diff options
Diffstat (limited to 'lib/Target/X86/X86ISelSimple.cpp')
-rw-r--r-- | lib/Target/X86/X86ISelSimple.cpp | 214 |
1 files changed, 107 insertions, 107 deletions
diff --git a/lib/Target/X86/X86ISelSimple.cpp b/lib/Target/X86/X86ISelSimple.cpp index b7e15207a4..b783002420 100644 --- a/lib/Target/X86/X86ISelSimple.cpp +++ b/lib/Target/X86/X86ISelSimple.cpp @@ -1,10 +1,10 @@ //===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===// -// +// // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. -// +// //===----------------------------------------------------------------------===// // // This file defines a simple peephole instruction selector for the x86 target @@ -217,8 +217,8 @@ namespace { MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI); void visitSelectInst(SelectInst &SI); - - + + // Memory Instructions void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); @@ -226,7 +226,7 @@ namespace { void visitAllocaInst(AllocaInst &I); void visitMallocInst(MallocInst &I); void visitFreeInst(FreeInst &I); - + // Other operators void visitShiftInst(ShiftInst &I); void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass @@ -295,7 +295,7 @@ namespace { void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, const Type *DestTy, unsigned Op0Reg, unsigned Op1Reg); - void doMultiplyConst(MachineBasicBlock *MBB, + void doMultiplyConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, const Type *DestTy, unsigned Op0Reg, unsigned Op1Val); @@ -323,11 +323,11 @@ namespace { // Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a // constant. - void doSHLDConst(MachineBasicBlock *MBB, + void doSHLDConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg, unsigned Op1Val); - + /// emitSelectOperation - Common code shared between visitSelectInst and the /// constant expression support. void emitSelectOperation(MachineBasicBlock *MBB, @@ -414,7 +414,7 @@ unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB, } else if (CastInst *CI = dyn_cast<CastInst>(V)) { // Do not emit noop casts at all, unless it's a double -> float cast. if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) && - (CI->getType() != Type::FloatTy || + (CI->getType() != Type::FloatTy || CI->getOperand(0)->getType() != Type::DoubleTy)) return getReg(CI->getOperand(0), MBB, IPt); } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { @@ -448,7 +448,7 @@ unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) { unsigned TySize = TM.getTargetData().getTypeSize(Ty); TySize *= CUI->getValue(); // Get total allocated size... unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); - + // Create a new stack object using the frame manager... int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); @@ -563,11 +563,11 @@ void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB, else if (CFP->isExactlyValue(-0.0)) { unsigned Tmp = makeAnotherReg(Type::DoubleTy); BuildMI(*MBB, IP, X86::FLD0, 0, Tmp); - BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp); + BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp); } else if (CFP->isExactlyValue(-1.0)) { unsigned Tmp = makeAnotherReg(Type::DoubleTy); BuildMI(*MBB, IP, X86::FLD1, 0, Tmp); - BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp); + BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp); } else { // FIXME: PI, other native values // FIXME: 2*PI -> LDPI + FADD @@ -586,7 +586,7 @@ void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB, } unsigned CPI = CP->getConstantPoolIndex(CFP); - + assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); @@ -613,7 +613,7 @@ void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) { // [ESP] -- return address // [ESP + 4] -- first argument (leftmost lexically) // [ESP + 8] -- second argument, if first argument is four bytes in size - // ... + // ... // unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot MachineFrameInfo *MFI = F->getFrameInfo(); @@ -704,7 +704,7 @@ void X86ISel::EmitSpecialCodeForMain() { // Switch the FPU to 64-bit precision mode for better compatibility and speed. int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); - + // Set the high part to be 64-bit precision. addFrameReference(BuildMI(BB, X86::MOV8mi, 5), CWFrameIdx, 1).addImm(2); @@ -756,7 +756,7 @@ void X86ISel::SelectPHINodes() { // predecessor. Recycle it. ValReg = EntryIt->second; - } else { + } else { // Get the incoming value into a virtual register. // Value *Val = PN->getIncomingValue(i); @@ -774,11 +774,11 @@ void X86ISel::SelectPHINodes() { // might be arbitrarily complex if it is a constant expression), // just insert the computation at the top of the basic block. MachineBasicBlock::iterator PI = PredMBB->begin(); - + // Skip over any PHI nodes though! while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) ++PI; - + ValReg = getReg(Val, PredMBB, PI); } @@ -927,7 +927,7 @@ void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) { // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold // it into the conditional branch or select instruction which is the only user // of the cc instruction. This is the case if the conditional branch is the -// only user of the setcc. We also don't handle long arguments below, so we +// only user of the setcc. We also don't handle long arguments below, so we // reject them here as well. // static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { @@ -1028,13 +1028,13 @@ unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, static const unsigned TESTTab[] = { X86::TEST8ri, X86::TEST16ri, X86::TEST32ri }; - + // Emit test X, i unsigned LHS = getReg(Op0I->getOperand(0), MBB, IP); unsigned Imm = cast<ConstantInt>(Op0I->getOperand(1))->getRawValue(); BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(LHS).addImm(Imm); - + if (OpNum == 2) return 6; // Map jl -> js if (OpNum == 3) return 7; // Map jg -> jns return OpNum; @@ -1176,7 +1176,7 @@ unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, } /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized -/// register, then move it to wherever the result should be. +/// register, then move it to wherever the result should be. /// void X86ISel::visitSetCondInst(SetCondInst &I) { if (canFoldSetCCIntoBranchOrSelect(&I)) @@ -1218,7 +1218,7 @@ void X86ISel::visitSelectInst(SelectInst &SI) { emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), SI.getFalseValue(), DestReg); } - + /// emitSelect - Common code shared between visitSelectInst and the constant /// expression support. void X86ISel::emitSelectOperation(MachineBasicBlock *MBB, @@ -1226,7 +1226,7 @@ void X86ISel::emitSelectOperation(MachineBasicBlock *MBB, Value *Cond, Value *TrueVal, Value *FalseVal, unsigned DestReg) { unsigned SelectClass = getClassB(TrueVal->getType()); - + // We don't support 8-bit conditional moves. If we have incoming constants, // transform them into 16-bit constants to avoid having a run-time conversion. if (SelectClass == cByte) { @@ -1251,14 +1251,14 @@ void X86ISel::emitSelectOperation(MachineBasicBlock *MBB, unsigned Opcode; if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { // We successfully folded the setcc into the select instruction. - + unsigned OpNum = getSetCCNumber(SCI->getOpcode()); OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB, IP); const Type *CompTy = SCI->getOperand(0)->getType(); bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; - + // LLVM -> X86 signed X86 unsigned // ----- ---------- ------------ // seteq -> cmovNE cmovNE @@ -1270,7 +1270,7 @@ void X86ISel::emitSelectOperation(MachineBasicBlock *MBB, // ---- // cmovNS // Used by comparison with 0 optimization // cmovS - + switch (SelectClass) { default: assert(0 && "Unknown value class!"); case cFP: { @@ -1296,7 +1296,7 @@ void X86ISel::emitSelectOperation(MachineBasicBlock *MBB, // Long comparisons end up in the BL register. CondReg = X86::BL; } - + BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); Opcode = X86::FCMOVE; } @@ -1511,7 +1511,7 @@ void X86ISel::visitBranchInst(BranchInst &BI) { BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]); } else { BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]); - + if (BI.getSuccessor(0) != NextBB) BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]); } @@ -1524,7 +1524,7 @@ void X86ISel::visitBranchInst(BranchInst &BI) { const Type *CompTy = SCI->getOperand(0)->getType(); bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; - + // LLVM -> X86 signed X86 unsigned // ----- ---------- ------------ @@ -1543,7 +1543,7 @@ void X86ISel::visitBranchInst(BranchInst &BI) { { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, X86::JS, X86::JNS }, }; - + if (BI.getSuccessor(0) != NextBB) { BuildMI(BB, OpcodeTab[isSigned][OpNum], 1) .addMBB(MBBMap[BI.getSuccessor(0)]); @@ -1645,7 +1645,7 @@ void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, } ArgOffset += 4; // 8 byte entry, not 4. break; - + case cFP: if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(Args[i].Val)) { // Store constant FP values with integer instructions to avoid having @@ -1750,7 +1750,7 @@ void X86ISel::visitCallInst(CallInst &CI) { unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); -} +} /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the @@ -2061,7 +2061,7 @@ void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { BuildMI(BB, Opc[Class], 0); return; } - + default: assert(0 && "Error: unknown intrinsics should have been lowered!"); } } @@ -2117,7 +2117,7 @@ void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { // Special case: op Reg, load [mem] if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong && - Op0->hasOneUse() && + Op0->hasOneUse() && isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) if (!B.swapOperands()) std::swap(Op0, Op1); // Make sure any loads are in the RHS. @@ -2131,7 +2131,7 @@ void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { // Arithmetic operators { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB - + // Bitwise operators { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR @@ -2157,7 +2157,7 @@ void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { } else { X86AddressMode AM; getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM); - + addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM); } return; @@ -2166,7 +2166,7 @@ void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { // If this is a floating point subtract, check to see if we can fold the first // operand in. if (Class == cFP && OperatorClass == 1 && - isa<LoadInst>(Op0) && + isa<LoadInst>(Op0) && isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); @@ -2180,7 +2180,7 @@ void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { } else { X86AddressMode AM; getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM); - + addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM); } return; @@ -2216,7 +2216,7 @@ void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB, DestReg).addReg(Op0r), CPI); return; } - + // Special case: R1 = op <const fp>, R2 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0)) if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) { @@ -2236,7 +2236,7 @@ void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB, { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double }; - + assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; unsigned Op1r = getReg(Op1, BB, IP); @@ -2266,7 +2266,7 @@ void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB, void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, - unsigned OperatorClass, + unsigned OperatorClass, unsigned DestReg) { unsigned Class = getClassB(Op0->getType()); @@ -2286,7 +2286,7 @@ void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, if (CI->isNullValue()) { unsigned op1Reg = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg); - + if (Class == cLong) { // We just emitted: Dl = neg Sl // Now emit : T = addc Sh, 0 @@ -2300,7 +2300,7 @@ void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better // than copying C into a temporary register, because of register // pressure (tmp and destreg can share a register. - static unsigned const ADDRITab[] = { + static unsigned const ADDRITab[] = { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }; unsigned op1Reg = getReg(Op1, MBB, IP); @@ -2344,18 +2344,18 @@ void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r); return; } - + static const unsigned OpcodeTab[][5] = { // Arithmetic operators { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB - + // Bitwise operators { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR }; - + unsigned Opcode = OpcodeTab[OperatorClass][Class]; unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue(); @@ -2363,11 +2363,11 @@ void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); return; } - + // If this is a long value and the high or low bits have a special // property, emit some special cases. unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL; - + // If the constant is zero in the low 32-bits, just copy the low part // across and apply the normal 32-bit operation to the high parts. There // will be no carry or borrow into the top. @@ -2380,7 +2380,7 @@ void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, .addReg(Op0r+1).addImm(Op1h); return; } - + // If this is a logical operation and the top 32-bits are zero, just // operate on the lower 32. if (Op1h == 0 && OperatorClass > 1) { @@ -2392,15 +2392,15 @@ void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); return; } - + // TODO: We could handle lots of other special cases here, such as AND'ing // with 0xFFFFFFFF00000000 -> noop, etc. - + // Otherwise, code generate the full operation with a constant. static const unsigned TopTab[] = { X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri }; - + BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1) .addReg(Op0r+1).addImm(Op1h); @@ -2412,18 +2412,18 @@ void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, // Arithmetic operators { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB - + // Bitwise operators { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR }; - + unsigned Opcode = OpcodeTab[OperatorClass][Class]; unsigned Op0r = getReg(Op0, MBB, IP); unsigned Op1r = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); - + if (Class == cLong) { // Handle the upper 32 bits of long values... static const unsigned TopTab[] = { X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr @@ -2568,7 +2568,7 @@ void X86ISel::doMultiplyConst(MachineBasicBlock *MBB, return; } } - + if (Class == cShort) { BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); return; @@ -2580,7 +2580,7 @@ void X86ISel::doMultiplyConst(MachineBasicBlock *MBB, // Most general case, emit a normal multiply... TmpReg = makeAnotherReg(DestTy); BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); - + // Emit a MUL to multiply the register holding the index by // elementSize, putting the result in OffsetReg. doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); @@ -2605,7 +2605,7 @@ void X86ISel::visitMul(BinaryOperator &I) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m; - + unsigned Op0r = getReg(Op0); if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); @@ -2613,7 +2613,7 @@ void X86ISel::visitMul(BinaryOperator &I) { } else { X86AddressMode AM; getAddressingMode(LI->getOperand(0), AM); - + addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM); } return; @@ -2624,7 +2624,7 @@ void X86ISel::visitMul(BinaryOperator &I) { emitMultiply(BB, IP, Op0, Op1, ResultReg); } -void X86ISel::emitMultiply(MachineBasicBlock *MBB, +void X86ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned DestReg) { MachineBasicBlock &BB = *MBB; @@ -2655,14 +2655,14 @@ void X86ISel::emitMultiply(MachineBasicBlock *MBB, if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { unsigned CLow = CI->getRawValue(); unsigned CHi = CI->getRawValue() >> 32; - + if (CLow == 0) { // If the low part of the constant is all zeros, things are simple. BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0); doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi); return; } - + // Multiply the two low parts... capturing carry into EDX unsigned OverflowReg = 0; if (CLow == 1) { @@ -2673,15 +2673,15 @@ void X86ISel::emitMultiply(MachineBasicBlock *MBB, BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow); BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL - + BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL BuildMI(BB, IP, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32 } - + unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow); - + unsigned AHBLplusOverflowReg; if (OverflowReg) { AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); @@ -2690,13 +2690,13 @@ void X86ISel::emitMultiply(MachineBasicBlock *MBB, } else { AHBLplusOverflowReg = AHBLReg; } - + if (CHi == 0) { BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg); } else { unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); - + BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); } @@ -2709,24 +2709,24 @@ void X86ISel::emitMultiply(MachineBasicBlock *MBB, // Multiply the two low parts... capturing carry into EDX BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL - + unsigned OverflowReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL BuildMI(BB, IP, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32 - + unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL BuildMI(BB, IP, X86::IMUL32rr, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); - + unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); - + unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH BuildMI(BB, IP, X86::IMUL32rr, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); - + BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); } @@ -2748,7 +2748,7 @@ void X86ISel::visitDivRem(BinaryOperator &I) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m; - + unsigned Op0r = getReg(Op0); if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); @@ -2756,7 +2756,7 @@ void X86ISel::visitDivRem(BinaryOperator &I) { } else { X86AddressMode AM; getAddressingMode(LI->getOperand(0), AM); - + addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM); } return; @@ -2767,7 +2767,7 @@ void X86ISel::visitDivRem(BinaryOperator &I) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m; - + unsigned Op1r = getReg(Op1); if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); @@ -2927,7 +2927,7 @@ void X86ISel::emitDivRemOperation(MachineBasicBlock *BB, unsigned TmpReg1 = makeAnotherReg(Op0->getType()); BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1); - + unsigned TmpReg2 = makeAnotherReg(Op0->getType()); BuildMI(*BB, IP, XOROpcode[Class], 2, TmpReg2).addReg(TmpReg1).addReg(TmpReg0); @@ -2971,7 +2971,7 @@ void X86ISel::emitDivRemOperation(MachineBasicBlock *BB, // Figure out which register we want to pick the result out of... unsigned DestReg = isDiv ? Reg : ExtReg; - + // Put the result into the destination register... BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); } @@ -2991,7 +2991,7 @@ void X86ISel::visitShiftInst(ShiftInst &I) { /// Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a /// constant. -void X86ISel::doSHLDConst(MachineBasicBlock *MBB, +void X86ISel::doSHLDConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg, unsigned Amt) { @@ -3019,7 +3019,7 @@ void X86ISel::doSHLDConst(MachineBasicBlock *MBB, // NOTE: It is always cheaper on the P4 to emit SHLD as two shifts and an OR // than it is to emit a real SHLD. - BuildMI(*MBB, IP, X86::SHLD32rri8, 3, + BuildMI(*MBB, IP, X86::SHLD32rri8, 3, DestReg).addReg(Op0Reg).addReg(Op1Reg).addImm(Amt); } } @@ -3028,8 +3028,8 @@ void X86ISel::doSHLDConst(MachineBasicBlock *MBB, /// constant expression support. void X86ISel::emitShiftOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, - bool isLeftShift, const Type *ResultTy, + Value *Op, Value *ShiftAmount, + bool isLeftShift, const Type *ResultTy, unsigned DestReg) { unsigned SrcReg = getReg (Op, MBB, IP); bool isSigned = ResultTy->isSigned (); @@ -3127,7 +3127,7 @@ void X86ISel::emitShiftOperation(MachineBasicBlock *MBB, BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); // DestHi = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, + BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, DestReg+1).addReg(TmpReg2).addReg(TmpReg3); // DestLo = (>32) ? TmpReg : TmpReg3; BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, @@ -3144,11 +3144,11 @@ void X86ISel::emitShiftOperation(MachineBasicBlock *MBB, BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); // DestLo = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, + BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, DestReg).addReg(TmpReg2).addReg(TmpReg3); // DestHi = (>32) ? TmpReg : TmpReg3; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, + BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, DestReg+1).addReg(TmpReg3).addReg(TmpReg); } } @@ -3235,7 +3235,7 @@ void X86ISel::visitLoadInst(LoadInst &I) { bool Swapped = false; if (!isa<LoadInst>(User->getOperand(1))) Swapped = !cast<BinaryOperator>(User)->swapOperands(); - + // Okay, now that everything is set up, if this load is used by the second // operand, and if there are no instructions that invalidate the load // before the binary operator, eliminate the load. @@ -3253,7 +3253,7 @@ void X86ISel::visitLoadInst(LoadInst &I) { return; // Eliminate the load! // If we swapped the operands to the instruction, but couldn't fold the - // load anyway, swap them back. We don't want to break add X, int + // load anyway, swap them back. We don't want to break add X, int // folding. if (Swapped) cast<BinaryOperator>(User)->swapOperands(); } @@ -3278,7 +3278,7 @@ void X86ISel::visitLoadInst(LoadInst &I) { } else { X86AddressMode AM; getAddressingMode(I.getOperand(0), AM); - + if (Class == cLong) { addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM); AM.Disp += 4; @@ -3339,7 +3339,7 @@ void X86ISel::visitStoreInst(StoreInst &I) { addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm( unsigned(V.I >> 32)); } - + } else if (Class == cLong) { unsigned ValReg = getReg(I.getOperand(0)); addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg); @@ -3374,7 +3374,7 @@ void X86ISel::visitCastInst(CastInst &CI) { // Noop casts are not emitted: getReg will return the source operand as the // register to use for any uses of the noop cast. if (DestClass == SrcClass) { - // The only detail in this plan is that casts from double -> float are + // The only detail in this plan is that casts from double -> float are // truncating operations that we have to codegen through memory (despite // the fact that the source/dest registers are the same class). if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy) @@ -3390,7 +3390,7 @@ void X86ISel::visitCastInst(CastInst &CI) { if (!isa<GetElementPtrInst>(*I)) { AllUsesAreGEPs = false; break; - } + } // No need to codegen this cast if all users are getelementptr instrs... if (AllUsesAreGEPs) return; @@ -3497,7 +3497,7 @@ void X86ISel::emitCastOperation(MachineBasicBlock *BB, { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u }; - + bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, DestReg).addReg(SrcReg); @@ -3516,7 +3516,7 @@ void X86ISel::emitCastOperation(MachineBasicBlock *BB, BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); return; } - + // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a // move out of AX or AL. if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt @@ -3560,7 +3560,7 @@ void X86ISel::emitCastOperation(MachineBasicBlock *BB, default: // No promotion needed... break; } - + if (PromoteType) { unsigned TmpReg = makeAnotherReg(PromoteType); BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg); @@ -3618,11 +3618,11 @@ void X86ISel::emitCastOperation(MachineBasicBlock *BB, MachineConstantPool *CP = F->getConstantPool(); unsigned Zero = makeAnotherReg(Type::IntTy); Constant *Null = Constant::getNullValue(Type::UIntTy); - addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), + addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), CP->getConstantPoolIndex(Null)); unsigned Offset = makeAnotherReg(Type::IntTy); Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); - + addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), CP->getConstantPoolIndex(OffsetCst)); unsigned Addr = makeAnotherReg(Type::IntTy); @@ -3659,7 +3659,7 @@ void X86ISel::emitCastOperation(MachineBasicBlock *BB, // Reload the modified control word now... addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); - + // Restore the memory image of control word to original value addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), CWFrameIdx, 1).addReg(HighPartOfCW); @@ -3801,7 +3801,7 @@ void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) { /// /// Note that there is one fewer entry in GEPTypes than there is in GEPOps. /// -void X86ISel::getGEPIndex(MachineBasicBlock *MBB, +void X86ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, std::vector<Value*> &GEPOps, std::vector<const Type*> &GEPTypes, @@ -3822,7 +3822,7 @@ void X86ISel::getGEPIndex(MachineBasicBlock *MBB, // It's a struct access. CUI is the index into the structure, // which names the field. This index must have unsigned type. const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back()); - + // Use the TargetData structure to pick out what the layout of the // structure is in memory. Since the structure index must be constant, we // can get its value and use it to find the right byte offset from the @@ -3849,7 +3849,7 @@ void X86ISel::getGEPIndex(MachineBasicBlock *MBB, // If the index reg is already taken, we can't handle this index. if (AM.IndexReg) return; - // If this is a size that we can handle, then add the index as + // If this is a size that we can handle, then add the index as switch (TypeSize) { case 1: case 2: case 4: case 8: // These are all acceptable scales on X86. @@ -3906,7 +3906,7 @@ bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB, GEPOps.resize(IdxEnd-IdxBegin+1); GEPOps[0] = Src; std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - + std::vector<const Type*> GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), gep_type_end(Src->getType(), IdxBegin, IdxEnd)); @@ -3944,7 +3944,7 @@ void X86ISel::emitGEPOperation(MachineBasicBlock *MBB, GEPOps.resize(IdxEnd-IdxBegin+1); GEPOps[0] = Src; std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - + std::vector<const Type*> GEPTypes; GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), gep_type_end(Src->getType(), IdxBegin, IdxEnd)); @@ -3954,7 +3954,7 @@ void X86ISel::emitGEPOperation(MachineBasicBlock *MBB, unsigned OldSize = GEPOps.size(); X86AddressMode AM; getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM); - + if (GEPOps.size() != OldSize) { // getGEPIndex consumed some of the input. Build an LEA instruction here. unsigned NextTarget = 0; @@ -4061,7 +4061,7 @@ void X86ISel::visitAllocaInst(AllocaInst &I) { // statically stack allocate the space, so we don't need to do anything here. // if (dyn_castFixedAlloca(&I)) return; - + // Find the data size of the alloca inst's getAllocatedType. const Type *Ty = I.getAllocatedType(); unsigned TySize = TM.getTargetData().getTypeSize(Ty); @@ -4070,7 +4070,7 @@ void X86ISel::visitAllocaInst(AllocaInst &I) { // constant by the variable amount. unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); unsigned SrcReg1 = getReg(I.getArraySize()); - + // TotalSizeReg = mul <numelements>, <TypeSize> MachineBasicBlock::iterator MBBI = BB->end(); doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); @@ -4082,7 +4082,7 @@ void X86ISel::visitAllocaInst(AllocaInst &I) { // AlignedSize = and <AddedSize>, ~15 unsigned AlignedSize = makeAnotherReg(Type::UIntTy); BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); - + // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); @@ -4129,7 +4129,7 @@ void X86ISel::visitFreeInst(FreeInst &I) { 1).addExternalSymbol("free", true); doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); } - + /// createX86SimpleInstructionSelector - This pass converts an LLVM function /// into a machine code representation is a very simple peep-hole fashion. The /// generated code sucks but the implementation is nice and simple. |