diff options
Diffstat (limited to 'lib/Transforms/IPO/FunctionResolution.cpp')
-rw-r--r-- | lib/Transforms/IPO/FunctionResolution.cpp | 358 |
1 files changed, 358 insertions, 0 deletions
diff --git a/lib/Transforms/IPO/FunctionResolution.cpp b/lib/Transforms/IPO/FunctionResolution.cpp new file mode 100644 index 0000000000..8b5019a0af --- /dev/null +++ b/lib/Transforms/IPO/FunctionResolution.cpp @@ -0,0 +1,358 @@ +//===- FunctionResolution.cpp - Resolve declarations to implementations ---===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Loop over the functions that are in the module and look for functions that +// have the same name. More often than not, there will be things like: +// +// declare void %foo(...) +// void %foo(int, int) { ... } +// +// because of the way things are declared in C. If this is the case, patch +// things up. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO.h" +#include "llvm/Module.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Pass.h" +#include "llvm/Instructions.h" +#include "llvm/Constants.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/ADT/Statistic.h" +#include <algorithm> +using namespace llvm; + +namespace { + Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved"); + Statistic<> NumGlobals("funcresolve", "Number of global variables resolved"); + + struct FunctionResolvingPass : public ModulePass { + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<TargetData>(); + } + + bool runOnModule(Module &M); + }; + RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions"); +} + +ModulePass *llvm::createFunctionResolvingPass() { + return new FunctionResolvingPass(); +} + +static bool ResolveFunctions(Module &M, std::vector<GlobalValue*> &Globals, + Function *Concrete) { + bool Changed = false; + for (unsigned i = 0; i != Globals.size(); ++i) + if (Globals[i] != Concrete) { + Function *Old = cast<Function>(Globals[i]); + const FunctionType *OldMT = Old->getFunctionType(); + const FunctionType *ConcreteMT = Concrete->getFunctionType(); + + if (OldMT->getNumParams() > ConcreteMT->getNumParams() && + !ConcreteMT->isVarArg()) + if (!Old->use_empty()) { + std::cerr << "WARNING: Linking function '" << Old->getName() + << "' is causing arguments to be dropped.\n"; + std::cerr << "WARNING: Prototype: "; + WriteAsOperand(std::cerr, Old); + std::cerr << " resolved to "; + WriteAsOperand(std::cerr, Concrete); + std::cerr << "\n"; + } + + // Check to make sure that if there are specified types, that they + // match... + // + unsigned NumArguments = std::min(OldMT->getNumParams(), + ConcreteMT->getNumParams()); + + if (!Old->use_empty() && !Concrete->use_empty()) + for (unsigned i = 0; i < NumArguments; ++i) + if (OldMT->getParamType(i) != ConcreteMT->getParamType(i)) + if (OldMT->getParamType(i)->getTypeID() != + ConcreteMT->getParamType(i)->getTypeID()) { + std::cerr << "WARNING: Function [" << Old->getName() + << "]: Parameter types conflict for: '"; + WriteTypeSymbolic(std::cerr, OldMT, &M); + std::cerr << "' and '"; + WriteTypeSymbolic(std::cerr, ConcreteMT, &M); + std::cerr << "'\n"; + return Changed; + } + + // Attempt to convert all of the uses of the old function to the concrete + // form of the function. If there is a use of the fn that we don't + // understand here we punt to avoid making a bad transformation. + // + // At this point, we know that the return values are the same for our two + // functions and that the Old function has no varargs fns specified. In + // otherwords it's just <retty> (...) + // + if (!Old->use_empty()) { + Value *Replacement = Concrete; + if (Concrete->getType() != Old->getType()) + Replacement = ConstantExpr::getCast(Concrete, Old->getType()); + NumResolved += Old->getNumUses(); + Old->replaceAllUsesWith(Replacement); + } + + // Since there are no uses of Old anymore, remove it from the module. + M.getFunctionList().erase(Old); + } + return Changed; +} + + +static bool ResolveGlobalVariables(Module &M, + std::vector<GlobalValue*> &Globals, + GlobalVariable *Concrete) { + bool Changed = false; + + for (unsigned i = 0; i != Globals.size(); ++i) + if (Globals[i] != Concrete) { + Constant *Cast = ConstantExpr::getCast(Concrete, Globals[i]->getType()); + Globals[i]->replaceAllUsesWith(Cast); + + // Since there are no uses of Old anymore, remove it from the module. + M.getGlobalList().erase(cast<GlobalVariable>(Globals[i])); + + ++NumGlobals; + Changed = true; + } + return Changed; +} + +// Check to see if all of the callers of F ignore the return value. +static bool CallersAllIgnoreReturnValue(Function &F) { + if (F.getReturnType() == Type::VoidTy) return true; + for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) { + if (GlobalValue *GV = dyn_cast<GlobalValue>(*I)) { + for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); + I != E; ++I) { + CallSite CS = CallSite::get(*I); + if (!CS.getInstruction() || !CS.getInstruction()->use_empty()) + return false; + } + } else { + CallSite CS = CallSite::get(*I); + if (!CS.getInstruction() || !CS.getInstruction()->use_empty()) + return false; + } + } + return true; +} + +static bool ProcessGlobalsWithSameName(Module &M, TargetData &TD, + std::vector<GlobalValue*> &Globals) { + assert(!Globals.empty() && "Globals list shouldn't be empty here!"); + + bool isFunction = isa<Function>(Globals[0]); // Is this group all functions? + GlobalValue *Concrete = 0; // The most concrete implementation to resolve to + + for (unsigned i = 0; i != Globals.size(); ) { + if (isa<Function>(Globals[i]) != isFunction) { + std::cerr << "WARNING: Found function and global variable with the " + << "same name: '" << Globals[i]->getName() << "'.\n"; + return false; // Don't know how to handle this, bail out! + } + + if (isFunction) { + // For functions, we look to merge functions definitions of "int (...)" + // to 'int (int)' or 'int ()' or whatever else is not completely generic. + // + Function *F = cast<Function>(Globals[i]); + if (!F->isExternal()) { + if (Concrete && !Concrete->isExternal()) + return false; // Found two different functions types. Can't choose! + + Concrete = Globals[i]; + } else if (Concrete) { + if (Concrete->isExternal()) // If we have multiple external symbols... + if (F->getFunctionType()->getNumParams() > + cast<Function>(Concrete)->getFunctionType()->getNumParams()) + Concrete = F; // We are more concrete than "Concrete"! + + } else { + Concrete = F; + } + } else { + GlobalVariable *GV = cast<GlobalVariable>(Globals[i]); + if (!GV->isExternal()) { + if (Concrete) { + std::cerr << "WARNING: Two global variables with external linkage" + << " exist with the same name: '" << GV->getName() + << "'!\n"; + return false; + } + Concrete = GV; + } + } + ++i; + } + + if (Globals.size() > 1) { // Found a multiply defined global... + // If there are no external declarations, and there is at most one + // externally visible instance of the global, then there is nothing to do. + // + bool HasExternal = false; + unsigned NumInstancesWithExternalLinkage = 0; + + for (unsigned i = 0, e = Globals.size(); i != e; ++i) { + if (Globals[i]->isExternal()) + HasExternal = true; + else if (!Globals[i]->hasInternalLinkage()) + NumInstancesWithExternalLinkage++; + } + + if (!HasExternal && NumInstancesWithExternalLinkage <= 1) + return false; // Nothing to do? Must have multiple internal definitions. + + // There are a couple of special cases we don't want to print the warning + // for, check them now. + bool DontPrintWarning = false; + if (Concrete && Globals.size() == 2) { + GlobalValue *Other = Globals[Globals[0] == Concrete]; + // If the non-concrete global is a function which takes (...) arguments, + // and the return values match (or was never used), do not warn. + if (Function *ConcreteF = dyn_cast<Function>(Concrete)) + if (Function *OtherF = dyn_cast<Function>(Other)) + if ((ConcreteF->getReturnType() == OtherF->getReturnType() || + CallersAllIgnoreReturnValue(*OtherF)) && + OtherF->getFunctionType()->isVarArg() && + OtherF->getFunctionType()->getNumParams() == 0) + DontPrintWarning = true; + + // Otherwise, if the non-concrete global is a global array variable with a + // size of 0, and the concrete global is an array with a real size, don't + // warn. This occurs due to declaring 'extern int A[];'. + if (GlobalVariable *ConcreteGV = dyn_cast<GlobalVariable>(Concrete)) + if (GlobalVariable *OtherGV = dyn_cast<GlobalVariable>(Other)) { + const Type *CTy = ConcreteGV->getType(); + const Type *OTy = OtherGV->getType(); + + if (CTy->isSized()) + if (!OTy->isSized() || !TD.getTypeSize(OTy) || + TD.getTypeSize(OTy) == TD.getTypeSize(CTy)) + DontPrintWarning = true; + } + } + + if (0 && !DontPrintWarning) { + std::cerr << "WARNING: Found global types that are not compatible:\n"; + for (unsigned i = 0; i < Globals.size(); ++i) { + std::cerr << "\t"; + WriteTypeSymbolic(std::cerr, Globals[i]->getType(), &M); + std::cerr << " %" << Globals[i]->getName() << "\n"; + } + } + + if (!Concrete) + Concrete = Globals[0]; + else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Concrete)) { + // Handle special case hack to change globals if it will make their types + // happier in the long run. The situation we do this is intentionally + // extremely limited. + if (GV->use_empty() && GV->hasInitializer() && + GV->getInitializer()->isNullValue()) { + // Check to see if there is another (external) global with the same size + // and a non-empty use-list. If so, we will make IT be the real + // implementation. + unsigned TS = TD.getTypeSize(Concrete->getType()->getElementType()); + for (unsigned i = 0, e = Globals.size(); i != e; ++i) + if (Globals[i] != Concrete && !Globals[i]->use_empty() && + isa<GlobalVariable>(Globals[i]) && + TD.getTypeSize(Globals[i]->getType()->getElementType()) == TS) { + // At this point we want to replace Concrete with Globals[i]. Make + // concrete external, and Globals[i] have an initializer. + GlobalVariable *NGV = cast<GlobalVariable>(Globals[i]); + const Type *ElTy = NGV->getType()->getElementType(); + NGV->setInitializer(Constant::getNullValue(ElTy)); + cast<GlobalVariable>(Concrete)->setInitializer(0); + Concrete = NGV; + break; + } + } + } + + if (isFunction) + return ResolveFunctions(M, Globals, cast<Function>(Concrete)); + else + return ResolveGlobalVariables(M, Globals, + cast<GlobalVariable>(Concrete)); + } + return false; +} + +bool FunctionResolvingPass::runOnModule(Module &M) { + std::map<std::string, std::vector<GlobalValue*> > Globals; + + // Loop over the globals, adding them to the Globals map. We use a two pass + // algorithm here to avoid problems with iterators getting invalidated if we + // did a one pass scheme. + // + bool Changed = false; + for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { + Function *F = I++; + if (F->use_empty() && F->isExternal()) { + M.getFunctionList().erase(F); + Changed = true; + } else if (!F->hasInternalLinkage() && !F->getName().empty() && + !F->getIntrinsicID()) + Globals[F->getName()].push_back(F); + } + + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ) { + GlobalVariable *GV = I++; + if (GV->use_empty() && GV->isExternal()) { + M.getGlobalList().erase(GV); + Changed = true; + } else if (!GV->hasInternalLinkage() && !GV->getName().empty()) + Globals[GV->getName()].push_back(GV); + } + + TargetData &TD = getAnalysis<TargetData>(); + + // Now we have a list of all functions with a particular name. If there is + // more than one entry in a list, merge the functions together. + // + for (std::map<std::string, std::vector<GlobalValue*> >::iterator + I = Globals.begin(), E = Globals.end(); I != E; ++I) + Changed |= ProcessGlobalsWithSameName(M, TD, I->second); + + // Now loop over all of the globals, checking to see if any are trivially + // dead. If so, remove them now. + + for (Module::iterator I = M.begin(), E = M.end(); I != E; ) + if (I->isExternal() && I->use_empty()) { + Function *F = I; + ++I; + M.getFunctionList().erase(F); + ++NumResolved; + Changed = true; + } else { + ++I; + } + + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ) + if (I->isExternal() && I->use_empty()) { + GlobalVariable *GV = I; + ++I; + M.getGlobalList().erase(GV); + ++NumGlobals; + Changed = true; + } else { + ++I; + } + + return Changed; +} |