@@ -1015,14 +1021,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// These operators can all arbitrarily be extended if their inputs can.
return CanEvaluateSExtd(I->getOperand(0), Ty) &&
CanEvaluateSExtd(I->getOperand(1), Ty);
-
+
//case Instruction::Shl: TODO
//case Instruction::LShr: TODO
-
+
case Instruction::Select:
return CanEvaluateSExtd(I->getOperand(1), Ty) &&
CanEvaluateSExtd(I->getOperand(2), Ty);
-
+
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
@@ -1036,24 +1042,24 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// TODO: Can handle more cases here.
break;
}
-
+
return false;
}
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
- // If this sign extend is only used by a truncate, let the truncate by
- // eliminated before we try to optimize this zext.
+ // If this sign extend is only used by a truncate, let the truncate be
+ // eliminated before we try to optimize this sext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
-
+
if (Instruction *I = commonCastTransforms(CI))
return I;
-
- // See if we can simplify any instructions used by the input whose sole
+
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
@@ -1076,7 +1082,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// cast with the result.
if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
return ReplaceInstUsesWith(CI, Res);
-
+
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
@@ -1089,7 +1095,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
+
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
@@ -1125,7 +1131,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
A = Builder->CreateShl(A, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(A, ShAmtV);
}
-
+
return 0;
}
@@ -1147,7 +1153,7 @@ static Value *LookThroughFPExtensions(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0));
-
+
// If this value is a constant, return the constant in the smallest FP type
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
@@ -1166,14 +1172,14 @@ static Value *LookThroughFPExtensions(Value *V) {
return V;
// Don't try to shrink to various long double types.
}
-
+
return V;
}
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
-
+
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
// smaller than the destination type, we can eliminate the truncate by doing
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
@@ -1190,7 +1196,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
- if (LHSTrunc->getType() != SrcTy &&
+ if (LHSTrunc->getType() != SrcTy &&
RHSTrunc->getType() != SrcTy) {
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If the source types were both smaller than the destination type of
@@ -1202,10 +1208,36 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
- break;
+ break;
+ }
+
+ // (fptrunc (fneg x)) -> (fneg (fptrunc x))
+ if (BinaryOperator::isFNeg(OpI)) {
+ Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
+ CI.getType());
+ return BinaryOperator::CreateFNeg(InnerTrunc);
+ }
+ }
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
+ if (II) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::fabs: {
+ // (fptrunc (fabs x)) -> (fabs (fptrunc x))
+ Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
+ CI.getType());
+ Type *IntrinsicType[] = { CI.getType() };
+ Function *Overload =
+ Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
+ II->getIntrinsicID(), IntrinsicType);
+
+ Value *Args[] = { InnerTrunc };
+ return CallInst::Create(Overload, Args, II->getName());
+ }
}
}
-
+
// Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
@@ -1220,7 +1252,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
Arg->getOperand(0)->getType()->isFloatTy()) {
Function *Callee = Call->getCalledFunction();
Module *M = CI.getParent()->getParent()->getParent();
- Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
+ Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
Callee->getAttributes(),
Builder->getFloatTy(),
Builder->getFloatTy(),
@@ -1228,15 +1260,15 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
"sqrtfcall");
ret->setAttributes(Callee->getAttributes());
-
-
+
+
// Remove the old Call. With -fmath-errno, it won't get marked readnone.
ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
EraseInstFromFunction(*Call);
return ret;
}
}
-
+
return 0;
}
@@ -1254,7 +1286,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
+ // 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
@@ -1268,19 +1300,19 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
-
+
// fptosi(sitofp(X)) --> X
// fptosi(uitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
+ // 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() <=
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
-
+
return commonCastTransforms(FI);
}
@@ -1296,21 +1328,16 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// If the source integer type is not the intptr_t type for this target, do a
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
// cast to be exposed to other transforms.
- if (TD) {
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
- TD->getPointerSizeInBits()) {
- Value *P = Builder->CreateTrunc(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new IntToPtrInst(P, CI.getType());
- }
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
- TD->getPointerSizeInBits()) {
- Value *P = Builder->CreateZExt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new IntToPtrInst(P, CI.getType());
- }
+ if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() !=
+ TD->getPointerSizeInBits()) {
+ Type *Ty = TD->getIntPtrType(CI.getContext());
+ if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
+ Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
+
+ Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
+ return new IntToPtrInst(P, CI.getType());
}
-
+
if (Instruction *I = commonCastTransforms(CI))
return I;
@@ -1320,34 +1347,32 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
-
+
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
if (GEP->hasAllZeroIndices()) {
// Changing the cast operand is usually not a good idea but it is safe
- // here because the pointer operand is being replaced with another
+ // here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
-
+
// If the GEP has a single use, and the base pointer is a bitcast, and the
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
+ APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
- GEP->hasAllConstantIndices()) {
- SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
- int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
-
+ GEP->accumulateConstantOffset(*TD, Offset)) {
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
+ if (FindElementAtOffset(GEPIdxTy, Offset.getSExtValue(), NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
@@ -1355,15 +1380,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
Builder->CreateGEP(OrigBase, NewIndices);
NGEP->takeName(GEP);
-
+
if (isa<BitCastInst>(CI))
return new BitCastInst(NGEP, CI.getType());
assert(isa<PtrToIntInst>(CI));
return new PtrToIntInst(NGEP, CI.getType());
- }
+ }
}
}
-
+
return commonCastTransforms(CI);
}
@@ -1371,19 +1396,15 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// If the destination integer type is not the intptr_t type for this target,
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
// to be exposed to other transforms.
- if (TD) {
- if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
- Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new TruncInst(P, CI.getType());
- }
- if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
- Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
- return new ZExtInst(P, CI.getType());
- }
+ if (TD && CI.getType()->getScalarSizeInBits() != TD->getPointerSizeInBits()) {
+ Type *Ty = TD->getIntPtrType(CI.getContext());
+ if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
+ Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
+
+ Value *P = Builder->CreatePtrToInt(CI.getOperand(0), Ty);
+ return CastInst::CreateIntegerCast(P, CI.getType(), /*isSigned=*/false);
}
-
+
return commonPointerCastTransforms(CI);
}
@@ -1398,33 +1419,33 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
// element size, or the input is a multiple of the output element size.
// Convert the input type to have the same element type as the output.
VectorType *SrcTy = cast<VectorType>(InVal->getType());
-
+
if (SrcTy->getElementType() != DestTy->getElementType()) {
// The input types don't need to be identical, but for now they must be the
// same size. There is no specific reason we couldn't handle things like
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
- // there yet.
+ // there yet.
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
DestTy->getElementType()->getPrimitiveSizeInBits())
return 0;
-
+
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
}
-
+
// Now that the element types match, get the shuffle mask and RHS of the
// shuffle to use, which depends on whether we're increasing or decreasing the
// size of the input.
SmallVector<uint32_t, 16> ShuffleMask;
Value *V2;
-
+
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
// If we're shrinking the number of elements, just shuffle in the low
// elements from the input and use undef as the second shuffle input.
V2 = UndefValue::get(SrcTy);
for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
ShuffleMask.push_back(i);
-
+
} else {
// If we're increasing the number of elements, shuffle in all of the
// elements from InVal and fill the rest of the result elements with zeros
@@ -1438,7 +1459,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
ShuffleMask.push_back(SrcElts);
}
-
+
return new ShuffleVectorInst(InVal, V2,
ConstantDataVector::get(V2->getContext(),
ShuffleMask));
@@ -1465,7 +1486,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
Type *VecEltTy) {
// Undef values never contribute useful bits to the result.
if (isa<UndefValue>(V)) return true;
-
+
// If we got down to a value of the right type, we win, try inserting into the
// right element.
if (V->getType() == VecEltTy) {
@@ -1473,15 +1494,15 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (Constant *C = dyn_cast<Constant>(V))
if (C->isNullValue())
return true;
-
+
// Fail if multiple elements are inserted into this slot.
if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
return false;
-
+
Elements[ElementIndex] = V;
return true;
}
-
+
if (Constant *C = dyn_cast<Constant>(V)) {
// Figure out the # elements this provides, and bitcast it or slice it up
// as required.
@@ -1492,7 +1513,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (NumElts == 1)
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
ElementIndex, Elements, VecEltTy);
-
+
// Okay, this is a constant that covers multiple elements. Slice it up into
// pieces and insert each element-sized piece into the vector.
if (!isa<IntegerType>(C->getType()))
@@ -1500,7 +1521,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
C->getType()->getPrimitiveSizeInBits()));
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
-
+
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
i*ElementSize));
@@ -1510,23 +1531,23 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
}
return true;
}
-
+
if (!V->hasOneUse()) return false;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return false;
switch (I->getOpcode()) {
default: return false; // Unhandled case.
case Instruction::BitCast:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
- Elements, VecEltTy);
+ Elements, VecEltTy);
case Instruction::ZExt:
if (!isMultipleOfTypeSize(
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
VecEltTy))
return false;
return CollectInsertionElements(I->getOperand(0), ElementIndex,
- Elements, VecEltTy);
+ Elements, VecEltTy);
case Instruction::Or:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
Elements, VecEltTy) &&
@@ -1538,11 +1559,11 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (CI == 0) return false;
if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
-
+
return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
Elements, VecEltTy);
}
-
+
}
}
@@ -1577,11 +1598,11 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
Value *Result = Constant::getNullValue(CI.getType());
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
if (Elements[i] == 0) continue; // Unset element.
-
+
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
IC.Builder->getInt32(i));
}
-
+
return Result;
}
@@ -1609,11 +1630,11 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
-
+
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
}
}
-
+
// bitcast(trunc(lshr(bitcast(somevector), cst))
ConstantInt *ShAmt = 0;
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
@@ -1630,7 +1651,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
-
+
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
@@ -1654,12 +1675,12 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
PointerType *SrcPTy = cast<PointerType>(SrcTy);
Type *DstElTy = DstPTy->getElementType();
Type *SrcElTy = SrcPTy->getElementType();
-
+
// If the address spaces don't match, don't eliminate the bitcast, which is
// required for changing types.
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
-
+
// If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
// There is no need to modify malloc calls because it is their bitcast that
@@ -1667,14 +1688,14 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
-
+
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
Constant *ZeroUInt =
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
unsigned NumZeros = 0;
- while (SrcElTy != DstElTy &&
+ while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
SrcElTy->getNumContainedTypes() /* not "{}" */) {
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
@@ -1687,7 +1708,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
return GetElementPtrInst::CreateInBounds(Src, Idxs);
}
}
-
+
// Try to optimize int -> float bitcasts.
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
@@ -1700,7 +1721,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
}
-
+
if (isa<IntegerType>(SrcTy)) {
// If this is a cast from an integer to vector, check to see if the input
// is a trunc or zext of a bitcast from vector. If so, we can replace all
@@ -1713,7 +1734,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
cast<VectorType>(DestTy), *this))
return I;
}
-
+
// If the input is an 'or' instruction, we may be doing shifts and ors to
// assemble the elements of the vector manually. Try to rip the code out
// and replace it with insertelements.
@@ -1723,18 +1744,29 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
}
if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
- if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
- Value *Elem =
- Builder->CreateExtractElement(Src,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ if (SrcVTy->getNumElements() == 1) {
+ // If our destination is not a vector, then make this a straight
+ // scalar-scalar cast.
+ if (!DestTy->isVectorTy()) {
+ Value *Elem =
+ Builder->CreateExtractElement(Src,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ }
+
+ // Otherwise, see if our source is an insert. If so, then use the scalar
+ // component directly.
+ if (InsertElementInst *IEI =
+ dyn_cast<InsertElementInst>(CI.getOperand(0)))
+ return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
+ DestTy);
}
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
// a bitcast to a vector with the same # elts.
- if (SVI->hasOneUse() && DestTy->isVectorTy() &&
+ if (SVI->hasOneUse() && DestTy->isVectorTy() &&
cast<VectorType>(DestTy)->getNumElements() ==
SVI->getType()->getNumElements() &&
SVI->getType()->getNumElements() ==
@@ -1743,9 +1775,9 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If either of the operands is a cast from CI.getType(), then
// evaluating the shuffle in the casted destination's type will allow
// us to eliminate at least one cast.
- if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
+ if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
Tmp->getOperand(0)->getType() == DestTy) ||
- ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
+ ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
@@ -1755,7 +1787,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
}
}
}
-
+
if (SrcTy->isPointerTy())
return commonPointerCastTransforms(CI);
return commonCastTransforms(CI);