diff options
Diffstat (limited to 'lib/Target/X86/X86ISelPattern.cpp')
-rw-r--r-- | lib/Target/X86/X86ISelPattern.cpp | 4644 |
1 files changed, 4644 insertions, 0 deletions
diff --git a/lib/Target/X86/X86ISelPattern.cpp b/lib/Target/X86/X86ISelPattern.cpp new file mode 100644 index 0000000000..a244afd601 --- /dev/null +++ b/lib/Target/X86/X86ISelPattern.cpp @@ -0,0 +1,4644 @@ +//===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a pattern matching instruction selector for X86. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrBuilder.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/ADT/Statistic.h" +#include <set> +#include <algorithm> +using namespace llvm; + +// FIXME: temporary. +#include "llvm/Support/CommandLine.h" +static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, + cl::desc("Enable fastcc on X86")); + +namespace { + // X86 Specific DAG Nodes + namespace X86ISD { + enum NodeType { + // Start the numbering where the builtin ops leave off. + FIRST_NUMBER = ISD::BUILTIN_OP_END, + + /// FILD64m - This instruction implements SINT_TO_FP with a + /// 64-bit source in memory and a FP reg result. This corresponds to + /// the X86::FILD64m instruction. It has two inputs (token chain and + /// address) and two outputs (FP value and token chain). + FILD64m, + + /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the + /// integer destination in memory and a FP reg source. This corresponds + /// to the X86::FIST*m instructions and the rounding mode change stuff. It + /// has two inputs (token chain and address) and two outputs (FP value and + /// token chain). + FP_TO_INT16_IN_MEM, + FP_TO_INT32_IN_MEM, + FP_TO_INT64_IN_MEM, + + /// CALL/TAILCALL - These operations represent an abstract X86 call + /// instruction, which includes a bunch of information. In particular the + /// operands of these node are: + /// + /// #0 - The incoming token chain + /// #1 - The callee + /// #2 - The number of arg bytes the caller pushes on the stack. + /// #3 - The number of arg bytes the callee pops off the stack. + /// #4 - The value to pass in AL/AX/EAX (optional) + /// #5 - The value to pass in DL/DX/EDX (optional) + /// + /// The result values of these nodes are: + /// + /// #0 - The outgoing token chain + /// #1 - The first register result value (optional) + /// #2 - The second register result value (optional) + /// + /// The CALL vs TAILCALL distinction boils down to whether the callee is + /// known not to modify the caller's stack frame, as is standard with + /// LLVM. + CALL, + TAILCALL, + }; + } +} + +//===----------------------------------------------------------------------===// +// X86TargetLowering - X86 Implementation of the TargetLowering interface +namespace { + class X86TargetLowering : public TargetLowering { + int VarArgsFrameIndex; // FrameIndex for start of varargs area. + int ReturnAddrIndex; // FrameIndex for return slot. + int BytesToPopOnReturn; // Number of arg bytes ret should pop. + int BytesCallerReserves; // Number of arg bytes caller makes. + public: + X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) { + // Set up the TargetLowering object. + + // X86 is weird, it always uses i8 for shift amounts and setcc results. + setShiftAmountType(MVT::i8); + setSetCCResultType(MVT::i8); + setSetCCResultContents(ZeroOrOneSetCCResult); + setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 + + // Set up the register classes. + // FIXME: Eliminate these two classes when legalize can handle promotions + // well. + addRegisterClass(MVT::i1, X86::R8RegisterClass); + addRegisterClass(MVT::i8, X86::R8RegisterClass); + addRegisterClass(MVT::i16, X86::R16RegisterClass); + addRegisterClass(MVT::i32, X86::R32RegisterClass); + + // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this + // operation. + setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); + + // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have + // this operation. + setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); + + if (!X86ScalarSSE) { + // We can handle SINT_TO_FP and FP_TO_SINT from/TO i64 even though i64 + // isn't legal. + setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); + setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); + } + + // Handle FP_TO_UINT by promoting the destination to a larger signed + // conversion. + setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); + + if (!X86ScalarSSE) + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); + + // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have + // this operation. + setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); + + setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); + setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand); + setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); + setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); + setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); + setOperationAction(ISD::FREM , MVT::f64 , Expand); + setOperationAction(ISD::CTPOP , MVT::i8 , Expand); + setOperationAction(ISD::CTTZ , MVT::i8 , Expand); + setOperationAction(ISD::CTLZ , MVT::i8 , Expand); + setOperationAction(ISD::CTPOP , MVT::i16 , Expand); + setOperationAction(ISD::CTTZ , MVT::i16 , Expand); + setOperationAction(ISD::CTLZ , MVT::i16 , Expand); + setOperationAction(ISD::CTPOP , MVT::i32 , Expand); + setOperationAction(ISD::CTTZ , MVT::i32 , Expand); + setOperationAction(ISD::CTLZ , MVT::i32 , Expand); + + setOperationAction(ISD::READIO , MVT::i1 , Expand); + setOperationAction(ISD::READIO , MVT::i8 , Expand); + setOperationAction(ISD::READIO , MVT::i16 , Expand); + setOperationAction(ISD::READIO , MVT::i32 , Expand); + setOperationAction(ISD::WRITEIO , MVT::i1 , Expand); + setOperationAction(ISD::WRITEIO , MVT::i8 , Expand); + setOperationAction(ISD::WRITEIO , MVT::i16 , Expand); + setOperationAction(ISD::WRITEIO , MVT::i32 , Expand); + + // These should be promoted to a larger select which is supported. + setOperationAction(ISD::SELECT , MVT::i1 , Promote); + setOperationAction(ISD::SELECT , MVT::i8 , Promote); + + if (X86ScalarSSE) { + // Set up the FP register classes. + addRegisterClass(MVT::f32, X86::V4F4RegisterClass); + addRegisterClass(MVT::f64, X86::V2F8RegisterClass); + + // SSE has no load+extend ops + setOperationAction(ISD::EXTLOAD, MVT::f32, Expand); + setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); + + // SSE has no i16 to fp conversion, only i32 + setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); + + // Expand FP_TO_UINT into a select. + // FIXME: We would like to use a Custom expander here eventually to do + // the optimal thing for SSE vs. the default expansion in the legalizer. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); + + // We don't support sin/cos/sqrt/fmod + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FABS , MVT::f64, Expand); + setOperationAction(ISD::FNEG , MVT::f64, Expand); + setOperationAction(ISD::FREM , MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FABS , MVT::f32, Expand); + setOperationAction(ISD::FNEG , MVT::f32, Expand); + setOperationAction(ISD::FREM , MVT::f32, Expand); + + addLegalFPImmediate(+0.0); // xorps / xorpd + } else { + // Set up the FP register classes. + addRegisterClass(MVT::f64, X86::RFPRegisterClass); + + if (!UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f64 , Expand); + setOperationAction(ISD::FCOS , MVT::f64 , Expand); + } + + addLegalFPImmediate(+0.0); // FLD0 + addLegalFPImmediate(+1.0); // FLD1 + addLegalFPImmediate(-0.0); // FLD0/FCHS + addLegalFPImmediate(-1.0); // FLD1/FCHS + } + computeRegisterProperties(); + + maxStoresPerMemSet = 8; // For %llvm.memset -> sequence of stores + maxStoresPerMemCpy = 8; // For %llvm.memcpy -> sequence of stores + maxStoresPerMemMove = 8; // For %llvm.memmove -> sequence of stores + allowUnalignedMemoryAccesses = true; // x86 supports it! + } + + // Return the number of bytes that a function should pop when it returns (in + // addition to the space used by the return address). + // + unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; } + + // Return the number of bytes that the caller reserves for arguments passed + // to this function. + unsigned getBytesCallerReserves() const { return BytesCallerReserves; } + + /// LowerOperation - Provide custom lowering hooks for some operations. + /// + virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); + + /// LowerArguments - This hook must be implemented to indicate how we should + /// lower the arguments for the specified function, into the specified DAG. + virtual std::vector<SDOperand> + LowerArguments(Function &F, SelectionDAG &DAG); + + /// LowerCallTo - This hook lowers an abstract call to a function into an + /// actual call. + virtual std::pair<SDOperand, SDOperand> + LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, + bool isTailCall, SDOperand Callee, ArgListTy &Args, + SelectionDAG &DAG); + + virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP, + Value *VAListV, SelectionDAG &DAG); + virtual std::pair<SDOperand,SDOperand> + LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, + const Type *ArgTy, SelectionDAG &DAG); + + virtual std::pair<SDOperand, SDOperand> + LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, + SelectionDAG &DAG); + + SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG); + + private: + // C Calling Convention implementation. + std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG); + std::pair<SDOperand, SDOperand> + LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, + bool isTailCall, + SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); + + // Fast Calling Convention implementation. + std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG); + std::pair<SDOperand, SDOperand> + LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall, + SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); + }; +} + +std::vector<SDOperand> +X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { + if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) + return LowerFastCCArguments(F, DAG); + return LowerCCCArguments(F, DAG); +} + +std::pair<SDOperand, SDOperand> +X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, + bool isVarArg, unsigned CallingConv, + bool isTailCall, + SDOperand Callee, ArgListTy &Args, + SelectionDAG &DAG) { + assert((!isVarArg || CallingConv == CallingConv::C) && + "Only C takes varargs!"); + if (CallingConv == CallingConv::Fast && EnableFastCC) + return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); + return LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); +} + +//===----------------------------------------------------------------------===// +// C Calling Convention implementation +//===----------------------------------------------------------------------===// + +std::vector<SDOperand> +X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) { + std::vector<SDOperand> ArgValues; + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + + // Add DAG nodes to load the arguments... On entry to a function on the X86, + // the stack frame looks like this: + // + // [ESP] -- return address + // [ESP + 4] -- first argument (leftmost lexically) + // [ESP + 8] -- second argument, if first argument is four bytes in size + // ... + // + unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { + MVT::ValueType ObjectVT = getValueType(I->getType()); + unsigned ArgIncrement = 4; + unsigned ObjSize; + switch (ObjectVT) { + default: assert(0 && "Unhandled argument type!"); + case MVT::i1: + case MVT::i8: ObjSize = 1; break; + case MVT::i16: ObjSize = 2; break; + case MVT::i32: ObjSize = 4; break; + case MVT::i64: ObjSize = ArgIncrement = 8; break; + case MVT::f32: ObjSize = 4; break; + case MVT::f64: ObjSize = ArgIncrement = 8; break; + } + // Create the frame index object for this incoming parameter... + int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); + + // Create the SelectionDAG nodes corresponding to a load from this parameter + SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); + + // Don't codegen dead arguments. FIXME: remove this check when we can nuke + // dead loads. + SDOperand ArgValue; + if (!I->use_empty()) + ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, + DAG.getSrcValue(NULL)); + else { + if (MVT::isInteger(ObjectVT)) + ArgValue = DAG.getConstant(0, ObjectVT); + else + ArgValue = DAG.getConstantFP(0, ObjectVT); + } + ArgValues.push_back(ArgValue); + + ArgOffset += ArgIncrement; // Move on to the next argument... + } + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. + if (F.isVarArg()) + VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); + ReturnAddrIndex = 0; // No return address slot generated yet. + BytesToPopOnReturn = 0; // Callee pops nothing. + BytesCallerReserves = ArgOffset; + + // Finally, inform the code generator which regs we return values in. + switch (getValueType(F.getReturnType())) { + default: assert(0 && "Unknown type!"); + case MVT::isVoid: break; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + MF.addLiveOut(X86::EAX); + break; + case MVT::i64: + MF.addLiveOut(X86::EAX); + MF.addLiveOut(X86::EDX); + break; + case MVT::f32: + case MVT::f64: + MF.addLiveOut(X86::ST0); + break; + } + return ArgValues; +} + +std::pair<SDOperand, SDOperand> +X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, + bool isVarArg, bool isTailCall, + SDOperand Callee, ArgListTy &Args, + SelectionDAG &DAG) { + // Count how many bytes are to be pushed on the stack. + unsigned NumBytes = 0; + + if (Args.empty()) { + // Save zero bytes. + Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, + DAG.getConstant(0, getPointerTy())); + } else { + for (unsigned i = 0, e = Args.size(); i != e; ++i) + switch (getValueType(Args[i].second)) { + default: assert(0 && "Unknown value type!"); + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::f32: + NumBytes += 4; + break; + case MVT::i64: + case MVT::f64: + NumBytes += 8; + break; + } + + Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, + DAG.getConstant(NumBytes, getPointerTy())); + + // Arguments go on the stack in reverse order, as specified by the ABI. + unsigned ArgOffset = 0; + SDOperand StackPtr = DAG.getCopyFromReg(DAG.getEntryNode(), + X86::ESP, MVT::i32); + std::vector<SDOperand> Stores; + + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); + PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); + + switch (getValueType(Args[i].second)) { + default: assert(0 && "Unexpected ValueType for argument!"); + case MVT::i1: + case MVT::i8: + case MVT::i16: + // Promote the integer to 32 bits. If the input type is signed use a + // sign extend, otherwise use a zero extend. + if (Args[i].second->isSigned()) + Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); + else + Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); + + // FALL THROUGH + case MVT::i32: + case MVT::f32: + Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, + Args[i].first, PtrOff, + DAG.getSrcValue(NULL))); + ArgOffset += 4; + break; + case MVT::i64: + case MVT::f64: + Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, + Args[i].first, PtrOff, + DAG.getSrcValue(NULL))); + ArgOffset += 8; + break; + } + } + Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); + } + + std::vector<MVT::ValueType> RetVals; + MVT::ValueType RetTyVT = getValueType(RetTy); + RetVals.push_back(MVT::Other); + + // The result values produced have to be legal. Promote the result. + switch (RetTyVT) { + case MVT::isVoid: break; + default: + RetVals.push_back(RetTyVT); + break; + case MVT::i1: + case MVT::i8: + case MVT::i16: + RetVals.push_back(MVT::i32); + break; + case MVT::f32: + if (X86ScalarSSE) + RetVals.push_back(MVT::f32); + else + RetVals.push_back(MVT::f64); + break; + case MVT::i64: + RetVals.push_back(MVT::i32); + RetVals.push_back(MVT::i32); + break; + } + std::vector<SDOperand> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); + Ops.push_back(DAG.getConstant(0, getPointerTy())); + SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, + RetVals, Ops); + Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); + + SDOperand ResultVal; + switch (RetTyVT) { + case MVT::isVoid: break; + default: + ResultVal = TheCall.getValue(1); + break; + case MVT::i1: + case MVT::i8: + case MVT::i16: + ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); + break; + case MVT::f32: + // FIXME: we would really like to remember that this FP_ROUND operation is + // okay to eliminate if we allow excess FP precision. + ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); + break; + case MVT::i64: + ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), + TheCall.getValue(2)); + break; + } + + return std::make_pair(ResultVal, Chain); +} + +SDOperand +X86TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP, + Value *VAListV, SelectionDAG &DAG) { + // vastart just stores the address of the VarArgsFrameIndex slot. + SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); + return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP, + DAG.getSrcValue(VAListV)); +} + + +std::pair<SDOperand,SDOperand> +X86TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, + Value *VAListV, const Type *ArgTy, + SelectionDAG &DAG) { + MVT::ValueType ArgVT = getValueType(ArgTy); + SDOperand Val = DAG.getLoad(MVT::i32, Chain, + VAListP, DAG.getSrcValue(VAListV)); + SDOperand Result = DAG.getLoad(ArgVT, Chain, Val, + DAG.getSrcValue(NULL)); + unsigned Amt; + if (ArgVT == MVT::i32) + Amt = 4; + else { + assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && + "Other types should have been promoted for varargs!"); + Amt = 8; + } + Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val, + DAG.getConstant(Amt, Val.getValueType())); + Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, + Val, VAListP, DAG.getSrcValue(VAListV)); + return std::make_pair(Result, Chain); +} + +//===----------------------------------------------------------------------===// +// Fast Calling Convention implementation +//===----------------------------------------------------------------------===// +// +// The X86 'fast' calling convention passes up to two integer arguments in +// registers (an appropriate portion of EAX/EDX), passes arguments in C order, +// and requires that the callee pop its arguments off the stack (allowing proper +// tail calls), and has the same return value conventions as C calling convs. +// +// This calling convention always arranges for the callee pop value to be 8n+4 +// bytes, which is needed for tail recursion elimination and stack alignment +// reasons. +// +// Note that this can be enhanced in the future to pass fp vals in registers +// (when we have a global fp allocator) and do other tricks. +// + +/// AddLiveIn - This helper function adds the specified physical register to the +/// MachineFunction as a live in value. It also creates a corresponding virtual +/// register for it. +static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, + TargetRegisterClass *RC) { + assert(RC->contains(PReg) && "Not the correct regclass!"); + unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); + MF.addLiveIn(PReg, VReg); + return VReg; +} + + +std::vector<SDOperand> +X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) { + std::vector<SDOperand> ArgValues; + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + + // Add DAG nodes to load the arguments... On entry to a function the stack + // frame looks like this: + // + // [ESP] -- return address + // [ESP + 4] -- first nonreg argument (leftmost lexically) + // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size + // ... + unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot + + // Keep track of the number of integer regs passed so far. This can be either + // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both + // used). + unsigned NumIntRegs = 0; + + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { + MVT::ValueType ObjectVT = getValueType(I->getType()); + unsigned ArgIncrement = 4; + unsigned ObjSize = 0; + SDOperand ArgValue; + + switch (ObjectVT) { + default: assert(0 && "Unhandled argument type!"); + case MVT::i1: + case MVT::i8: + if (NumIntRegs < 2) { + if (!I->use_empty()) { + unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, + X86::R8RegisterClass); + ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8); + DAG.setRoot(ArgValue.getValue(1)); + } + ++NumIntRegs; + break; + } + + ObjSize = 1; + break; + case MVT::i16: + if (NumIntRegs < 2) { + if (!I->use_empty()) { + unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, + X86::R16RegisterClass); + ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16); + DAG.setRoot(ArgValue.getValue(1)); + } + ++NumIntRegs; + break; + } + ObjSize = 2; + break; + case MVT::i32: + if (NumIntRegs < 2) { + if (!I->use_empty()) { + unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX, + X86::R32RegisterClass); + ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); + DAG.setRoot(ArgValue.getValue(1)); + } + ++NumIntRegs; + break; + } + ObjSize = 4; + break; + case MVT::i64: + if (NumIntRegs == 0) { + if (!I->use_empty()) { + unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass); + unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); + + SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); + SDOperand Hi = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32); + DAG.setRoot(Hi.getValue(1)); + + ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); + } + NumIntRegs = 2; + break; + } else if (NumIntRegs == 1) { + if (!I->use_empty()) { + unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); + SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); + DAG.setRoot(Low.getValue(1)); + + // Load the high part from memory. + // Create the frame index object for this incoming parameter... + int FI = MFI->CreateFixedObject(4, ArgOffset); + SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); + SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, + DAG.getSrcValue(NULL)); + ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); + } + ArgOffset += 4; + NumIntRegs = 2; + break; + } + ObjSize = ArgIncrement = 8; + break; + case MVT::f32: ObjSize = 4; break; + case MVT::f64: ObjSize = ArgIncrement = 8; break; + } + + // Don't codegen dead arguments. FIXME: remove this check when we can nuke + // dead loads. + if (ObjSize && !I->use_empty()) { + // Create the frame index object for this incoming parameter... + int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); + + // Create the SelectionDAG nodes corresponding to a load from this + // parameter. + SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); + + ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, + DAG.getSrcValue(NULL)); + } else if (ArgValue.Val == 0) { + if (MVT::isInteger(ObjectVT)) + ArgValue = DAG.getConstant(0, ObjectVT); + else + ArgValue = DAG.getConstantFP(0, ObjectVT); + } + ArgValues.push_back(ArgValue); + + if (ObjSize) + ArgOffset += ArgIncrement; // Move on to the next argument. + } + + // Make sure the instruction takes 8n+4 bytes to make sure the start of the + // arguments and the arguments after the retaddr has been pushed are aligned. + if ((ArgOffset & 7) == 0) + ArgOffset += 4; + + VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. + ReturnAddrIndex = 0; // No return address slot generated yet. + BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. + BytesCallerReserves = 0; + + // Finally, inform the code generator which regs we return values in. + switch (getValueType(F.getReturnType())) { + default: assert(0 && "Unknown type!"); + case MVT::isVoid: break; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + MF.addLiveOut(X86::EAX); + break; + case MVT::i64: + MF.addLiveOut(X86::EAX); + MF.addLiveOut(X86::EDX); + break; + case MVT::f32: + case MVT::f64: + MF.addLiveOut(X86::ST0); + break; + } + return ArgValues; +} + +std::pair<SDOperand, SDOperand> +X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, + bool isTailCall, SDOperand Callee, + ArgListTy &Args, SelectionDAG &DAG) { + // Count how many bytes are to be pushed on the stack. + unsigned NumBytes = 0; + + // Keep track of the number of integer regs passed so far. This can be either + // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both + // used). + unsigned NumIntRegs = 0; + + for (unsigned i = 0, e = Args.size(); i != e; ++i) + switch (getValueType(Args[i].second)) { + default: assert(0 && "Unknown value type!"); + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + if (NumIntRegs < 2) { + ++NumIntRegs; + break; + } + // fall through + case MVT::f32: + NumBytes += 4; + break; + case MVT::i64: + if (NumIntRegs == 0) { + NumIntRegs = 2; + break; + } else if (NumIntRegs == 1) { + NumIntRegs = 2; + NumBytes += 4; + break; + } + + // fall through + case MVT::f64: + NumBytes += 8; + break; + } + + // Make sure the instruction takes 8n+4 bytes to make sure the start of the + // arguments and the arguments after the retaddr has been pushed are aligned. + if ((NumBytes & 7) == 0) + NumBytes += 4; + + Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, + DAG.getConstant(NumBytes, getPointerTy())); + + // Arguments go on the stack in reverse order, as specified by the ABI. + unsigned ArgOffset = 0; + SDOperand StackPtr = DAG.getCopyFromReg(DAG.getEntryNode(), + X86::ESP, MVT::i32); + NumIntRegs = 0; + std::vector<SDOperand> Stores; + std::vector<SDOperand> RegValuesToPass; + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + switch (getValueType(Args[i].second)) { + default: assert(0 && "Unexpected ValueType for argument!"); + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + if (NumIntRegs < 2) { + RegValuesToPass.push_back(Args[i].first); + ++NumIntRegs; + break; + } + // Fall through + case MVT::f32: { + SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); + PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); + Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, + Args[i].first, PtrOff, + DAG.getSrcValue(NULL))); + ArgOffset += 4; + break; + } + case MVT::i64: + if (NumIntRegs < 2) { // Can pass part of it in regs? + SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, + Args[i].first, DAG.getConstant(1, MVT::i32)); + SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, + Args[i].first, DAG.getConstant(0, MVT::i32)); + RegValuesToPass.push_back(Lo); + ++NumIntRegs; + if (NumIntRegs < 2) { // Pass both parts in regs? + RegValuesToPass.push_back(Hi); + ++NumIntRegs; + } else { + // Pass the high part in memory. + SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); + PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); + Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, + Hi, PtrOff, DAG.getSrcValue(NULL))); + ArgOffset += 4; + } + break; + } + // Fall through + case MVT::f64: + SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); + PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); + Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, + Args[i].first, PtrOff, + DAG.getSrcValue(NULL))); + ArgOffset += 8; + break; + } + } + if (!Stores.empty()) + Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); + + // Make sure the instruction takes 8n+4 bytes to make sure the start of the + // arguments and the arguments after the retaddr has been pushed are aligned. + if ((ArgOffset & 7) == 0) + ArgOffset += 4; + + std::vector<MVT::ValueType> RetVals; + MVT::ValueType RetTyVT = getValueType(RetTy); + + RetVals.push_back(MVT::Other); + + // The result values produced have to be legal. Promote the result. + switch (RetTyVT) { + case MVT::isVoid: break; + default: + RetVals.push_back(RetTyVT); + break; + case MVT::i1: + case MVT::i8: + case MVT::i16: + RetVals.push_back(MVT::i32); + break; + case MVT::f32: + if (X86ScalarSSE) + RetVals.push_back(MVT::f32); + else + RetVals.push_back(MVT::f64); + break; + case MVT::i64: + RetVals.push_back(MVT::i32); + RetVals.push_back(MVT::i32); + break; + } + + std::vector<SDOperand> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); + // Callee pops all arg values on the stack. + Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); + + // Pass register arguments as needed. + Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end()); + + SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, + RetVals, Ops); + Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); + + SDOperand ResultVal; + switch (RetTyVT) { + case MVT::isVoid: break; + default: + ResultVal = TheCall.getValue(1); + break; + case MVT::i1: + case MVT::i8: + case MVT::i16: + ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); + break; + case MVT::f32: + // FIXME: we would really like to remember that this FP_ROUND operation is + // okay to eliminate if we allow excess FP precision. + ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); + break; + case MVT::i64: + ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), + TheCall.getValue(2)); + break; + } + + return std::make_pair(ResultVal, Chain); +} + +SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { + if (ReturnAddrIndex == 0) { + // Set up a frame object for the return address. + MachineFunction &MF = DAG.getMachineFunction(); + ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); + } + + return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); +} + + + +std::pair<SDOperand, SDOperand> X86TargetLowering:: +LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, + SelectionDAG &DAG) { + SDOperand Result; + if (Depth) // Depths > 0 not supported yet! + Result = DAG.getConstant(0, getPointerTy()); + else { + SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); + if (!isFrameAddress) + // Just load the return address + Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, + DAG.getSrcValue(NULL)); + else + Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, + DAG.getConstant(4, MVT::i32)); + } + return std::make_pair(Result, Chain); +} + +//===----------------------------------------------------------------------===// +// X86 Custom Lowering Hooks +//===----------------------------------------------------------------------===// + +/// LowerOperation - Provide custom lowering hooks for some operations. +/// +SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { + switch (Op.getOpcode()) { + default: assert(0 && "Should not custom lower this!"); + case ISD::SINT_TO_FP: { + assert(Op.getValueType() == MVT::f64 && + Op.getOperand(0).getValueType() == MVT::i64 && + "Unknown SINT_TO_FP to lower!"); + // We lower sint64->FP into a store to a temporary stack slot, followed by a + // FILD64m node. + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); + SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), + Op.getOperand(0), StackSlot, DAG.getSrcValue(NULL)); + std::vector<MVT::ValueType> RTs; + RTs.push_back(MVT::f64); + RTs.push_back(MVT::Other); + std::vector<SDOperand> Ops; + Ops.push_back(Store); + Ops.push_back(StackSlot); + return DAG.getNode(X86ISD::FILD64m, RTs, Ops); + } + case ISD::FP_TO_SINT: { + assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && + Op.getOperand(0).getValueType() == MVT::f64 && + "Unknown FP_TO_SINT to lower!"); + // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary + // stack slot. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; + int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); + SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + + unsigned Opc; + switch (Op.getValueType()) { + default: assert(0 && "Invalid FP_TO_SINT to lower!"); + case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; + case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; + case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; + } + + // Build the FP_TO_INT*_IN_MEM + std::vector<SDOperand> Ops; + Ops.push_back(DAG.getEntryNode()); + Ops.push_back(Op.getOperand(0)); + Ops.push_back(StackSlot); + SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); + + // Load the result. + return DAG.getLoad(Op.getValueType(), FIST, StackSlot, + DAG.getSrcValue(NULL)); + } + } +} + + +//===----------------------------------------------------------------------===// +// Pattern Matcher Implementation +//===----------------------------------------------------------------------===// + +namespace { + /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses + /// SDOperand's instead of register numbers for the leaves of the matched + /// tree. + struct X86ISelAddressMode { + enum { + RegBase, + FrameIndexBase, + } BaseType; + + struct { // This is really a union, discriminated by BaseType! + SDOperand Reg; + int FrameIndex; + } Base; + + unsigned Scale; + SDOperand IndexReg; + unsigned Disp; + GlobalValue *GV; + + X86ISelAddressMode() + : BaseType(RegBase), Scale(1), IndexReg(), Disp(), GV(0) { + } + }; +} + + +namespace { + Statistic<> + NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); + + //===--------------------------------------------------------------------===// + /// ISel - X86 specific code to select X86 machine instructions for + /// SelectionDAG operations. + /// + class ISel : public SelectionDAGISel { + /// ContainsFPCode - Every instruction we select that uses or defines a FP + /// register should set this to true. + bool ContainsFPCode; + + /// X86Lowering - This object fully describes how to lower LLVM code to an + /// X86-specific SelectionDAG. + X86TargetLowering X86Lowering; + + /// RegPressureMap - This keeps an approximate count of the number of + /// registers required to evaluate each node in the graph. + std::map<SDNode*, unsigned> RegPressureMap; + + /// ExprMap - As shared expressions are codegen'd, we keep track of which + /// vreg the value is produced in, so we only emit one copy of each compiled + /// tree. + std::map<SDOperand, unsigned> ExprMap; + + /// TheDAG - The DAG being selected during Select* operations. + SelectionDAG *TheDAG; + + /// Subtarget - Keep a pointer to the X86Subtarget around so that we can + /// make the right decision when generating code for different targets. + const X86Subtarget *Subtarget; + public: + ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) { + Subtarget = &TM.getSubtarget<X86Subtarget>(); + } + + virtual const char *getPassName() const { + return "X86 Pattern Instruction Selection"; + } + + unsigned getRegPressure(SDOperand O) { + return RegPressureMap[O.Val]; + } + unsigned ComputeRegPressure(SDOperand O); + + /// InstructionSelectBasicBlock - This callback is invoked by + /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. + virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); + + virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); + + bool isFoldableLoad(SDOperand Op, SDOperand OtherOp, + bool FloatPromoteOk = false); + void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM); + bool TryToFoldLoadOpStore(SDNode *Node); + bool EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg); + void EmitCMP(SDOperand LHS, SDOperand RHS, bool isOnlyUse); + bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond); + void EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False, + MVT::ValueType SVT, unsigned RDest); + unsigned SelectExpr(SDOperand N); + + X86AddressMode SelectAddrExprs(const X86ISelAddressMode &IAM); + bool MatchAddress(SDOperand N, X86ISelAddressMode &AM); + void SelectAddress(SDOperand N, X86AddressMode &AM); + bool EmitPotentialTailCall(SDNode *Node); + void EmitFastCCToFastCCTailCall(SDNode *TailCallNode); + void Select(SDOperand N); + }; +} + +/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in +/// the main function. +static void EmitSpecialCodeForMain(MachineBasicBlock *BB, + MachineFrameInfo *MFI) { + // Switch the FPU to 64-bit precision mode for better compatibility and speed. + int CWFrameIdx = MFI->CreateStackObject(2, 2); + addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); + + // Set the high part to be 64-bit precision. + addFrameReference(BuildMI(BB, X86::MOV8mi, 5), + CWFrameIdx, 1).addImm(2); + + // Reload the modified control word now. + addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); +} + +void ISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { + // If this is main, emit special code for main. + MachineBasicBlock *BB = MF.begin(); + if (Fn.hasExternalLinkage() && Fn.getName() == "main") + EmitSpecialCodeForMain(BB, MF.getFrameInfo()); +} + + +/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel +/// when it has created a SelectionDAG for us to codegen. +void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { + // While we're doing this, keep track of whether we see any FP code for + // FP_REG_KILL insertion. + ContainsFPCode = false; + MachineFunction *MF = BB->getParent(); + + // Scan the PHI nodes that already are inserted into this basic block. If any + // of them is a PHI of a floating point value, we need to insert an + // FP_REG_KILL. + SSARegMap *RegMap = MF->getSSARegMap(); + if (BB != MF->begin()) + for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); + I != E; ++I) { + assert(I->getOpcode() == X86::PHI && + "Isn't just PHI nodes?"); + if (RegMap->getRegClass(I->getOperand(0).getReg()) == + X86::RFPRegisterClass) { + ContainsFPCode = true; + break; + } + } + + // Compute the RegPressureMap, which is an approximation for the number of + // registers required to compute each node. + ComputeRegPressure(DAG.getRoot()); + + TheDAG = &DAG; + + // Codegen the basic block. + Select(DAG.getRoot()); + + TheDAG = 0; + + // Finally, look at all of the successors of this block. If any contain a PHI + // node of FP type, we need to insert an FP_REG_KILL in this block. + for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), + E = BB->succ_end(); SI != E && !ContainsFPCode; ++SI) + for (MachineBasicBlock::iterator I = (*SI)->begin(), E = (*SI)->end(); + I != E && I->getOpcode() == X86::PHI; ++I) { + if (RegMap->getRegClass(I->getOperand(0).getReg()) == + X86::RFPRegisterClass) { + ContainsFPCode = true; + break; + } + } + + // Final check, check LLVM BB's that are successors to the LLVM BB + // corresponding to BB for FP PHI nodes. + const BasicBlock *LLVMBB = BB->getBasicBlock(); + const PHINode *PN; + if (!ContainsFPCode) + for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB); + SI != E && !ContainsFPCode; ++SI) + for (BasicBlock::const_iterator II = SI->begin(); + (PN = dyn_cast<PHINode>(II)); ++II) + if (PN->getType()->isFloatingPoint()) { + ContainsFPCode = true; + break; + } + + + // Insert FP_REG_KILL instructions into basic blocks that need them. This + // only occurs due to the floating point stackifier not being aggressive + // enough to handle arbitrary global stackification. + // + // Currently we insert an FP_REG_KILL instruction into each block that uses or + // defines a floating point virtual register. + // + // When the global register allocators (like linear scan) finally update live + // variable analysis, we can keep floating point values in registers across + // basic blocks. This will be a huge win, but we are waiting on the global + // allocators before we can do this. + // + if (ContainsFPCode) { + BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); + ++NumFPKill; + } + + // Clear state used for selection. + ExprMap.clear(); + RegPressureMap.clear(); +} + + +// ComputeRegPressure - Compute the RegPressureMap, which is an approximation +// for the number of registers required to compute each node. This is basically +// computing a generalized form of the Sethi-Ullman number for each node. +unsigned ISel::ComputeRegPressure(SDOperand O) { + SDNode *N = O.Val; + unsigned &Result = RegPressureMap[N]; + if (Result) return Result; + + // FIXME: Should operations like CALL (which clobber lots o regs) have a + // higher fixed cost?? + + if (N->getNumOperands() == 0) { + Result = 1; + } else { + unsigned MaxRegUse = 0; + unsigned NumExtraMaxRegUsers = 0; + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + unsigned Regs; + if (N->getOperand(i).getOpcode() == ISD::Constant) + Regs = 0; + else + Regs = ComputeRegPressure(N->getOperand(i)); + if (Regs > MaxRegUse) { + MaxRegUse = Regs; + NumExtraMaxRegUsers = 0; + } else if (Regs == MaxRegUse && + N->getOperand(i).getValueType() != MVT::Other) { + ++NumExtraMaxRegUsers; + } + } + + if (O.getOpcode() != ISD::TokenFactor) + Result = MaxRegUse+NumExtraMaxRegUsers; + else + Result = MaxRegUse == 1 ? 0 : MaxRegUse-1; + } + + //std::cerr << " WEIGHT: " << Result << " "; N->dump(); std::cerr << "\n"; + return Result; +} + +/// NodeTransitivelyUsesValue - Return true if N or any of its uses uses Op. +/// The DAG cannot have cycles in it, by definition, so the visited set is not +/// needed to prevent infinite loops. The DAG CAN, however, have unbounded +/// reuse, so it prevents exponential cases. +/// +static bool NodeTransitivelyUsesValue(SDOperand N, SDOperand Op, + std::set<SDNode*> &Visited) { + if (N == Op) return true; // Found it. + SDNode *Node = N.Val; + if (Node->getNumOperands() == 0 || // Leaf? + Node->getNodeDepth() <= Op.getNodeDepth()) return false; // Can't find it? + if (!Visited.insert(Node).second) return false; // Already visited? + + // Recurse for the first N-1 operands. + for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) + if (NodeTransitivelyUsesValue(Node->getOperand(i), Op, Visited)) + return true; + + // Tail recurse for the last operand. + return NodeTransitivelyUsesValue(Node->getOperand(0), Op, Visited); +} + +X86AddressMode ISel::SelectAddrExprs(const X86ISelAddressMode &IAM) { + X86AddressMode Result; + + // If we need to emit two register operands, emit the one with the highest + // register pressure first. + if (IAM.BaseType == X86ISelAddressMode::RegBase && + IAM.Base.Reg.Val && IAM.IndexReg.Val) { + bool EmitBaseThenIndex; + if (getRegPressure(IAM.Base.Reg) > getRegPressure(IAM.IndexReg)) { + std::set<SDNode*> Visited; + EmitBaseThenIndex = true; + // If Base ends up pointing to Index, we must emit index first. This is + // because of the way we fold loads, we may end up doing bad things with + // the folded add. + if (NodeTransitivelyUsesValue(IAM.Base.Reg, IAM.IndexReg, Visited)) + EmitBaseThenIndex = false; + } else { + std::set<SDNode*> Visited; + EmitBaseThenIndex = false; + // If Base ends up pointing to Index, we must emit index first. This is + // because of the way we fold loads, we may end up doing bad things with + // the folded add. + if (NodeTransitivelyUsesValue(IAM.IndexReg, IAM.Base.Reg, Visited)) + EmitBaseThenIndex = true; + } + + if (EmitBaseThenIndex) { + Result.Base.Reg = SelectExpr(IAM.Base.Reg); + Result.IndexReg = SelectExpr(IAM.IndexReg); + } else { + Result.IndexReg = SelectExpr(IAM.IndexReg); + Result.Base.Reg = SelectExpr(IAM.Base.Reg); + } + + } else if (IAM.BaseType == X86ISelAddressMode::RegBase && IAM.Base.Reg.Val) { + Result.Base.Reg = SelectExpr(IAM.Base.Reg); + } else if (IAM.IndexReg.Val) { + Result.IndexReg = SelectExpr(IAM.IndexReg); + } + + switch (IAM.BaseType) { + case X86ISelAddressMode::RegBase: + Result.BaseType = X86AddressMode::RegBase; + break; + case X86ISelAddressMode::FrameIndexBase: + Result.BaseType = X86AddressMode::FrameIndexBase; + Result.Base.FrameIndex = IAM.Base.FrameIndex; + break; + default: + assert(0 && "Unknown base type!"); + break; + } + Result.Scale = IAM.Scale; + Result.Disp = IAM.Disp; + Result.GV = IAM.GV; + return Result; +} + +/// SelectAddress - Pattern match the maximal addressing mode for this node and +/// emit all of the leaf registers. +void ISel::SelectAddress(SDOperand N, X86AddressMode &AM) { + X86ISelAddressMode IAM; + MatchAddress(N, IAM); + AM = SelectAddrExprs(IAM); +} + +/// MatchAddress - Add the specified node to the specified addressing mode, +/// returning true if it cannot be done. This just pattern matches for the +/// addressing mode, it does not cause any code to be emitted. For that, use +/// SelectAddress. +bool ISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) { + switch (N.getOpcode()) { + default: break; + case ISD::FrameIndex: + if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) { + AM.BaseType = X86ISelAddressMode::FrameIndexBase; + AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); + return false; + } + break; + case ISD::GlobalAddress: + if (AM.GV == 0) { + GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); + // For Darwin, external and weak symbols are indirect, so we want to load + // the value at address GV, not the value of GV itself. This means that + // the GlobalAddress must be in the base or index register of the address, + // not the GV offset field. + if (Subtarget->getIndirectExternAndWeakGlobals() && + (GV->hasWeakLinkage() || GV->isExternal())) { + break; + } else { + AM.GV = GV; + return false; + } + } + break; + case ISD::Constant: + AM.Disp += cast<ConstantSDNode>(N)->getValue(); + return false; + case ISD::SHL: + // We might have folded the load into this shift, so don't regen the value + // if so. + if (ExprMap.count(N)) break; + + if (AM.IndexReg.Val == 0 && AM.Scale == 1) + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) { + unsigned Val = CN->getValue(); + if (Val == 1 || Val == 2 || Val == 3) { + AM.Scale = 1 << Val; + SDOperand ShVal = N.Val->getOperand(0); + + // Okay, we know that we have a scale by now. However, if the scaled + // value is an add of something and a constant, we can fold the + // constant into the disp field here. + if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() && + isa<ConstantSDNode>(ShVal.Val->getOperand(1))) { + AM.IndexReg = ShVal.Val->getOperand(0); + ConstantSDNode *AddVal = + cast<ConstantSDNode>(ShVal.Val->getOperand(1)); + AM.Disp += AddVal->getValue() << Val; + } else { + AM.IndexReg = ShVal; + } + return false; + } + } + break; + case ISD::MUL: + // We might have folded the load into this mul, so don't regen the value if + // so. + if (ExprMap.count(N)) break; + + // X*[3,5,9] -> X+X*[2,4,8] + if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase && + AM.Base.Reg.Val == 0) + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) + if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { + AM.Scale = unsigned(CN->getValue())-1; + + SDOperand MulVal = N.Val->getOperand(0); + SDOperand Reg; + + // Okay, we know that we have a scale by now. However, if the scaled + // value is an add of something and a constant, we can fold the + // constant into the disp field here. + if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() && + isa<ConstantSDNode>(MulVal.Val->getOperand(1))) { + Reg = MulVal.Val->getOperand(0); + ConstantSDNode *AddVal = + cast<ConstantSDNode>(MulVal.Val->getOperand(1)); + AM.Disp += AddVal->getValue() * CN->getValue(); + } else { + Reg = N.Val->getOperand(0); + } + + AM.IndexReg = AM.Base.Reg = Reg; + return false; + } + break; + + case ISD::ADD: { + // We might have folded the load into this mul, so don't regen the value if + // so. + if (ExprMap.count(N)) break; + + X86ISelAddressMode Backup = AM; + if (!MatchAddress(N.Val->getOperand(0), AM) && + !MatchAddress(N.Val->getOperand(1), AM)) + return false; + AM = Backup; + if (!MatchAddress(N.Val->getOperand(1), AM) && + !MatchAddress(N.Val->getOperand(0), AM)) + return false; + AM = Backup; + break; + } + } + + // Is the base register already occupied? + if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) { + // If so, check to see if the scale index register is set. + if (AM.IndexReg.Val == 0) { + AM.IndexReg = N; + AM.Scale = 1; + return false; + } + + // Otherwise, we cannot select it. + return true; + } + + // Default, generate it as a register. + AM.BaseType = X86ISelAddressMode::RegBase; + AM.Base.Reg = N; + return false; +} + +/// Emit2SetCCsAndLogical - Emit the following sequence of instructions, +/// assuming that the temporary registers are in the 8-bit register class. +/// +/// Tmp1 = setcc1 +/// Tmp2 = setcc2 +/// DestReg = logicalop Tmp1, Tmp2 +/// +static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1, + unsigned SetCC2, unsigned LogicalOp, + unsigned DestReg) { + SSARegMap *RegMap = BB->getParent()->getSSARegMap(); + unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass); + unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass); + BuildMI(BB, SetCC1, 0, Tmp1); + BuildMI(BB, SetCC2, 0, Tmp2); + BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2); +} + +/// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the +/// condition codes match the specified SetCCOpcode. Note that some conditions +/// require multiple instructions to generate the correct value. +static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg, + ISD::CondCode SetCCOpcode, bool isFP) { + unsigned Opc; + if (!isFP) { + switch (SetCCOpcode) { + default: assert(0 && "Illegal integer SetCC!"); + case ISD::SETEQ: Opc = X86::SETEr; break; + case ISD::SETGT: Opc = X86::SETGr; break; + case ISD::SETGE: Opc = X86::SETGEr; break; + case ISD::SETLT: Opc = X86::SETLr; break; + case ISD::SETLE: Opc = X86::SETLEr; break; + case ISD::SETNE: Opc = X86::SETNEr; break; + case ISD::SETULT: Opc = X86::SETBr; break; + case ISD::SETUGT: Opc = X86::SETAr; break; + case ISD::SETULE: Opc = X86::SETBEr; break; + case ISD::SETUGE: Opc = X86::SETAEr; break; + } + } else { + // On a floating point condition, the flags are set as follows: + // ZF PF CF op + // 0 | 0 | 0 | X > Y + // 0 | 0 | 1 | X < Y + // 1 | 0 | 0 | X == Y + // 1 | 1 | 1 | unordered + // + switch (SetCCOpcode) { + default: assert(0 && "Invalid FP setcc!"); + case ISD::SETUEQ: + case ISD::SETEQ: + Opc = X86::SETEr; // True if ZF = 1 + break; + case ISD::SETOGT: + case ISD::SETGT: + Opc = X86::SETAr; // True if CF = 0 and ZF = 0 + break; + case ISD::SETOGE: + case ISD::SETGE: + Opc = X86::SETAEr; // True if CF = 0 + break; + case ISD::SETULT: + case ISD::SETLT: + Opc = X86::SETBr; // True if CF = 1 + break; + case ISD::SETULE: + case ISD::SETLE: + Opc = X86::SETBEr; // True if CF = 1 or ZF = 1 + break; + case ISD::SETONE: + case ISD::SETNE: + Opc = X86::SETNEr; // True if ZF = 0 + break; + case ISD::SETUO: + Opc = X86::SETPr; // True if PF = 1 + break; + case ISD::SETO: + Opc = X86::SETNPr; // True if PF = 0 + break; + case ISD::SETOEQ: // !PF & ZF + Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg); + return; + case ISD::SETOLT: // !PF & CF + Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg); + return; + case ISD::SETOLE: // !PF & (CF || ZF) + Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg); + return; + case ISD::SETUGT: // PF | (!ZF & !CF) + Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg); + return; + case ISD::SETUGE: // PF | !CF + Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg); + return; + case ISD::SETUNE: // PF | !ZF + Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg); + return; + } + } + BuildMI(BB, Opc, 0, DestReg); +} + + +/// EmitBranchCC - Emit code into BB that arranges for control to transfer to +/// the Dest block if the Cond condition is true. If we cannot fold this +/// condition into the branch, return true. +/// +bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, + SDOperand Cond) { + // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A > + // B) using two conditional branches instead of one condbr, two setcc's, and + // an or. + if ((Cond.getOpcode() == ISD::OR || + Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) { + // And and or set the flags for us, so there is no need to emit a TST of the + // result. It is only safe to do this if there is only a single use of the + // AND/OR though, otherwise we don't know it will be emitted here. + Select(Chain); + SelectExpr(Cond); + BuildMI(BB, X86::JNE, 1).addMBB(Dest); + return false; + } + + // Codegen br not C -> JE. + if (Cond.getOpcode() == ISD::XOR) + if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Cond.Val->getOperand(1))) + if (NC->isAllOnesValue()) { + unsigned CondR; + if (getRegPressure(Chain) > getRegPressure(Cond)) { + Select(Chain); + CondR = SelectExpr(Cond.Val->getOperand(0)); + } else { + CondR = SelectExpr(Cond.Val->getOperand(0)); + Select(Chain); + } + BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR); + BuildMI(BB, X86::JE, 1).addMBB(Dest); + return false; + } + + if (Cond.getOpcode() != ISD::SETCC) + return true; // Can only handle simple setcc's so far. + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + unsigned Opc; + + // Handle integer conditions first. + if (MVT::isInteger(Cond.getOperand(0).getValueType())) { + switch (CC) { + default: assert(0 && "Illegal integer SetCC!"); + case ISD::SETEQ: Opc = X86::JE; break; + case ISD::SETGT: Opc = X86::JG; break; + case ISD::SETGE: Opc = X86::JGE; break; + case ISD::SETLT: Opc = X86::JL; break; + case ISD::SETLE: Opc = X86::JLE; break; + case ISD::SETNE: Opc = X86::JNE; break; + case ISD::SETULT: Opc = X86::JB; break; + case ISD::SETUGT: Opc = X86::JA; break; + case ISD::SETULE: Opc = X86::JBE; break; + case ISD::SETUGE: Opc = X86::JAE; break; + } + Select(Chain); + EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse()); + BuildMI(BB, Opc, 1).addMBB(Dest); + return false; + } + + unsigned Opc2 = 0; // Second branch if needed. + + // On a floating point condition, the flags are set as follows: + // ZF PF CF op + // 0 | 0 | 0 | X > Y + // 0 | 0 | 1 | X < Y + // 1 | 0 | 0 | X == Y + // 1 | 1 | 1 | unordered + // + switch (CC) { + default: assert(0 && "Invalid FP setcc!"); + case ISD::SETUEQ: + case ISD::SETEQ: Opc = X86::JE; break; // True if ZF = 1 + case ISD::SETOGT: + case ISD::SETGT: Opc = X86::JA; break; // True if CF = 0 and ZF = 0 + case ISD::SETOGE: + case ISD::SETGE: Opc = X86::JAE; break; // True if CF = 0 + case ISD::SETULT: + case ISD::SETLT: Opc = X86::JB; break; // True if CF = 1 + case ISD::SETULE: + case ISD::SETLE: Opc = X86::JBE; break; // True if CF = 1 or ZF = 1 + case ISD::SETONE: + case ISD::SETNE: Opc = X86::JNE; break; // True if ZF = 0 + case ISD::SETUO: Opc = X86::JP; break; // True if PF = 1 + case ISD::SETO: Opc = X86::JNP; break; // True if PF = 0 + case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) + Opc = X86::JA; // ZF = 0 & CF = 0 + Opc2 = X86::JP; // PF = 1 + break; + case ISD::SETUGE: // PF = 1 | CF = 0 + Opc = X86::JAE; // CF = 0 + Opc2 = X86::JP; // PF = 1 + break; + case ISD::SETUNE: // PF = 1 | ZF = 0 + Opc = X86::JNE; // ZF = 0 + Opc2 = X86::JP; // PF = 1 + break; + case ISD::SETOEQ: // PF = 0 & ZF = 1 + //X86::JNP, X86::JE + //X86::AND8rr + return true; // FIXME: Emit more efficient code for this branch. + case ISD::SETOLT: // PF = 0 & CF = 1 + //X86::JNP, X86::JB + //X86::AND8rr + return true; // FIXME: Emit more efficient code for this branch. + case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) + //X86::JNP, X86::JBE + //X86::AND8rr + return true; // FIXME: Emit more efficient code for this branch. + } + + Select(Chain); + EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse()); + BuildMI(BB, Opc, 1).addMBB(Dest); + if (Opc2) + BuildMI(BB, Opc2, 1).addMBB(Dest); + return false; +} + +/// EmitSelectCC - Emit code into BB that performs a select operation between +/// the two registers RTrue and RFalse, generating a result into RDest. +/// +void ISel::EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False, + MVT::ValueType SVT, unsigned RDest) { + unsigned RTrue, RFalse; + enum Condition { + EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP, + NOT_SET + } CondCode = NOT_SET; + + static const unsigned CMOVTAB16[] = { + X86::CMOVE16rr, X86::CMOVNE16rr, X86::CMOVL16rr, X86::CMOVLE16rr, + X86::CMOVG16rr, X86::CMOVGE16rr, X86::CMOVB16rr, X86::CMOVBE16rr, + X86::CMOVA16rr, X86::CMOVAE16rr, X86::CMOVP16rr, X86::CMOVNP16rr, + }; + static const unsigned CMOVTAB32[] = { + X86::CMOVE32rr, X86::CMOVNE32rr, X86::CMOVL32rr, X86::CMOVLE32rr, + X86::CMOVG32rr, X86::CMOVGE32rr, X86::CMOVB32rr, X86::CMOVBE32rr, + X86::CMOVA32rr, X86::CMOVAE32rr, X86::CMOVP32rr, X86::CMOVNP32rr, + }; + static const unsigned CMOVTABFP[] = { + X86::FCMOVE , X86::FCMOVNE, /*missing*/0, /*missing*/0, + /*missing*/0, /*missing*/0, X86::FCMOVB , X86::FCMOVBE, + X86::FCMOVA , X86::FCMOVAE, X86::FCMOVP , X86::FCMOVNP + }; + static const int SSE_CMOVTAB[] = { + /*CMPEQ*/ 0, /*CMPNEQ*/ 4, /*missing*/ 0, /*missing*/ 0, + /*missing*/ 0, /*missing*/ 0, /*CMPLT*/ 1, /*CMPLE*/ 2, + /*CMPNLE*/ 6, /*CMPNLT*/ 5, /*CMPUNORD*/ 3, /*CMPORD*/ 7 + }; + + if (Cond.getOpcode() == ISD::SETCC) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + if (MVT::isInteger(Cond.getOperand(0).getValueType())) { + switch (CC) { + default: assert(0 && "Unknown integer comparison!"); + case ISD::SETEQ: CondCode = EQ; break; + case ISD::SETGT: CondCode = GT; break; + case ISD::SETGE: CondCode = GE; break; + case ISD::SETLT: CondCode = LT; break; + case ISD::SETLE: CondCode = LE; break; + case ISD::SETNE: CondCode = NE; break; + case ISD::SETULT: CondCode = B; break; + case ISD::SETUGT: CondCode = A; break; + case ISD::SETULE: CondCode = BE; break; + case ISD::SETUGE: CondCode = AE; break; + } + } else { + // On a floating point condition, the flags are set as follows: + // ZF PF CF op + // 0 | 0 | 0 | X > Y + // 0 | 0 | 1 | X < Y + // 1 | 0 | 0 | X == Y + // 1 | 1 | 1 | unordered + // + switch (CC) { + default: assert(0 && "Unknown FP comparison!"); + case ISD::SETUEQ: + case ISD::SETEQ: CondCode = EQ; break; // True if ZF = 1 + case ISD::SETOGT: + case ISD::SETGT: CondCode = A; break; // True if CF = 0 and ZF = 0 + case ISD::SETOGE: + case ISD::SETGE: CondCode = AE; break; // True if CF = 0 + case ISD::SETULT: + case ISD::SETLT: CondCode = B; break; // True if CF = 1 + case ISD::SETULE: + case ISD::SETLE: CondCode = BE; break; // True if CF = 1 or ZF = 1 + case ISD::SETONE: + case ISD::SETNE: CondCode = NE; break; // True if ZF = 0 + case ISD::SETUO: CondCode = P; break; // True if PF = 1 + case ISD::SETO: CondCode = NP; break; // True if PF = 0 + case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) + case ISD::SETUGE: // PF = 1 | CF = 0 + case ISD::SETUNE: // PF = 1 | ZF = 0 + case ISD::SETOEQ: // PF = 0 & ZF = 1 + case ISD::SETOLT: // PF = 0 & CF = 1 + case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) + // We cannot emit this comparison as a single cmov. + break; + } + } + + + // There's no SSE equivalent of FCMOVE. For cases where we set a condition + // code above and one of the results of the select is +0.0, then we can fake + // it up through a clever AND with mask. Otherwise, we will fall through to + // the code below that will use a PHI node to select the right value. + if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) { + if (Cond.getOperand(0).getValueType() == SVT && + NOT_SET != CondCode) { + ConstantFPSDNode *CT = dyn_cast<ConstantFPSDNode>(True); + ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(False); + bool TrueZero = CT && CT->isExactlyValue(0.0); + bool FalseZero = CF && CF->isExactlyValue(0.0); + if (TrueZero || FalseZero) { + SDOperand LHS = Cond.getOperand(0); + SDOperand RHS = Cond.getOperand(1); + + // Select the two halves of the condition + unsigned RLHS, RRHS; + if (getRegPressure(LHS) > getRegPressure(RHS)) { + RLHS = SelectExpr(LHS); + RRHS = SelectExpr(RHS); + } else { + RRHS = SelectExpr(RHS); + RLHS = SelectExpr(LHS); + } + + // Emit the comparison and generate a mask from it + unsigned MaskReg = MakeReg(SVT); + unsigned Opc = (SVT == MVT::f32) ? X86::CMPSSrr : X86::CMPSDrr; + BuildMI(BB, Opc, 3, MaskReg).addReg(RLHS).addReg(RRHS) + .addImm(SSE_CMOVTAB[CondCode]); + + if (TrueZero) { + RFalse = SelectExpr(False); + Opc = (SVT == MVT::f32) ? X86::ANDNPSrr : X86::ANDNPDrr; + BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RFalse); + } else { + RTrue = SelectExpr(True); + Opc = (SVT == MVT::f32) ? X86::ANDPSrr : X86::ANDPDrr; + BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RTrue); + } + return; + } + } + } + } + + // Select the true and false values for use in both the SSE PHI case, and the + // integer or x87 cmov cases below. + if (getRegPressure(True) > getRegPressure(False)) { + RTrue = SelectExpr(True); + RFalse = SelectExpr(False); + } else { + RFalse = SelectExpr(False); + RTrue = SelectExpr(True); + } + + // Since there's no SSE equivalent of FCMOVE, and we couldn't generate an + // AND with mask, we'll have to do the normal RISC thing and generate a PHI + // node to select between the true and false values. + if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) { + // FIXME: emit a direct compare and branch rather than setting a cond reg + // and testing it. + unsigned CondReg = SelectExpr(Cond); + BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); + + // Create an iterator with which to insert the MBB for copying the false + // value and the MBB to hold the PHI instruction for this SetCC. + MachineBasicBlock *thisMBB = BB; + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + ilist<MachineBasicBlock>::iterator It = BB; + ++It; + + // thisMBB: + // ... + // TrueVal = ... + // cmpTY ccX, r1, r2 + // bCC sinkMBB + // fallthrough --> copy0MBB + MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); + BuildMI(BB, X86::JNE, 1).addMBB(sinkMBB); + MachineFunction *F = BB->getParent(); + F->getBasicBlockList().insert(It, copy0MBB); + F->getBasicBlockList().insert(It, sinkMBB); + // Update machine-CFG edges + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + BB = sinkMBB; + BuildMI(BB, X86::PHI, 4, RDest).addReg(RFalse) + .addMBB(copy0MBB).addReg(RTrue).addMBB(thisMBB); + return; + } + + unsigned Opc = 0; + if (CondCode != NOT_SET) { + switch (SVT) { + default: assert(0 && "Cannot select this type!"); + case MVT::i16: Opc = CMOVTAB16[CondCode]; break; + case MVT::i32: Opc = CMOVTAB32[CondCode]; break; + case MVT::f64: Opc = CMOVTABFP[CondCode]; break; + } + } + + // Finally, if we weren't able to fold this, just emit the condition and test + // it. + if (CondCode == NOT_SET || Opc == 0) { + // Get the condition into the zero flag. + unsigned CondReg = SelectExpr(Cond); + BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); + + switch (SVT) { + default: assert(0 && "Cannot select this type!"); + case MVT::i16: Opc = X86::CMOVE16rr; break; + case MVT::i32: Opc = X86::CMOVE32rr; break; + case MVT::f64: Opc = X86::FCMOVE; break; + } + } else { + // FIXME: CMP R, 0 -> TEST R, R + EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.Val->hasOneUse()); + std::swap(RTrue, RFalse); + } + BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse); +} + +void ISel::EmitCMP(SDOperand LHS, SDOperand RHS, bool HasOneUse) { + unsigned Opc; + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { + Opc = 0; + if (HasOneUse && isFoldableLoad(LHS, RHS)) { + switch (RHS.getValueType()) { + default: break; + case MVT::i1: + case MVT::i8: Opc = X86::CMP8mi; break; + case MVT::i16: Opc = X86::CMP16mi; break; + case MVT::i32: Opc = X86::CMP32mi; break; + } + if (Opc) { + X86AddressMode AM; + EmitFoldedLoad(LHS, AM); + addFullAddress(BuildMI(BB, Opc, 5), AM).addImm(CN->getValue()); + return; + } + } + + switch (RHS.getValueType()) { + default: break; + case MVT::i1: + case MVT::i8: Opc = X86::CMP8ri; break; + case MVT::i16: Opc = X86::CMP16ri; break; + case MVT::i32: Opc = X86::CMP32ri; break; + } + if (Opc) { + unsigned Tmp1 = SelectExpr(LHS); + BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue()); + return; + } + } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(RHS)) { + if (!X86ScalarSSE && (CN->isExactlyValue(+0.0) || + CN->isExactlyValue(-0.0))) { + unsigned Reg = SelectExpr(LHS); + BuildMI(BB, X86::FTST, 1).addReg(Reg); + BuildMI(BB, X86::FNSTSW8r, 0); + BuildMI(BB, X86::SAHF, 1); + return; + } + } + + Opc = 0; + if (HasOneUse && isFoldableLoad(LHS, RHS)) { + switch (RHS.getValueType()) { + default: break; + case MVT::i1: + case MVT::i8: Opc = X86::CMP8mr; break; + case MVT::i16: Opc = X86::CMP16mr; break; + case MVT::i32: Opc = X86::CMP32mr; break; + } + if (Opc) { + X86AddressMode AM; + EmitFoldedLoad(LHS, AM); + unsigned Reg = SelectExpr(RHS); + addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(Reg); + return; + } + } + + switch (LHS.getValueType()) { + default: assert(0 && "Cannot compare this value!"); + case MVT::i1: + case MVT::i8: Opc = X86::CMP8rr; break; + case MVT::i16: Opc = X86::CMP16rr; break; + case MVT::i32: Opc = X86::CMP32rr; break; + case MVT::f32: Opc = X86::UCOMISSrr; break; + case MVT::f64: Opc = X86ScalarSSE ? X86::UCOMISDrr : X86::FUCOMIr; break; + } + unsigned Tmp1, Tmp2; + if (getRegPressure(LHS) > getRegPressure(RHS)) { + Tmp1 = SelectExpr(LHS); + Tmp2 = SelectExpr(RHS); + } else { + Tmp2 = SelectExpr(RHS); + Tmp1 = SelectExpr(LHS); + } + BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2); +} + +/// isFoldableLoad - Return true if this is a load instruction that can safely +/// be folded into an operation that uses it. +bool ISel::isFoldableLoad(SDOperand Op, SDOperand OtherOp, bool FloatPromoteOk){ + if (Op.getOpcode() == ISD::LOAD) { + // FIXME: currently can't fold constant pool indexes. + if (isa<ConstantPoolSDNode>(Op.getOperand(1))) + return false; + } else if (FloatPromoteOk && Op.getOpcode() == ISD::EXTLOAD && + cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::f32) { + // FIXME: currently can't fold constant pool indexes. + if (isa<ConstantPoolSDNode>(Op.getOperand(1))) + return false; + } else { + return false; + } + + // If this load has already been emitted, we clearly can't fold it. + assert(Op.ResNo == 0 && "Not a use of the value of the load?"); + if (ExprMap.count(Op.getValue(1))) return false; + assert(!ExprMap.count(Op.getValue(0)) && "Value in map but not token chain?"); + assert(!ExprMap.count(Op.getValue(1))&&"Token lowered but value not in map?"); + + // If there is not just one use of its value, we cannot fold. + if (!Op.Val->hasNUsesOfValue(1, 0)) return false; + + // Finally, we cannot fold the load into the operation if this would induce a + // cycle into the resultant dag. To check for this, see if OtherOp (the other + // operand of the operation we are folding the load into) can possible use the + // chain node defined by the load. + if (OtherOp.Val && !Op.Val->hasNUsesOfValue(0, 1)) { // Has uses of chain? + std::set<SDNode*> Visited; + if (NodeTransitivelyUsesValue(OtherOp, Op.getValue(1), Visited)) + return false; + } + return true; +} + + +/// EmitFoldedLoad - Ensure that the arguments of the load are code generated, +/// and compute the address being loaded into AM. +void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) { + SDOperand Chain = Op.getOperand(0); + SDOperand Address = Op.getOperand(1); + + if (getRegPressure(Chain) > getRegPressure(Address)) { + Select(Chain); + SelectAddress(Address, AM); + } else { + SelectAddress(Address, AM); + Select(Chain); + } + + // The chain for this load is now lowered. + assert(ExprMap.count(SDOperand(Op.Val, 1)) == 0 && + "Load emitted more than once?"); + if (!ExprMap.insert(std::make_pair(Op.getValue(1), 1)).second) + assert(0 && "Load emitted more than once!"); +} + +// EmitOrOpOp - Pattern match the expression (Op1|Op2), where we know that op1 +// and op2 are i8/i16/i32 values with one use each (the or). If we can form a +// SHLD or SHRD, emit the instruction (generating the value into DestReg) and +// return true. +bool ISel::EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg) { + if (Op1.getOpcode() == ISD::SHL && Op2.getOpcode() == ISD::SRL) { + // good! + } else if (Op2.getOpcode() == ISD::SHL && Op1.getOpcode() == ISD::SRL) { + std::swap(Op1, Op2); // Op1 is the SHL now. + } else { + return false; // No match + } + + SDOperand ShlVal = Op1.getOperand(0); + SDOperand ShlAmt = Op1.getOperand(1); + SDOperand ShrVal = Op2.getOperand(0); + SDOperand ShrAmt = Op2.getOperand(1); + + unsigned RegSize = MVT::getSizeInBits(Op1.getValueType()); + + // Find out if ShrAmt = 32-ShlAmt or ShlAmt = 32-ShrAmt. + if (ShlAmt.getOpcode() == ISD::SUB && ShlAmt.getOperand(1) == ShrAmt) + if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShlAmt.getOperand(0))) + if (SubCST->getValue() == RegSize) { + // (A >> ShrAmt) | (A << (32-ShrAmt)) ==> ROR A, ShrAmt + // (A >> ShrAmt) | (B << (32-ShrAmt)) ==> SHRD A, B, ShrAmt + if (ShrVal == ShlVal) { + unsigned Reg, ShAmt; + if (getRegPressure(ShrVal) > getRegPressure(ShrAmt)) { + Reg = SelectExpr(ShrVal); + ShAmt = SelectExpr(ShrAmt); + } else { + ShAmt = SelectExpr(ShrAmt); + Reg = SelectExpr(ShrVal); + } + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); + unsigned Opc = RegSize == 8 ? X86::ROR8rCL : + (RegSize == 16 ? X86::ROR16rCL : X86::ROR32rCL); + BuildMI(BB, Opc, 1, DestReg).addReg(Reg); + return true; + } else if (RegSize != 8) { + unsigned AReg, BReg; + if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { + BReg = SelectExpr(ShlVal); + AReg = SelectExpr(ShrVal); + } else { + AReg = SelectExpr(ShrVal); + BReg = SelectExpr(ShlVal); + } + unsigned ShAmt = SelectExpr(ShrAmt); + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); + unsigned Opc = RegSize == 16 ? X86::SHRD16rrCL : X86::SHRD32rrCL; + BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); + return true; + } + } + + if (ShrAmt.getOpcode() == ISD::SUB && ShrAmt.getOperand(1) == ShlAmt) + if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShrAmt.getOperand(0))) + if (SubCST->getValue() == RegSize) { + // (A << ShlAmt) | (A >> (32-ShlAmt)) ==> ROL A, ShrAmt + // (A << ShlAmt) | (B >> (32-ShlAmt)) ==> SHLD A, B, ShrAmt + if (ShrVal == ShlVal) { + unsigned Reg, ShAmt; + if (getRegPressure(ShrVal) > getRegPressure(ShlAmt)) { + Reg = SelectExpr(ShrVal); + ShAmt = SelectExpr(ShlAmt); + } else { + ShAmt = SelectExpr(ShlAmt); + Reg = SelectExpr(ShrVal); + } + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); + unsigned Opc = RegSize == 8 ? X86::ROL8rCL : + (RegSize == 16 ? X86::ROL16rCL : X86::ROL32rCL); + BuildMI(BB, Opc, 1, DestReg).addReg(Reg); + return true; + } else if (RegSize != 8) { + unsigned AReg, BReg; + if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { + AReg = SelectExpr(ShlVal); + BReg = SelectExpr(ShrVal); + } else { + BReg = SelectExpr(ShrVal); + AReg = SelectExpr(ShlVal); + } + unsigned ShAmt = SelectExpr(ShlAmt); + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); + unsigned Opc = RegSize == 16 ? X86::SHLD16rrCL : X86::SHLD32rrCL; + BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); + return true; + } + } + + if (ConstantSDNode *ShrCst = dyn_cast<ConstantSDNode>(ShrAmt)) + if (ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(ShlAmt)) + if (ShrCst->getValue() < RegSize && ShlCst->getValue() < RegSize) + if (ShrCst->getValue() == RegSize-ShlCst->getValue()) { + // (A >> 5) | (A << 27) --> ROR A, 5 + // (A >> 5) | (B << 27) --> SHRD A, B, 5 + if (ShrVal == ShlVal) { + unsigned Reg = SelectExpr(ShrVal); + unsigned Opc = RegSize == 8 ? X86::ROR8ri : + (RegSize == 16 ? X86::ROR16ri : X86::ROR32ri); + BuildMI(BB, Opc, 2, DestReg).addReg(Reg).addImm(ShrCst->getValue()); + return true; + } else if (RegSize != 8) { + unsigned AReg, BReg; + if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { + BReg = SelectExpr(ShlVal); + AReg = SelectExpr(ShrVal); + } else { + AReg = SelectExpr(ShrVal); + BReg = SelectExpr(ShlVal); + } + unsigned Opc = RegSize == 16 ? X86::SHRD16rri8 : X86::SHRD32rri8; + BuildMI(BB, Opc, 3, DestReg).addReg(AReg).addReg(BReg) + .addImm(ShrCst->getValue()); + return true; + } + } + + return false; +} + +unsigned ISel::SelectExpr(SDOperand N) { + unsigned Result; + unsigned Tmp1 = 0, Tmp2 = 0, Tmp3 = 0, Opc = 0; + SDNode *Node = N.Val; + SDOperand Op0, Op1; + + if (Node->getOpcode() == ISD::CopyFromReg) { + unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); + // Just use the specified register as our input if we can. + if (MRegisterInfo::isVirtualRegister(Reg) || Reg == X86::ESP) + return Reg; + } + + unsigned &Reg = ExprMap[N]; + if (Reg) return Reg; + + switch (N.getOpcode()) { + default: + Reg = Result = (N.getValueType() != MVT::Other) ? + MakeReg(N.getValueType()) : 1; + break; + case X86ISD::TAILCALL: + case X86ISD::CALL: + // If this is a call instruction, make sure to prepare ALL of the result + // values as well as the chain. + ExprMap[N.getValue(0)] = 1; + if (Node->getNumValues() > 1) { + Result = MakeReg(Node->getValueType(1)); + ExprMap[N.getValue(1)] = Result; + for (unsigned i = 2, e = Node->getNumValues(); i != e; ++i) + ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); + } else { + Result = 1; + } + break; + case ISD::ADD_PARTS: + case ISD::SUB_PARTS: + case ISD::SHL_PARTS: + case ISD::SRL_PARTS: + case ISD::SRA_PARTS: + Result = MakeReg(Node->getValueType(0)); + ExprMap[N.getValue(0)] = Result; + for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) + ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); + break; + } + + switch (N.getOpcode()) { + default: + Node->dump(); + assert(0 && "Node not handled!\n"); + case ISD::FP_EXTEND: + assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32"); + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, X86::CVTSS2SDrr, 1, Result).addReg(Tmp1); + return Result; + case ISD::FP_ROUND: + assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32"); + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, X86::CVTSD2SSrr, 1, Result).addReg(Tmp1); + return Result; + case ISD::CopyFromReg: + Select(N.getOperand(0)); + if (Result == 1) { + Reg = Result = ExprMap[N.getValue(0)] = + MakeReg(N.getValue(0).getValueType()); + } + Tmp1 = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); + switch (Node->getValueType(0)) { + default: assert(0 && "Cannot CopyFromReg this!"); + case MVT::i1: + case MVT::i8: + BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1); + return Result; + case MVT::i16: + BuildMI(BB, X86::MOV16rr, 1, Result).addReg(Tmp1); + return Result; + case MVT::i32: + BuildMI(BB, X86::MOV32rr, 1, Result).addReg(Tmp1); + return Result; + } + + case ISD::FrameIndex: + Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); + addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1); + return Result; + case ISD::ConstantPool: + Tmp1 = BB->getParent()->getConstantPool()-> + getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get()); + addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1); + return Result; + case ISD::ConstantFP: + if (X86ScalarSSE) { + assert(cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) && + "SSE only supports +0.0"); + Opc = (N.getValueType() == MVT::f32) ? X86::FLD0SS : X86::FLD0SD; + BuildMI(BB, Opc, 0, Result); + return Result; + } + ContainsFPCode = true; + Tmp1 = Result; // Intermediate Register + if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 || + cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) + Tmp1 = MakeReg(MVT::f64); + + if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) || + cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) + BuildMI(BB, X86::FLD0, 0, Tmp1); + else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) || + cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0)) + BuildMI(BB, X86::FLD1, 0, Tmp1); + else + assert(0 && "Unexpected constant!"); + if (Tmp1 != Result) + BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); + return Result; + case ISD::Constant: + switch (N.getValueType()) { + default: assert(0 && "Cannot use constants of this type!"); + case MVT::i1: + case MVT::i8: Opc = X86::MOV8ri; break; + case MVT::i16: Opc = X86::MOV16ri; break; + case MVT::i32: Opc = X86::MOV32ri; break; + } + BuildMI(BB, Opc, 1,Result).addImm(cast<ConstantSDNode>(N)->getValue()); + return Result; + case ISD::UNDEF: + if (Node->getValueType(0) == MVT::f64) { + // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES! + BuildMI(BB, X86::FLD0, 0, Result); + } else { + BuildMI(BB, X86::IMPLICIT_DEF, 0, Result); + } + return Result; + case ISD::GlobalAddress: { + GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); + // For Darwin, external and weak symbols are indirect, so we want to load + // the value at address GV, not the value of GV itself. + if (Subtarget->getIndirectExternAndWeakGlobals() && + (GV->hasWeakLinkage() || GV->isExternal())) { + BuildMI(BB, X86::MOV32rm, 4, Result).addReg(0).addZImm(1).addReg(0) + .addGlobalAddress(GV, false, 0); + } else { + BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV); + } + return Result; + } + case ISD::ExternalSymbol: { + const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol(); + BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym); + return Result; + } + case ISD::ANY_EXTEND: // treat any extend like zext + case ISD::ZERO_EXTEND: { + int DestIs16 = N.getValueType() == MVT::i16; + int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; + + // FIXME: This hack is here for zero extension casts from bool to i8. This + // would not be needed if bools were promoted by Legalize. + if (N.getValueType() == MVT::i8) { + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1); + return Result; + } + + if (isFoldableLoad(N.getOperand(0), SDOperand())) { + static const unsigned Opc[3] = { + X86::MOVZX32rm8, X86::MOVZX32rm16, X86::MOVZX16rm8 + }; + + X86AddressMode AM; + EmitFoldedLoad(N.getOperand(0), AM); + addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); + + return Result; + } + + static const unsigned Opc[3] = { + X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8 + }; + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); + return Result; + } + case ISD::SIGN_EXTEND: { + int DestIs16 = N.getValueType() == MVT::i16; + int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; + + // FIXME: Legalize should promote bools to i8! + assert(N.getOperand(0).getValueType() != MVT::i1 && + "Sign extend from bool not implemented!"); + + if (isFoldableLoad(N.getOperand(0), SDOperand())) { + static const unsigned Opc[3] = { + X86::MOVSX32rm8, X86::MOVSX32rm16, X86::MOVSX16rm8 + }; + + X86AddressMode AM; + EmitFoldedLoad(N.getOperand(0), AM); + addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); + return Result; + } + + static const unsigned Opc[3] = { + X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8 + }; + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); + return Result; + } + case ISD::TRUNCATE: + // Handle cast of LARGER int to SMALLER int using a move to EAX followed by + // a move out of AX or AL. + switch (N.getOperand(0).getValueType()) { + default: assert(0 && "Unknown truncate!"); + case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; + case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; + case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break; + } + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); + + switch (N.getValueType()) { + default: assert(0 && "Unknown truncate!"); + case MVT::i1: + case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; + case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; + } + BuildMI(BB, Opc, 1, Result).addReg(Tmp2); + return Result; + + case ISD::SINT_TO_FP: { + Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register + unsigned PromoteOpcode = 0; + + // We can handle any sint to fp with the direct sse conversion instructions. + if (X86ScalarSSE) { + Opc = (N.getValueType() == MVT::f64) ? X86::CVTSI2SDrr : X86::CVTSI2SSrr; + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + } + + ContainsFPCode = true; + + // Spill the integer to memory and reload it from there. + MVT::ValueType SrcTy = N.getOperand(0).getValueType(); + unsigned Size = MVT::getSizeInBits(SrcTy)/8; + MachineFunction *F = BB->getParent(); + int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); + + switch (SrcTy) { + case MVT::i32: + addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx).addReg(Tmp1); + addFrameReference(BuildMI(BB, X86::FILD32m, 5, Result), FrameIdx); + break; + case MVT::i16: + addFrameReference(BuildMI(BB, X86::MOV16mr, 5), FrameIdx).addReg(Tmp1); + addFrameReference(BuildMI(BB, X86::FILD16m, 5, Result), FrameIdx); + break; + default: break; // No promotion required. + } + return Result; + } + case ISD::FP_TO_SINT: + Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register + + // If the target supports SSE2 and is performing FP operations in SSE regs + // instead of the FP stack, then we can use the efficient CVTSS2SI and + // CVTSD2SI instructions. + assert(X86ScalarSSE); + if (MVT::f32 == N.getOperand(0).getValueType()) { + BuildMI(BB, X86::CVTTSS2SIrr, 1, Result).addReg(Tmp1); + } else if (MVT::f64 == N.getOperand(0).getValueType()) { + BuildMI(BB, X86::CVTTSD2SIrr, 1, Result).addReg(Tmp1); + } else { + assert(0 && "Not an f32 or f64?"); + abort(); + } + return Result; + + case ISD::FADD: + case ISD::ADD: + Op0 = N.getOperand(0); + Op1 = N.getOperand(1); + + if (isFoldableLoad(Op0, Op1, true)) { + std::swap(Op0, Op1); + goto FoldAdd; + } + + if (isFoldableLoad(Op1, Op0, true)) { + FoldAdd: + switch (N.getValueType()) { + default: assert(0 && "Cannot add this type!"); + case MVT::i1: + case MVT::i8: Opc = X86::ADD8rm; break; + case MVT::i16: Opc = X86::ADD16rm; break; + case MVT::i32: Opc = X86::ADD32rm; break; + case MVT::f32: Opc = X86::ADDSSrm; break; + case MVT::f64: + // For F64, handle promoted load operations (from F32) as well! + if (X86ScalarSSE) { + assert(Op1.getOpcode() == ISD::LOAD && "SSE load not promoted"); + Opc = X86::ADDSDrm; + } else { + Opc = Op1.getOpcode() == ISD::LOAD ? X86::FADD64m : X86::FADD32m; + } + break; + } + X86AddressMode AM; + EmitFoldedLoad(Op1, AM); + Tmp1 = SelectExpr(Op0); + addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); + return Result; + } + + // See if we can codegen this as an LEA to fold operations together. + if (N.getValueType() == MVT::i32) { + ExprMap.erase(N); + X86ISelAddressMode AM; + MatchAddress(N, AM); + ExprMap[N] = Result; + + // If this is not just an add, emit the LEA. For a simple add (like + // reg+reg or reg+imm), we just emit an add. It might be a good idea to + // leave this as LEA, then peephole it to 'ADD' after two address elim + // happens. + if (AM.Scale != 1 || AM.BaseType == X86ISelAddressMode::FrameIndexBase|| + AM.GV || (AM.Base.Reg.Val && AM.IndexReg.Val && AM.Disp)) { + X86AddressMode XAM = SelectAddrExprs(AM); + addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), XAM); + return Result; + } + } + + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { + Opc = 0; + if (CN->getValue() == 1) { // add X, 1 -> inc X + switch (N.getValueType()) { + default: assert(0 && "Cannot integer add this type!"); + case MVT::i8: Opc = X86::INC8r; break; + case MVT::i16: Opc = X86::INC16r; break; + case MVT::i32: Opc = X86::INC32r; break; + } + } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X + switch (N.getValueType()) { + default: assert(0 && "Cannot integer add this type!"); + case MVT::i8: Opc = X86::DEC8r; break; + case MVT::i16: Opc = X86::DEC16r; break; + case MVT::i32: Opc = X86::DEC32r; break; + } + } + + if (Opc) { + Tmp1 = SelectExpr(Op0); + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot add this type!"); + case MVT::i8: Opc = X86::ADD8ri; break; + case MVT::i16: Opc = X86::ADD16ri; break; + case MVT::i32: Opc = X86::ADD32ri; break; + } + if (Opc) { + Tmp1 = SelectExpr(Op0); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); + return Result; + } + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot add this type!"); + case MVT::i8: Opc = X86::ADD8rr; break; + case MVT::i16: Opc = X86::ADD16rr; break; + case MVT::i32: Opc = X86::ADD32rr; break; + case MVT::f32: Opc = X86::ADDSSrr; break; + case MVT::f64: Opc = X86ScalarSSE ? X86::ADDSDrr : X86::FpADD; break; + } + + if (getRegPressure(Op0) > getRegPressure(Op1)) { + Tmp1 = SelectExpr(Op0); + Tmp2 = SelectExpr(Op1); + } else { + Tmp2 = SelectExpr(Op1); + Tmp1 = SelectExpr(Op0); + } + + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::FSQRT: + Tmp1 = SelectExpr(Node->getOperand(0)); + if (X86ScalarSSE) { + Opc = (N.getValueType() == MVT::f32) ? X86::SQRTSSrr : X86::SQRTSDrr; + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + } else { + BuildMI(BB, X86::FSQRT, 1, Result).addReg(Tmp1); + } + return Result; + + // FIXME: + // Once we can spill 16 byte constants into the constant pool, we can + // implement SSE equivalents of FABS and FCHS. + case ISD::FABS: + case ISD::FNEG: + case ISD::FSIN: + case ISD::FCOS: + assert(N.getValueType()==MVT::f64 && "Illegal type for this operation"); + Tmp1 = SelectExpr(Node->getOperand(0)); + switch (N.getOpcode()) { + default: assert(0 && "Unreachable!"); + case ISD::FABS: BuildMI(BB, X86::FABS, 1, Result).addReg(Tmp1); break; + case ISD::FNEG: BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); break; + case ISD::FSIN: BuildMI(BB, X86::FSIN, 1, Result).addReg(Tmp1); break; + case ISD::FCOS: BuildMI(BB, X86::FCOS, 1, Result).addReg(Tmp1); break; + } + return Result; + + case ISD::MULHU: + switch (N.getValueType()) { + default: assert(0 && "Unsupported VT!"); + case MVT::i8: Tmp2 = X86::MUL8r; break; + case MVT::i16: Tmp2 = X86::MUL16r; break; + case MVT::i32: Tmp2 = X86::MUL32r; break; + } + // FALL THROUGH + case ISD::MULHS: { + unsigned MovOpc, LowReg, HiReg; + switch (N.getValueType()) { + default: assert(0 && "Unsupported VT!"); + case MVT::i8: + MovOpc = X86::MOV8rr; + LowReg = X86::AL; + HiReg = X86::AH; + Opc = X86::IMUL8r; + break; + case MVT::i16: + MovOpc = X86::MOV16rr; + LowReg = X86::AX; + HiReg = X86::DX; + Opc = X86::IMUL16r; + break; + case MVT::i32: + MovOpc = X86::MOV32rr; + LowReg = X86::EAX; + HiReg = X86::EDX; + Opc = X86::IMUL32r; + break; + } + if (Node->getOpcode() != ISD::MULHS) + Opc = Tmp2; // Get the MULHU opcode. + + Op0 = Node->getOperand(0); + Op1 = Node->getOperand(1); + if (getRegPressure(Op0) > getRegPressure(Op1)) { + Tmp1 = SelectExpr(Op0); + Tmp2 = SelectExpr(Op1); + } else { + Tmp2 = SelectExpr(Op1); + Tmp1 = SelectExpr(Op0); + } + + // FIXME: Implement folding of loads into the memory operands here! + BuildMI(BB, MovOpc, 1, LowReg).addReg(Tmp1); + BuildMI(BB, Opc, 1).addReg(Tmp2); + BuildMI(BB, MovOpc, 1, Result).addReg(HiReg); + return Result; + } + + case ISD::FSUB: + case ISD::FMUL: + case ISD::SUB: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + static const unsigned SUBTab[] = { + X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, + X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FSUB32m, X86::FSUB64m, + X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB , X86::FpSUB, + }; + static const unsigned SSE_SUBTab[] = { + X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, + X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::SUBSSrm, X86::SUBSDrm, + X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::SUBSSrr, X86::SUBSDrr, + }; + static const unsigned MULTab[] = { + 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, + 0, X86::IMUL16rm , X86::IMUL32rm, X86::FMUL32m, X86::FMUL64m, + 0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL , X86::FpMUL, + }; + static const unsigned SSE_MULTab[] = { + 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, + 0, X86::IMUL16rm , X86::IMUL32rm, X86::MULSSrm, X86::MULSDrm, + 0, X86::IMUL16rr , X86::IMUL32rr, X86::MULSSrr, X86::MULSDrr, + }; + static const unsigned ANDTab[] = { + X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0, + X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0, + X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0, + }; + static const unsigned ORTab[] = { + X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0, + X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0, + X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0, + }; + static const unsigned XORTab[] = { + X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0, + X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0, + X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0, + }; + + Op0 = Node->getOperand(0); + Op1 = Node->getOperand(1); + + if (Node->getOpcode() == ISD::OR && Op0.hasOneUse() && Op1.hasOneUse()) + if (EmitOrOpOp(Op0, Op1, Result)) // Match SHLD, SHRD, and rotates. + return Result; + + if (Node->getOpcode() == ISD::SUB) + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(0))) + if (CN->isNullValue()) { // 0 - N -> neg N + switch (N.getValueType()) { + default: assert(0 && "Cannot sub this type!"); + case MVT::i1: + case MVT::i8: Opc = X86::NEG8r; break; + case MVT::i16: Opc = X86::NEG16r; break; + case MVT::i32: Opc = X86::NEG32r; break; + } + Tmp1 = SelectExpr(N.getOperand(1)); + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + } + + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { + if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) { + Opc = 0; + switch (N.getValueType()) { + default: assert(0 && "Cannot add this type!"); + case MVT::i1: break; // Not supported, don't invert upper bits! + case MVT::i8: Opc = X86::NOT8r; break; + case MVT::i16: Opc = X86::NOT16r; break; + case MVT::i32: Opc = X86::NOT32r; break; + } + if (Opc) { + Tmp1 = SelectExpr(Op0); + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + } + } + + // Fold common multiplies into LEA instructions. + if (Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i32) { + switch ((int)CN->getValue()) { + default: break; + case 3: + case 5: + case 9: + // Remove N from exprmap so SelectAddress doesn't get confused. + ExprMap.erase(N); + X86AddressMode AM; + SelectAddress(N, AM); + // Restore it to the map. + ExprMap[N] = Result; + addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM); + return Result; + } + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot xor this type!"); + case MVT::i1: + case MVT::i8: Opc = 0; break; + case MVT::i16: Opc = 1; break; + case MVT::i32: Opc = 2; break; + } + switch (Node->getOpcode()) { + default: assert(0 && "Unreachable!"); + case ISD::FSUB: + case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; + case ISD::FMUL: + case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; + case ISD::AND: Opc = ANDTab[Opc]; break; + case ISD::OR: Opc = ORTab[Opc]; break; + case ISD::XOR: Opc = XORTab[Opc]; break; + } + if (Opc) { // Can't fold MUL:i8 R, imm + Tmp1 = SelectExpr(Op0); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); + return Result; + } + } + + if (isFoldableLoad(Op0, Op1, true)) + if (Node->getOpcode() != ISD::SUB && Node->getOpcode() != ISD::FSUB) { + std::swap(Op0, Op1); + goto FoldOps; + } else { + // For FP, emit 'reverse' subract, with a memory operand. + if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { + if (Op0.getOpcode() == ISD::EXTLOAD) + Opc = X86::FSUBR32m; + else + Opc = X86::FSUBR64m; + + X86AddressMode AM; + EmitFoldedLoad(Op0, AM); + Tmp1 = SelectExpr(Op1); + addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); + return Result; + } + } + + if (isFoldableLoad(Op1, Op0, true)) { + FoldOps: + switch (N.getValueType()) { + default: assert(0 && "Cannot operate on this type!"); + case MVT::i1: + case MVT::i8: Opc = 5; break; + case MVT::i16: Opc = 6; break; + case MVT::i32: Opc = 7; break; + case MVT::f32: Opc = 8; break; + // For F64, handle promoted load operations (from F32) as well! + case MVT::f64: + assert((!X86ScalarSSE || Op1.getOpcode() == ISD::LOAD) && + "SSE load should have been promoted"); + Opc = Op1.getOpcode() == ISD::LOAD ? 9 : 8; break; + } + switch (Node->getOpcode()) { + default: assert(0 && "Unreachable!"); + case ISD::FSUB: + case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; + case ISD::FMUL: + case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; + case ISD::AND: Opc = ANDTab[Opc]; break; + case ISD::OR: Opc = ORTab[Opc]; break; + case ISD::XOR: Opc = XORTab[Opc]; break; + } + + X86AddressMode AM; + EmitFoldedLoad(Op1, AM); + Tmp1 = SelectExpr(Op0); + if (Opc) { + addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); + } else { + assert(Node->getOpcode() == ISD::MUL && + N.getValueType() == MVT::i8 && "Unexpected situation!"); + // Must use the MUL instruction, which forces use of AL. + BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); + addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM); + BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); + } + return Result; + } + + if (getRegPressure(Op0) > getRegPressure(Op1)) { + Tmp1 = SelectExpr(Op0); + Tmp2 = SelectExpr(Op1); + } else { + Tmp2 = SelectExpr(Op1); + Tmp1 = SelectExpr(Op0); + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot add this type!"); + case MVT::i1: + case MVT::i8: Opc = 10; break; + case MVT::i16: Opc = 11; break; + case MVT::i32: Opc = 12; break; + case MVT::f32: Opc = 13; break; + case MVT::f64: Opc = 14; break; + } + switch (Node->getOpcode()) { + default: assert(0 && "Unreachable!"); + case ISD::FSUB: + case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; + case ISD::FMUL: + case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; + case ISD::AND: Opc = ANDTab[Opc]; break; + case ISD::OR: Opc = ORTab[Opc]; break; + case ISD::XOR: Opc = XORTab[Opc]; break; + } + if (Opc) { + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + } else { + assert(Node->getOpcode() == ISD::MUL && + N.getValueType() == MVT::i8 && "Unexpected situation!"); + // Must use the MUL instruction, which forces use of AL. + BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); + BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2); + BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); + } + return Result; + } + case ISD::ADD_PARTS: + case ISD::SUB_PARTS: { + assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && + "Not an i64 add/sub!"); + // Emit all of the operands. + std::vector<unsigned> InVals; + for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) + InVals.push_back(SelectExpr(N.getOperand(i))); + if (N.getOpcode() == ISD::ADD_PARTS) { + BuildMI(BB, X86::ADD32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); + BuildMI(BB, X86::ADC32rr,2,Result+1).addReg(InVals[1]).addReg(InVals[3]); + } else { + BuildMI(BB, X86::SUB32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); + BuildMI(BB, X86::SBB32rr, 2,Result+1).addReg(InVals[1]).addReg(InVals[3]); + } + return Result+N.ResNo; + } + + case ISD::SHL_PARTS: + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: { + assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 && + "Not an i64 shift!"); + unsigned ShiftOpLo = SelectExpr(N.getOperand(0)); + unsigned ShiftOpHi = SelectExpr(N.getOperand(1)); + unsigned TmpReg = MakeReg(MVT::i32); + if (N.getOpcode() == ISD::SRA_PARTS) { + // If this is a SHR of a Long, then we need to do funny sign extension + // stuff. TmpReg gets the value to use as the high-part if we are + // shifting more than 32 bits. + BuildMI(BB, X86::SAR32ri, 2, TmpReg).addReg(ShiftOpHi).addImm(31); + } else { + // Other shifts use a fixed zero value if the shift is more than 32 bits. + BuildMI(BB, X86::MOV32ri, 1, TmpReg).addImm(0); + } + + // Initialize CL with the shift amount. + unsigned ShiftAmountReg = SelectExpr(N.getOperand(2)); + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); + + unsigned TmpReg2 = MakeReg(MVT::i32); + unsigned TmpReg3 = MakeReg(MVT::i32); + if (N.getOpcode() == ISD::SHL_PARTS) { + // TmpReg2 = shld inHi, inLo + BuildMI(BB, X86::SHLD32rrCL, 2,TmpReg2).addReg(ShiftOpHi) + .addReg(ShiftOpLo); + // TmpReg3 = shl inLo, CL + BuildMI(BB, X86::SHL32rCL, 1, TmpReg3).addReg(ShiftOpLo); + + // Set the flags to indicate whether the shift was by more than 32 bits. + BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); + + // DestHi = (>32) ? TmpReg3 : TmpReg2; + BuildMI(BB, X86::CMOVNE32rr, 2, + Result+1).addReg(TmpReg2).addReg(TmpReg3); + // DestLo = (>32) ? TmpReg : TmpReg3; + BuildMI(BB, X86::CMOVNE32rr, 2, + Result).addReg(TmpReg3).addReg(TmpReg); + } else { + // TmpReg2 = shrd inLo, inHi + BuildMI(BB, X86::SHRD32rrCL,2,TmpReg2).addReg(ShiftOpLo) + .addReg(ShiftOpHi); + // TmpReg3 = s[ah]r inHi, CL + BuildMI(BB, N.getOpcode() == ISD::SRA_PARTS ? X86::SAR32rCL + : X86::SHR32rCL, 1, TmpReg3) + .addReg(ShiftOpHi); + + // Set the flags to indicate whether the shift was by more than 32 bits. + BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); + + // DestLo = (>32) ? TmpReg3 : TmpReg2; + BuildMI(BB, X86::CMOVNE32rr, 2, + Result).addReg(TmpReg2).addReg(TmpReg3); + + // DestHi = (>32) ? TmpReg : TmpReg3; + BuildMI(BB, X86::CMOVNE32rr, 2, + Result+1).addReg(TmpReg3).addReg(TmpReg); + } + return Result+N.ResNo; + } + + case ISD::SELECT: + EmitSelectCC(N.getOperand(0), N.getOperand(1), N.getOperand(2), + N.getValueType(), Result); + return Result; + + case ISD::FDIV: + case ISD::FREM: + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: { + assert((N.getOpcode() != ISD::SREM || MVT::isInteger(N.getValueType())) && + "We don't support this operator!"); + + if (N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::FDIV) { + // We can fold loads into FpDIVs, but not really into any others. + if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { + // Check for reversed and unreversed DIV. + if (isFoldableLoad(N.getOperand(0), N.getOperand(1), true)) { + if (N.getOperand(0).getOpcode() == ISD::EXTLOAD) + Opc = X86::FDIVR32m; + else + Opc = X86::FDIVR64m; + X86AddressMode AM; + EmitFoldedLoad(N.getOperand(0), AM); + Tmp1 = SelectExpr(N.getOperand(1)); + addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); + return Result; + } else if (isFoldableLoad(N.getOperand(1), N.getOperand(0), true) && + N.getOperand(1).getOpcode() == ISD::LOAD) { + if (N.getOperand(1).getOpcode() == ISD::EXTLOAD) + Opc = X86::FDIV32m; + else + Opc = X86::FDIV64m; + X86AddressMode AM; + EmitFoldedLoad(N.getOperand(1), AM); + Tmp1 = SelectExpr(N.getOperand(0)); + addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); + return Result; + } + } + } + + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + } else { + Tmp2 = SelectExpr(N.getOperand(1)); + Tmp1 = SelectExpr(N.getOperand(0)); + } + + bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM; + bool isDiv = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV; + unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode; + switch (N.getValueType()) { + default: assert(0 && "Cannot sdiv this type!"); + case MVT::i8: + DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r; + LoReg = X86::AL; + HiReg = X86::AH; + MovOpcode = X86::MOV8rr; + ClrOpcode = X86::MOV8ri; + SExtOpcode = X86::CBW; + break; + case MVT::i16: + DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r; + LoReg = X86::AX; + HiReg = X86::DX; + MovOpcode = X86::MOV16rr; + ClrOpcode = X86::MOV16ri; + SExtOpcode = X86::CWD; + break; + case MVT::i32: + DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r; + LoReg = X86::EAX; + HiReg = X86::EDX; + MovOpcode = X86::MOV32rr; + ClrOpcode = X86::MOV32ri; + SExtOpcode = X86::CDQ; + break; + case MVT::f32: + BuildMI(BB, X86::DIVSSrr, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + case MVT::f64: + Opc = X86ScalarSSE ? X86::DIVSDrr : X86::FpDIV; + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + } + + // Set up the low part. + BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1); + + if (isSigned) { + // Sign extend the low part into the high part. + BuildMI(BB, SExtOpcode, 0); + } else { + // Zero out the high part, effectively zero extending the input. + BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0); + } + + // Emit the DIV/IDIV instruction. + BuildMI(BB, DivOpcode, 1).addReg(Tmp2); + + // Get the result of the divide or rem. + BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg); + return Result; + } + + case ISD::SHL: + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + if (CN->getValue() == 1) { // X = SHL Y, 1 -> X = ADD Y, Y + switch (N.getValueType()) { + default: assert(0 && "Cannot shift this type!"); + case MVT::i8: Opc = X86::ADD8rr; break; + case MVT::i16: Opc = X86::ADD16rr; break; + case MVT::i32: Opc = X86::ADD32rr; break; + } + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1); + return Result; + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot shift this type!"); + case MVT::i8: Opc = X86::SHL8ri; break; + case MVT::i16: Opc = X86::SHL16ri; break; + case MVT::i32: Opc = X86::SHL32ri; break; + } + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); + return Result; + } + + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + } else { + Tmp2 = SelectExpr(N.getOperand(1)); + Tmp1 = SelectExpr(N.getOperand(0)); + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot shift this type!"); + case MVT::i8 : Opc = X86::SHL8rCL; break; + case MVT::i16: Opc = X86::SHL16rCL; break; + case MVT::i32: Opc = X86::SHL32rCL; break; + } + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + case ISD::SRL: + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + switch (N.getValueType()) { + default: assert(0 && "Cannot shift this type!"); + case MVT::i8: Opc = X86::SHR8ri; break; + case MVT::i16: Opc = X86::SHR16ri; break; + case MVT::i32: Opc = X86::SHR32ri; break; + } + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); + return Result; + } + + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + } else { + Tmp2 = SelectExpr(N.getOperand(1)); + Tmp1 = SelectExpr(N.getOperand(0)); + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot shift this type!"); + case MVT::i8 : Opc = X86::SHR8rCL; break; + case MVT::i16: Opc = X86::SHR16rCL; break; + case MVT::i32: Opc = X86::SHR32rCL; break; + } + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + case ISD::SRA: + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + switch (N.getValueType()) { + default: assert(0 && "Cannot shift this type!"); + case MVT::i8: Opc = X86::SAR8ri; break; + case MVT::i16: Opc = X86::SAR16ri; break; + case MVT::i32: Opc = X86::SAR32ri; break; + } + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); + return Result; + } + + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + } else { + Tmp2 = SelectExpr(N.getOperand(1)); + Tmp1 = SelectExpr(N.getOperand(0)); + } + + switch (N.getValueType()) { + default: assert(0 && "Cannot shift this type!"); + case MVT::i8 : Opc = X86::SAR8rCL; break; + case MVT::i16: Opc = X86::SAR16rCL; break; + case MVT::i32: Opc = X86::SAR32rCL; break; + } + BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + + case ISD::SETCC: + EmitCMP(N.getOperand(0), N.getOperand(1), Node->hasOneUse()); + EmitSetCC(BB, Result, cast<CondCodeSDNode>(N.getOperand(2))->get(), + MVT::isFloatingPoint(N.getOperand(1).getValueType())); + return Result; + case ISD::LOAD: + // Make sure we generate both values. + if (Result != 1) { // Generate the token + if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) + assert(0 && "Load already emitted!?"); + } else + Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); + + switch (Node->getValueType(0)) { + default: assert(0 && "Cannot load this type!"); + case MVT::i1: + case MVT::i8: Opc = X86::MOV8rm; break; + case MVT::i16: Opc = X86::MOV16rm; break; + case MVT::i32: Opc = X86::MOV32rm; break; + case MVT::f32: Opc = X86::MOVSSrm; break; + case MVT::f64: + if (X86ScalarSSE) { + Opc = X86::MOVSDrm; + } else { + Opc = X86::FLD64m; + ContainsFPCode = true; + } + break; + } + + if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))){ + unsigned CPIdx = BB->getParent()->getConstantPool()-> + getConstantPoolIndex(CP->get()); + Select(N.getOperand(0)); + addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CPIdx); + } else { + X86AddressMode AM; + + SDOperand Chain = N.getOperand(0); + SDOperand Address = N.getOperand(1); + if (getRegPressure(Chain) > getRegPressure(Address)) { + Select(Chain); + SelectAddress(Address, AM); + } else { + SelectAddress(Address, AM); + Select(Chain); + } + + addFullAddress(BuildMI(BB, Opc, 4, Result), AM); + } + return Result; + case X86ISD::FILD64m: + // Make sure we generate both values. + assert(Result != 1 && N.getValueType() == MVT::f64); + if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) + assert(0 && "Load already emitted!?"); + + { + X86AddressMode AM; + + SDOperand Chain = N.getOperand(0); + SDOperand Address = N.getOperand(1); + if (getRegPressure(Chain) > getRegPressure(Address)) { + Select(Chain); + SelectAddress(Address, AM); + } else { + SelectAddress(Address, AM); + Select(Chain); + } + + addFullAddress(BuildMI(BB, X86::FILD64m, 4, Result), AM); + } + return Result; + + case ISD::EXTLOAD: // Arbitrarily codegen extloads as MOVZX* + case ISD::ZEXTLOAD: { + // Make sure we generate both values. + if (Result != 1) + ExprMap[N.getValue(1)] = 1; // Generate the token + else + Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); + + if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))) + if (Node->getValueType(0) == MVT::f64) { + assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 && + "Bad EXTLOAD!"); + unsigned CPIdx = BB->getParent()->getConstantPool()-> + getConstantPoolIndex(CP->get()); + + addConstantPoolReference(BuildMI(BB, X86::FLD32m, 4, Result), CPIdx); + return Result; + } + + X86AddressMode AM; + if (getRegPressure(Node->getOperand(0)) > + getRegPressure(Node->getOperand(1))) { + Select(Node->getOperand(0)); // chain + SelectAddress(Node->getOperand(1), AM); + } else { + SelectAddress(Node->getOperand(1), AM); + Select(Node->getOperand(0)); // chain + } + + switch (Node->getValueType(0)) { + default: assert(0 && "Unknown type to sign extend to."); + case MVT::f64: + assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 && + "Bad EXTLOAD!"); + addFullAddress(BuildMI(BB, X86::FLD32m, 5, Result), AM); + break; + case MVT::i32: + switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) { + default: + assert(0 && "Bad zero extend!"); + case MVT::i1: + case MVT::i8: + addFullAddress(BuildMI(BB, X86::MOVZX32rm8, 5, Result), AM); + break; + case MVT::i16: + addFullAddress(BuildMI(BB, X86::MOVZX32rm16, 5, Result), AM); + break; + } + break; + case MVT::i16: + assert(cast<VTSDNode>(Node->getOperand(3))->getVT() <= MVT::i8 && + "Bad zero extend!"); + addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM); + break; + case MVT::i8: + assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i1 && + "Bad zero extend!"); + addFullAddress(BuildMI(BB, X86::MOV8rm, 5, Result), AM); + break; + } + return Result; + } + case ISD::SEXTLOAD: { + // Make sure we generate both values. + if (Result != 1) + ExprMap[N.getValue(1)] = 1; // Generate the token + else + Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); + + X86AddressMode AM; + if (getRegPressure(Node->getOperand(0)) > + getRegPressure(Node->getOperand(1))) { + Select(Node->getOperand(0)); // chain + SelectAddress(Node->getOperand(1), AM); + } else { + SelectAddress(Node->getOperand(1), AM); + Select(Node->getOperand(0)); // chain + } + + switch (Node->getValueType(0)) { + case MVT::i8: assert(0 && "Cannot sign extend from bool!"); + default: assert(0 && "Unknown type to sign extend to."); + case MVT::i32: + switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) { + default: + case MVT::i1: assert(0 && "Cannot sign extend from bool!"); + case MVT::i8: + addFullAddress(BuildMI(BB, X86::MOVSX32rm8, 5, Result), AM); + break; + case MVT::i16: + addFullAddress(BuildMI(BB, X86::MOVSX32rm16, 5, Result), AM); + break; + } + break; + case MVT::i16: + assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i8 && + "Cannot sign extend from bool!"); + addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM); + break; + } + return Result; + } + + case ISD::DYNAMIC_STACKALLOC: + // Generate both result values. + if (Result != 1) + ExprMap[N.getValue(1)] = 1; // Generate the token + else + Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); + + // FIXME: We are currently ignoring the requested alignment for handling + // greater than the stack alignment. This will need to be revisited at some + // point. Align = N.getOperand(2); + + if (!isa<ConstantSDNode>(N.getOperand(2)) || + cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { + std::cerr << "Cannot allocate stack object with greater alignment than" + << " the stack alignment yet!"; + abort(); + } + + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + Select(N.getOperand(0)); + BuildMI(BB, X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP) + .addImm(CN->getValue()); + } else { + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + } else { + Tmp1 = SelectExpr(N.getOperand(1)); + Select(N.getOperand(0)); + } + + // Subtract size from stack pointer, thereby allocating some space. + BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(Tmp1); + } + + // Put a pointer to the space into the result register, by copying the stack + // pointer. + BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::ESP); + return Result; + + case X86ISD::TAILCALL: + case X86ISD::CALL: { + // The chain for this call is now lowered. + ExprMap.insert(std::make_pair(N.getValue(0), 1)); + + bool isDirect = isa<GlobalAddressSDNode>(N.getOperand(1)) || + isa<ExternalSymbolSDNode>(N.getOperand(1)); + unsigned Callee = 0; + if (isDirect) { + Select(N.getOperand(0)); + } else { + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Select(N.getOperand(0)); + Callee = SelectExpr(N.getOperand(1)); + } else { + Callee = SelectExpr(N.getOperand(1)); + Select(N.getOperand(0)); + } + } + + // If this call has values to pass in registers, do so now. + if (Node->getNumOperands() > 4) { + // The first value is passed in (a part of) EAX, the second in EDX. + unsigned RegOp1 = SelectExpr(N.getOperand(4)); + unsigned RegOp2 = + Node->getNumOperands() > 5 ? SelectExpr(N.getOperand(5)) : 0; + + switch (N.getOperand(4).getValueType()) { + default: assert(0 && "Bad thing to pass in regs"); + case MVT::i1: + case MVT::i8: BuildMI(BB, X86::MOV8rr , 1,X86::AL).addReg(RegOp1); break; + case MVT::i16: BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); break; + case MVT::i32: BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);break; + } + if (RegOp2) + switch (N.getOperand(5).getValueType()) { + default: assert(0 && "Bad thing to pass in regs"); + case MVT::i1: + case MVT::i8: + BuildMI(BB, X86::MOV8rr , 1, X86::DL).addReg(RegOp2); + break; + case MVT::i16: + BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); + break; + case MVT::i32: + BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); + break; + } + } + + if (GlobalAddressSDNode *GASD = + dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { + BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true); + } else if (ExternalSymbolSDNode *ESSDN = + dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) { + BuildMI(BB, X86::CALLpcrel32, + 1).addExternalSymbol(ESSDN->getSymbol(), true); + } else { + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + } else { + Tmp1 = SelectExpr(N.getOperand(1)); + Select(N.getOperand(0)); + } + + BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1); + } + + // Get caller stack amount and amount the callee added to the stack pointer. + Tmp1 = cast<ConstantSDNode>(N.getOperand(2))->getValue(); + Tmp2 = cast<ConstantSDNode>(N.getOperand(3))->getValue(); + BuildMI(BB, X86::ADJCALLSTACKUP, 2).addImm(Tmp1).addImm(Tmp2); + + if (Node->getNumValues() != 1) + switch (Node->getValueType(1)) { + default: assert(0 && "Unknown value type for call result!"); + case MVT::Other: return 1; + case MVT::i1: + case MVT::i8: + BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); + break; + case MVT::i16: + BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); + break; + case MVT::i32: + BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); + if (Node->getNumValues() == 3 && Node->getValueType(2) == MVT::i32) + BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX); + break; + case MVT::f64: // Floating-point return values live in %ST(0) + if (X86ScalarSSE) { + ContainsFPCode = true; + BuildMI(BB, X86::FpGETRESULT, 1, X86::FP0); + + unsigned Size = MVT::getSizeInBits(MVT::f64)/8; + MachineFunction *F = BB->getParent(); + int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); + addFrameReference(BuildMI(BB, X86::FST64m, 5), FrameIdx).addReg(X86::FP0); + addFrameReference(BuildMI(BB, X86::MOVSDrm, 4, Result), FrameIdx); + break; + } else { + ContainsFPCode = true; + BuildMI(BB, X86::FpGETRESULT, 1, Result); + break; + } + } + return Result+N.ResNo-1; + } + case ISD::READPORT: + // First, determine that the size of the operand falls within the acceptable + // range for this architecture. + // + if (Node->getOperand(1).getValueType() != MVT::i16) { + std::cerr << "llvm.readport: Address size is not 16 bits\n"; + exit(1); + } + + // Make sure we generate both values. + if (Result != 1) { // Generate the token + if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) + assert(0 && "readport already emitted!?"); + } else + Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); + + Select(Node->getOperand(0)); // Select the chain. + + // If the port is a single-byte constant, use the immediate form. + if (ConstantSDNode *Port = dyn_cast<ConstantSDNode>(Node->getOperand(1))) + if ((Port->getValue() & 255) == Port->getValue()) { + switch (Node->getValueType(0)) { + case MVT::i8: + BuildMI(BB, X86::IN8ri, 1).addImm(Port->getValue()); + BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); + return Result; + case MVT::i16: + BuildMI(BB, X86::IN16ri, 1).addImm(Port->getValue()); + BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); + return Result; + case MVT::i32: + BuildMI(BB, X86::IN32ri, 1).addImm(Port->getValue()); + BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); + return Result; + default: break; + } + } + + // Now, move the I/O port address into the DX register and use the IN + // instruction to get the input data. + // + Tmp1 = SelectExpr(Node->getOperand(1)); + BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Tmp1); + switch (Node->getValueType(0)) { + case MVT::i8: + BuildMI(BB, X86::IN8rr, 0); + BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); + return Result; + case MVT::i16: + BuildMI(BB, X86::IN16rr, 0); + BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); + return Result; + case MVT::i32: + BuildMI(BB, X86::IN32rr, 0); + BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); + return Result; + default: + std::cerr << "Cannot do input on this data type"; + exit(1); + } + + } + + return 0; +} + +/// TryToFoldLoadOpStore - Given a store node, try to fold together a +/// load/op/store instruction. If successful return true. +bool ISel::TryToFoldLoadOpStore(SDNode *Node) { + assert(Node->getOpcode() == ISD::STORE && "Can only do this for stores!"); + SDOperand Chain = Node->getOperand(0); + SDOperand StVal = Node->getOperand(1); + SDOperand StPtr = Node->getOperand(2); + + // The chain has to be a load, the stored value must be an integer binary + // operation with one use. + if (!StVal.Val->hasOneUse() || StVal.Val->getNumOperands() != 2 || + MVT::isFloatingPoint(StVal.getValueType())) + return false; + + // Token chain must either be a factor node or the load to fold. + if (Chain.getOpcode() != ISD::LOAD && Chain.getOpcode() != ISD::TokenFactor) + return false; + + SDOperand TheLoad; + + // Check to see if there is a load from the same pointer that we're storing + // to in either operand of the binop. + if (StVal.getOperand(0).getOpcode() == ISD::LOAD && + StVal.getOperand(0).getOperand(1) == StPtr) + TheLoad = StVal.getOperand(0); + else if (StVal.getOperand(1).getOpcode() == ISD::LOAD && + StVal.getOperand(1).getOperand(1) == StPtr) + TheLoad = StVal.getOperand(1); + else + return false; // No matching load operand. + + // We can only fold the load if there are no intervening side-effecting + // operations. This means that the store uses the load as its token chain, or + // there are only token factor nodes in between the store and load. + if (Chain != TheLoad.getValue(1)) { + // Okay, the other option is that we have a store referring to (possibly + // nested) token factor nodes. For now, just try peeking through one level + // of token factors to see if this is the case. + bool ChainOk = false; + if (Chain.getOpcode() == ISD::TokenFactor) { + for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) + if (Chain.getOperand(i) == TheLoad.getValue(1)) { + ChainOk = true; + break; + } + } + + if (!ChainOk) return false; + } + + if (TheLoad.getOperand(1) != StPtr) + return false; + + // Make sure that one of the operands of the binop is the load, and that the + // load folds into the binop. + if (((StVal.getOperand(0) != TheLoad || + !isFoldableLoad(TheLoad, StVal.getOperand(1))) && + (StVal.getOperand(1) != TheLoad || + !isFoldableLoad(TheLoad, StVal.getOperand(0))))) + return false; + + // Finally, check to see if this is one of the ops we can handle! + static const unsigned ADDTAB[] = { + X86::ADD8mi, X86::ADD16mi, X86::ADD32mi, + X86::ADD8mr, X86::ADD16mr, X86::ADD32mr, + }; + static const unsigned SUBTAB[] = { + X86::SUB8mi, X86::SUB16mi, X86::SUB32mi, + X86::SUB8mr, X86::SUB16mr, X86::SUB32mr, + }; + static const unsigned ANDTAB[] = { + X86::AND8mi, X86::AND16mi, X86::AND32mi, + X86::AND8mr, X86::AND16mr, X86::AND32mr, + }; + static const unsigned ORTAB[] = { + X86::OR8mi, X86::OR16mi, X86::OR32mi, + X86::OR8mr, X86::OR16mr, X86::OR32mr, + }; + static const unsigned XORTAB[] = { + X86::XOR8mi, X86::XOR16mi, X86::XOR32mi, + X86::XOR8mr, X86::XOR16mr, X86::XOR32mr, + }; + static const unsigned SHLTAB[] = { + X86::SHL8mi, X86::SHL16mi, X86::SHL32mi, + /*Have to put the reg in CL*/0, 0, 0, + }; + static const unsigned SARTAB[] = { + X86::SAR8mi, X86::SAR16mi, X86::SAR32mi, + /*Have to put the reg in CL*/0, 0, 0, + }; + static const unsigned SHRTAB[] = { + X86::SHR8mi, X86::SHR16mi, X86::SHR32mi, + /*Have to put the reg in CL*/0, 0, 0, + }; + + const unsigned *TabPtr = 0; + switch (StVal.getOpcode()) { + default: + std::cerr << "CANNOT [mem] op= val: "; + StVal.Val->dump(); std::cerr << "\n"; + case ISD::FMUL: + case ISD::MUL: + case ISD::FDIV: + case ISD::SDIV: + case ISD::UDIV: + case ISD::FREM: + case ISD::SREM: + case ISD::UREM: return false; + + case ISD::ADD: TabPtr = ADDTAB; break; + case ISD::SUB: TabPtr = SUBTAB; break; + case ISD::AND: TabPtr = ANDTAB; break; + case ISD:: OR: TabPtr = ORTAB; break; + case ISD::XOR: TabPtr = XORTAB; break; + case ISD::SHL: TabPtr = SHLTAB; break; + case ISD::SRA: TabPtr = SARTAB; break; + case ISD::SRL: TabPtr = SHRTAB; break; + } + + // Handle: [mem] op= CST + SDOperand Op0 = StVal.getOperand(0); + SDOperand Op1 = StVal.getOperand(1); + unsigned Opc = 0; + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { + switch (Op0.getValueType()) { // Use Op0's type because of shifts. + default: break; + case MVT::i1: + case MVT::i8: Opc = TabPtr[0]; break; + case MVT::i16: Opc = TabPtr[1]; break; + case MVT::i32: Opc = TabPtr[2]; break; + } + + if (Opc) { + if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) + assert(0 && "Already emitted?"); + Select(Chain); + + X86AddressMode AM; + if (getRegPressure(TheLoad.getOperand(0)) > + getRegPressure(TheLoad.getOperand(1))) { + Select(TheLoad.getOperand(0)); + SelectAddress(TheLoad.getOperand(1), AM); + } else { + SelectAddress(TheLoad.getOperand(1), AM); + Select(TheLoad.getOperand(0)); + } + + if (StVal.getOpcode() == ISD::ADD) { + if (CN->getValue() == 1) { + switch (Op0.getValueType()) { + default: break; + case MVT::i8: + addFullAddress(BuildMI(BB, X86::INC8m, 4), AM); + return true; + case MVT::i16: Opc = TabPtr[1]; + addFullAddress(BuildMI(BB, X86::INC16m, 4), AM); + return true; + case MVT::i32: Opc = TabPtr[2]; + addFullAddress(BuildMI(BB, X86::INC32m, 4), AM); + return true; + } + } else if (CN->getValue()+1 == 0) { // [X] += -1 -> DEC [X] + switch (Op0.getValueType()) { + default: break; + case MVT::i8: + addFullAddress(BuildMI(BB, X86::DEC8m, 4), AM); + return true; + case MVT::i16: Opc = TabPtr[1]; + addFullAddress(BuildMI(BB, X86::DEC16m, 4), AM); + return true; + case MVT::i32: Opc = TabPtr[2]; + addFullAddress(BuildMI(BB, X86::DEC32m, 4), AM); + return true; + } + } + } + + addFullAddress(BuildMI(BB, Opc, 4+1),AM).addImm(CN->getValue()); + return true; + } + } + + // If we have [mem] = V op [mem], try to turn it into: + // [mem] = [mem] op V. + if (Op1 == TheLoad && + StVal.getOpcode() != ISD::SUB && StVal.getOpcode() != ISD::FSUB && + StVal.getOpcode() != ISD::SHL && StVal.getOpcode() != ISD::SRA && + StVal.getOpcode() != ISD::SRL) + std::swap(Op0, Op1); + + if (Op0 != TheLoad) return false; + + switch (Op0.getValueType()) { + default: return false; + case MVT::i1: + case MVT::i8: Opc = TabPtr[3]; break; + case MVT::i16: Opc = TabPtr[4]; break; + case MVT::i32: Opc = TabPtr[5]; break; + } + + // Table entry doesn't exist? + if (Opc == 0) return false; + + if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) + assert(0 && "Already emitted?"); + Select(Chain); + Select(TheLoad.getOperand(0)); + + X86AddressMode AM; + SelectAddress(TheLoad.getOperand(1), AM); + unsigned Reg = SelectExpr(Op1); + addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Reg); + return true; +} + +/// If node is a ret(tailcall) node, emit the specified tail call and return +/// true, otherwise return false. +/// +/// FIXME: This whole thing should be a post-legalize optimization pass which +/// recognizes and transforms the dag. We don't want the selection phase doing +/// this stuff!! +/// +bool ISel::EmitPotentialTailCall(SDNode *RetNode) { + assert(RetNode->getOpcode() == ISD::RET && "Not a return"); + + SDOperand Chain = RetNode->getOperand(0); + + // If this is a token factor node where one operand is a call, dig into it. + SDOperand TokFactor; + unsigned TokFactorOperand = 0; + if (Chain.getOpcode() == ISD::TokenFactor) { + for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) + if (Chain.getOperand(i).getOpcode() == ISD::CALLSEQ_END || + Chain.getOperand(i).getOpcode() == X86ISD::TAILCALL) { + TokFactorOperand = i; + TokFactor = Chain; + Chain = Chain.getOperand(i); + break; + } + if (TokFactor.Val == 0) return false; // No call operand. + } + + // Skip the CALLSEQ_END node if present. + if (Chain.getOpcode() == ISD::CALLSEQ_END) + Chain = Chain.getOperand(0); + + // Is a tailcall the last control operation that occurs before the return? + if (Chain.getOpcode() != X86ISD::TAILCALL) + return false; + + // If we return a value, is it the value produced by the call? + if (RetNode->getNumOperands() > 1) { + // Not returning the ret val of the call? + if (Chain.Val->getNumValues() == 1 || + RetNode->getOperand(1) != Chain.getValue(1)) + return false; + + if (RetNode->getNumOperands() > 2) { + if (Chain.Val->getNumValues() == 2 || + RetNode->getOperand(2) != Chain.getValue(2)) + return false; + } + assert(RetNode->getNumOperands() <= 3); + } + + // CalleeCallArgAmt - The total number of bytes used for the callee arg area. + // For FastCC, this will always be > 0. + unsigned CalleeCallArgAmt = + cast<ConstantSDNode>(Chain.getOperand(2))->getValue(); + + // CalleeCallArgPopAmt - The number of bytes in the call area popped by the + // callee. For FastCC this will always be > 0, for CCC this is always 0. + unsigned CalleeCallArgPopAmt = + cast<ConstantSDNode>(Chain.getOperand(3))->getValue(); + + // There are several cases we can handle here. First, if the caller and + // callee are both CCC functions, we can tailcall if the callee takes <= the + // number of argument bytes that the caller does. + if (CalleeCallArgPopAmt == 0 && // Callee is C CallingConv? + X86Lowering.getBytesToPopOnReturn() == 0) { // Caller is C CallingConv? + // Check to see if caller arg area size >= callee arg area size. + if (X86Lowering.getBytesCallerReserves() >= CalleeCallArgAmt) { + //std::cerr << "CCC TAILCALL UNIMP!\n"; + // If TokFactor is non-null, emit all operands. + + //EmitCCCToCCCTailCall(Chain.Val); + //return true; + } + return false; + } + + // Second, if both are FastCC functions, we can always perform the tail call. + if (CalleeCallArgPopAmt && X86Lowering.getBytesToPopOnReturn()) { + // If TokFactor is non-null, emit all operands before the call. + if (TokFactor.Val) { + for (unsigned i = 0, e = TokFactor.getNumOperands(); i != e; ++i) + if (i != TokFactorOperand) + Select(TokFactor.getOperand(i)); + } + + EmitFastCCToFastCCTailCall(Chain.Val); + return true; + } + + // We don't support mixed calls, due to issues with alignment. We could in + // theory handle some mixed calls from CCC -> FastCC if the stack is properly + // aligned (which depends on the number of arguments to the callee). TODO. + return false; +} + +static SDOperand GetAdjustedArgumentStores(SDOperand Chain, int Offset, + SelectionDAG &DAG) { + MVT::ValueType StoreVT; + switch (Chain.getOpcode()) { + default: assert(0 && "Unexpected node!"); + case ISD::CALLSEQ_START: + // If we found the start of the call sequence, we're done. We actually + // strip off the CALLSEQ_START node, to avoid generating the + // ADJCALLSTACKDOWN marker for the tail call. + return Chain.getOperand(0); + case ISD::TokenFactor: { + std::vector<SDOperand> Ops; + Ops.reserve(Chain.getNumOperands()); + for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) + Ops.push_back(GetAdjustedArgumentStores(Chain.getOperand(i), Offset,DAG)); + return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); + } + case ISD::STORE: // Normal store + StoreVT = Chain.getOperand(1).getValueType(); + break; + case ISD::TRUNCSTORE: // FLOAT store + StoreVT = cast<VTSDNode>(Chain.getOperand(4))->getVT(); + break; + } + + SDOperand OrigDest = Chain.getOperand(2); + unsigned OrigOffset; + + if (OrigDest.getOpcode() == ISD::CopyFromReg) { + OrigOffset = 0; + assert(cast<RegisterSDNode>(OrigDest.getOperand(1))->getReg() == X86::ESP); + } else { + // We expect only (ESP+C) + assert(OrigDest.getOpcode() == ISD::ADD && + isa<ConstantSDNode>(OrigDest.getOperand(1)) && + OrigDest.getOperand(0).getOpcode() == ISD::CopyFromReg && + cast<RegisterSDNode>(OrigDest.getOperand(0).getOperand(1))->getReg() + == X86::ESP); + OrigOffset = cast<ConstantSDNode>(OrigDest.getOperand(1))->getValue(); + } + + // Compute the new offset from the incoming ESP value we wish to use. + unsigned NewOffset = OrigOffset + Offset; + + unsigned OpSize = (MVT::getSizeInBits(StoreVT)+7)/8; // Bits -> Bytes + MachineFunction &MF = DAG.getMachineFunction(); + int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, NewOffset); + SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); + + SDOperand InChain = GetAdjustedArgumentStores(Chain.getOperand(0), Offset, + DAG); + if (Chain.getOpcode() == ISD::STORE) + return DAG.getNode(ISD::STORE, MVT::Other, InChain, Chain.getOperand(1), + FIN); + assert(Chain.getOpcode() == ISD::TRUNCSTORE); + return DAG.getNode(ISD::TRUNCSTORE, MVT::Other, InChain, Chain.getOperand(1), + FIN, DAG.getSrcValue(NULL), DAG.getValueType(StoreVT)); +} + + +/// EmitFastCCToFastCCTailCall - Given a tailcall in the tail position to a +/// fastcc function from a fastcc function, emit the code to emit a 'proper' +/// tail call. +void ISel::EmitFastCCToFastCCTailCall(SDNode *TailCallNode) { + unsigned CalleeCallArgSize = + cast<ConstantSDNode>(TailCallNode->getOperand(2))->getValue(); + unsigned CallerArgSize = X86Lowering.getBytesToPopOnReturn(); + + //std::cerr << "****\n*** EMITTING TAIL CALL!\n****\n"; + + // Adjust argument stores. Instead of storing to [ESP], f.e., store to frame + // indexes that are relative to the incoming ESP. If the incoming and + // outgoing arg sizes are the same we will store to [InESP] instead of + // [CurESP] and the ESP referenced will be relative to the incoming function + // ESP. + int ESPOffset = CallerArgSize-CalleeCallArgSize; + SDOperand AdjustedArgStores = + GetAdjustedArgumentStores(TailCallNode->getOperand(0), ESPOffset, *TheDAG); + + // Copy the return address of the caller into a virtual register so we don't + // clobber it. + SDOperand RetVal; + if (ESPOffset) { + SDOperand RetValAddr = X86Lowering.getReturnAddressFrameIndex(*TheDAG); + RetVal = TheDAG->getLoad(MVT::i32, TheDAG->getEntryNode(), + RetValAddr, TheDAG->getSrcValue(NULL)); + SelectExpr(RetVal); + } + + // Codegen all of the argument stores. + Select(AdjustedArgStores); + + if (RetVal.Val) { + // Emit a store of the saved ret value to the new location. + MachineFunction &MF = TheDAG->getMachineFunction(); + int ReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(4, ESPOffset-4); + SDOperand RetValAddr = TheDAG->getFrameIndex(ReturnAddrFI, MVT::i32); + Select(TheDAG->getNode(ISD::STORE, MVT::Other, TheDAG->getEntryNode(), + RetVal, RetValAddr)); + } + + // Get the destination value. + SDOperand Callee = TailCallNode->getOperand(1); + bool isDirect = isa<GlobalAddressSDNode>(Callee) || + isa<ExternalSymbolSDNode>(Callee); + unsigned CalleeReg = 0; + if (!isDirect) CalleeReg = SelectExpr(Callee); + + unsigned RegOp1 = 0; + unsigned RegOp2 = 0; + + if (TailCallNode->getNumOperands() > 4) { + // The first value is passed in (a part of) EAX, the second in EDX. + RegOp1 = SelectExpr(TailCallNode->getOperand(4)); + if (TailCallNode->getNumOperands() > 5) + RegOp2 = SelectExpr(TailCallNode->getOperand(5)); + + switch (TailCallNode->getOperand(4).getValueType()) { + default: assert(0 && "Bad thing to pass in regs"); + case MVT::i1: + case MVT::i8: + BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(RegOp1); + RegOp1 = X86::AL; + break; + case MVT::i16: + BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); + RegOp1 = X86::AX; + break; + case MVT::i32: + BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1); + RegOp1 = X86::EAX; + break; + } + if (RegOp2) + switch (TailCallNode->getOperand(5).getValueType()) { + default: assert(0 && "Bad thing to pass in regs"); + case MVT::i1: + case MVT::i8: + BuildMI(BB, X86::MOV8rr, 1, X86::DL).addReg(RegOp2); + RegOp2 = X86::DL; + break; + case MVT::i16: + BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); + RegOp2 = X86::DX; + break; + case MVT::i32: + BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); + RegOp2 = X86::EDX; + break; + } + } + + // Adjust ESP. + if (ESPOffset) + BuildMI(BB, X86::ADJSTACKPTRri, 2, + X86::ESP).addReg(X86::ESP).addImm(ESPOffset); + + // TODO: handle jmp [mem] + if (!isDirect) { + BuildMI(BB, X86::TAILJMPr, 1).addReg(CalleeReg); + } else if (GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(Callee)){ + BuildMI(BB, X86::TAILJMPd, 1).addGlobalAddress(GASD->getGlobal(), true); + } else { + ExternalSymbolSDNode *ESSDN = cast<ExternalSymbolSDNode>(Callee); + BuildMI(BB, X86::TAILJMPd, 1).addExternalSymbol(ESSDN->getSymbol(), true); + } + // ADD IMPLICIT USE RegOp1/RegOp2's +} + + +void ISel::Select(SDOperand N) { + unsigned Tmp1 = 0, Tmp2 = 0, Opc = 0; + + if (!ExprMap.insert(std::make_pair(N, 1)).second) + return; // Already selected. + + SDNode *Node = N.Val; + + switch (Node->getOpcode()) { + default: + Node->dump(); std::cerr << "\n"; + assert(0 && "Node not handled yet!"); + case ISD::EntryToken: return; // Noop + case ISD::TokenFactor: + if (Node->getNumOperands() == 2) { + bool OneFirst = + getRegPressure(Node->getOperand(1))>getRegPressure(Node->getOperand(0)); + Select(Node->getOperand(OneFirst)); + Select(Node->getOperand(!OneFirst)); + } else { + std::vector<std::pair<unsigned, unsigned> > OpsP; + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) + OpsP.push_back(std::make_pair(getRegPressure(Node->getOperand(i)), i)); + std::sort(OpsP.begin(), OpsP.end()); + std::reverse(OpsP.begin(), OpsP.end()); + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) + Select(Node->getOperand(OpsP[i].second)); + } + return; + case ISD::CopyToReg: + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(2)); + } else { + Tmp1 = SelectExpr(N.getOperand(2)); + Select(N.getOperand(0)); + } + Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg(); + + if (Tmp1 != Tmp2) { + switch (N.getOperand(2).getValueType()) { + default: assert(0 && "Invalid type for operation!"); + case MVT::i1: + case MVT::i8: Opc = X86::MOV8rr; break; + case MVT::i16: Opc = X86::MOV16rr; break; + case MVT::i32: Opc = X86::MOV32rr; break; + case MVT::f32: Opc = X86::MOVSSrr; break; + case MVT::f64: + if (X86ScalarSSE) { + Opc = X86::MOVSDrr; + } else { + Opc = X86::FpMOV; + ContainsFPCode = true; + } + break; + } + BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); + } + return; + case ISD::RET: + if (N.getOperand(0).getOpcode() == ISD::CALLSEQ_END || + N.getOperand(0).getOpcode() == X86ISD::TAILCALL || + N.getOperand(0).getOpcode() == ISD::TokenFactor) + if (EmitPotentialTailCall(Node)) + return; + + switch (N.getNumOperands()) { + default: + assert(0 && "Unknown return instruction!"); + case 3: + assert(N.getOperand(1).getValueType() == MVT::i32 && + N.getOperand(2).getValueType() == MVT::i32 && + "Unknown two-register value!"); + if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { + Tmp1 = SelectExpr(N.getOperand(1)); + Tmp2 = SelectExpr(N.getOperand(2)); + } else { + Tmp2 = SelectExpr(N.getOperand(2)); + Tmp1 = SelectExpr(N.getOperand(1)); + } + Select(N.getOperand(0)); + + BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); + BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2); + break; + case 2: + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + } else { + Tmp1 = SelectExpr(N.getOperand(1)); + Select(N.getOperand(0)); + } + switch (N.getOperand(1).getValueType()) { + default: assert(0 && "All other types should have been promoted!!"); + case MVT::f32: + if (X86ScalarSSE) { + // Spill the value to memory and reload it into top of stack. + unsigned Size = MVT::getSizeInBits(MVT::f32)/8; + MachineFunction *F = BB->getParent(); + int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); + addFrameReference(BuildMI(BB, X86::MOVSSmr, 5), FrameIdx).addReg(Tmp1); + addFrameReference(BuildMI(BB, X86::FLD32m, 4, X86::FP0), FrameIdx); + BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); + ContainsFPCode = true; + } else { + assert(0 && "MVT::f32 only legal with scalar sse fp"); + abort(); + } + break; + case MVT::f64: + if (X86ScalarSSE) { + // Spill the value to memory and reload it into top of stack. + unsigned Size = MVT::getSizeInBits(MVT::f64)/8; + MachineFunction *F = BB->getParent(); + int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); + addFrameReference(BuildMI(BB, X86::MOVSDmr, 5), FrameIdx).addReg(Tmp1); + addFrameReference(BuildMI(BB, X86::FLD64m, 4, X86::FP0), FrameIdx); + BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); + ContainsFPCode = true; + } else { + BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1); + } + break; + case MVT::i32: + BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); + break; + } + break; + case 1: + Select(N.getOperand(0)); + break; + } + if (X86Lowering.getBytesToPopOnReturn() == 0) + BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction + else + BuildMI(BB, X86::RETI, 1).addImm(X86Lowering.getBytesToPopOnReturn()); + return; + case ISD::BR: { + Select(N.getOperand(0)); + MachineBasicBlock *Dest = + cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); + BuildMI(BB, X86::JMP, 1).addMBB(Dest); + return; + } + + case ISD::BRCOND: { + MachineBasicBlock *Dest = + cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); + + // Try to fold a setcc into the branch. If this fails, emit a test/jne + // pair. + if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) { + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + } else { + Tmp1 = SelectExpr(N.getOperand(1)); + Select(N.getOperand(0)); + } + BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1); + BuildMI(BB, X86::JNE, 1).addMBB(Dest); + } + + return; + } + + case ISD::LOAD: + // If this load could be folded into the only using instruction, and if it + // is safe to emit the instruction here, try to do so now. + if (Node->hasNUsesOfValue(1, 0)) { + SDOperand TheVal = N.getValue(0); + SDNode *User = 0; + for (SDNode::use_iterator UI = Node->use_begin(); ; ++UI) { + assert(UI != Node->use_end() && "Didn't find use!"); + SDNode *UN = *UI; + for (unsigned i = 0, e = UN->getNumOperands(); i != e; ++i) + if (UN->getOperand(i) == TheVal) { + User = UN; + goto FoundIt; + } + } + FoundIt: + // Only handle unary operators right now. + if (User->getNumOperands() == 1) { + ExprMap.erase(N); + SelectExpr(SDOperand(User, 0)); + return; + } + } + ExprMap.erase(N); + SelectExpr(N); + return; + case ISD::READPORT: + case ISD::EXTLOAD: + case ISD::SEXTLOAD: + case ISD::ZEXTLOAD: + case ISD::DYNAMIC_STACKALLOC: + case X86ISD::TAILCALL: + case X86ISD::CALL: + ExprMap.erase(N); + SelectExpr(N); + return; + case ISD::CopyFromReg: + case X86ISD::FILD64m: + ExprMap.erase(N); + SelectExpr(N.getValue(0)); + return; + + case X86ISD::FP_TO_INT16_IN_MEM: + case X86ISD::FP_TO_INT32_IN_MEM: + case X86ISD::FP_TO_INT64_IN_MEM: { + assert(N.getOperand(1).getValueType() == MVT::f64); + X86AddressMode AM; + Select(N.getOperand(0)); // Select the token chain + + unsigned ValReg; + if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { + ValReg = SelectExpr(N.getOperand(1)); + SelectAddress(N.getOperand(2), AM); + } else { + SelectAddress(N.getOperand(2), AM); + ValReg = SelectExpr(N.getOperand(1)); + } + + // Change the floating point control register to use "round towards zero" + // mode when truncating to an integer value. + // + MachineFunction *F = BB->getParent(); + int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); + addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); + + // Load the old value of the high byte of the control word... + unsigned OldCW = MakeReg(MVT::i16); + addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); + + // Set the high part to be round to zero... + addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); + + // Reload the modified control word now... + addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); + + // Restore the memory image of control word to original value + addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); + + // Get the X86 opcode to use. + switch (N.getOpcode()) { + case X86ISD::FP_TO_INT16_IN_MEM: Tmp1 = X86::FIST16m; break; + case X86ISD::FP_TO_INT32_IN_MEM: Tmp1 = X86::FIST32m; break; + case X86ISD::FP_TO_INT64_IN_MEM: Tmp1 = X86::FISTP64m; break; + } + + addFullAddress(BuildMI(BB, Tmp1, 5), AM).addReg(ValReg); + + // Reload the original control word now. + addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); + return; + } + + case ISD::TRUNCSTORE: { // truncstore chain, val, ptr, SRCVALUE, storety + X86AddressMode AM; + MVT::ValueType StoredTy = cast<VTSDNode>(N.getOperand(4))->getVT(); + assert((StoredTy == MVT::i1 || StoredTy == MVT::f32 || + StoredTy == MVT::i16 /*FIXME: THIS IS JUST FOR TESTING!*/) + && "Unsupported TRUNCSTORE for this target!"); + + if (StoredTy == MVT::i16) { + // FIXME: This is here just to allow testing. X86 doesn't really have a + // TRUNCSTORE i16 operation, but this is required for targets that do not + // have 16-bit integer registers. We occasionally disable 16-bit integer + // registers to test the promotion code. + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + SelectAddress(N.getOperand(2), AM); + + BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); + addFullAddress(BuildMI(BB, X86::MOV16mr, 5), AM).addReg(X86::AX); + return; + } + + // Store of constant bool? + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { + Select(N.getOperand(0)); + SelectAddress(N.getOperand(2), AM); + } else { + SelectAddress(N.getOperand(2), AM); + Select(N.getOperand(0)); + } + addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CN->getValue()); + return; + } + + switch (StoredTy) { + default: assert(0 && "Cannot truncstore this type!"); + case MVT::i1: Opc = X86::MOV8mr; break; + case MVT::f32: + assert(!X86ScalarSSE && "Cannot truncstore scalar SSE regs"); + Opc = X86::FST32m; break; + } + + std::vector<std::pair<unsigned, unsigned> > RP; + RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); + RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); + RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); + std::sort(RP.begin(), RP.end()); + + Tmp1 = 0; // Silence a warning. + for (unsigned i = 0; i != 3; ++i) + switch (RP[2-i].second) { + default: assert(0 && "Unknown operand number!"); + case 0: Select(N.getOperand(0)); break; + case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; + case 2: SelectAddress(N.getOperand(2), AM); break; + } + + addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); + return; + } + case ISD::STORE: { + X86AddressMode AM; + + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + Opc = 0; + switch (CN->getValueType(0)) { + default: assert(0 && "Invalid type for operation!"); + case MVT::i1: + case MVT::i8: Opc = X86::MOV8mi; break; + case MVT::i16: Opc = X86::MOV16mi; break; + case MVT::i32: Opc = X86::MOV32mi; break; + } + if (Opc) { + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { + Select(N.getOperand(0)); + SelectAddress(N.getOperand(2), AM); + } else { + SelectAddress(N.getOperand(2), AM); + Select(N.getOperand(0)); + } + addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue()); + return; + } + } else if (GlobalAddressSDNode *GA = + dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { + assert(GA->getValueType(0) == MVT::i32 && "Bad pointer operand"); + + if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { + Select(N.getOperand(0)); + SelectAddress(N.getOperand(2), AM); + } else { + SelectAddress(N.getOperand(2), AM); + Select(N.getOperand(0)); + } + GlobalValue *GV = GA->getGlobal(); + // For Darwin, external and weak symbols are indirect, so we want to load + // the value at address GV, not the value of GV itself. + if (Subtarget->getIndirectExternAndWeakGlobals() && + (GV->hasWeakLinkage() || GV->isExternal())) { + Tmp1 = MakeReg(MVT::i32); + BuildMI(BB, X86::MOV32rm, 4, Tmp1).addReg(0).addZImm(1).addReg(0) + .addGlobalAddress(GV, false, 0); + addFullAddress(BuildMI(BB, X86::MOV32mr, 4+1),AM).addReg(Tmp1); + } else { + addFullAddress(BuildMI(BB, X86::MOV32mi, 4+1),AM).addGlobalAddress(GV); + } + return; + } + + // Check to see if this is a load/op/store combination. + if (TryToFoldLoadOpStore(Node)) + return; + + switch (N.getOperand(1).getValueType()) { + default: assert(0 && "Cannot store this type!"); + case MVT::i1: + case MVT::i8: Opc = X86::MOV8mr; break; + case MVT::i16: Opc = X86::MOV16mr; break; + case MVT::i32: Opc = X86::MOV32mr; break; + case MVT::f32: Opc = X86::MOVSSmr; break; + case MVT::f64: Opc = X86ScalarSSE ? X86::MOVSDmr : X86::FST64m; break; + } + + std::vector<std::pair<unsigned, unsigned> > RP; + RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); + RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); + RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); + std::sort(RP.begin(), RP.end()); + + Tmp1 = 0; // Silence a warning. + for (unsigned i = 0; i != 3; ++i) + switch (RP[2-i].second) { + default: assert(0 && "Unknown operand number!"); + case 0: Select(N.getOperand(0)); break; + case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; + case 2: SelectAddress(N.getOperand(2), AM); break; + } + + addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); + return; + } + case ISD::CALLSEQ_START: + Select(N.getOperand(0)); + // Stack amount + Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); + BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(Tmp1); + return; + case ISD::CALLSEQ_END: + Select(N.getOperand(0)); + return; + case ISD::MEMSET: { + Select(N.getOperand(0)); // Select the chain. + unsigned Align = + (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue(); + if (Align == 0) Align = 1; + + // Turn the byte code into # iterations + unsigned CountReg; + unsigned Opcode; + if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { + unsigned Val = ValC->getValue() & 255; + + // If the value is a constant, then we can potentially use larger sets. + switch (Align & 3) { + case 2: // WORD aligned + CountReg = MakeReg(MVT::i32); + if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { + BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); + } else { + unsigned ByteReg = SelectExpr(Node->getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); + } + BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); + Opcode = X86::REP_STOSW; + break; + case 0: // DWORD aligned + CountReg = MakeReg(MVT::i32); + if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { + BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); + } else { + unsigned ByteReg = SelectExpr(Node->getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); + } + Val = (Val << 8) | Val; + BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); + Opcode = X86::REP_STOSD; + break; + default: // BYTE aligned + CountReg = SelectExpr(Node->getOperand(3)); + BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); + Opcode = X86::REP_STOSB; + break; + } + } else { + // If it's not a constant value we are storing, just fall back. We could + // try to be clever to form 16 bit and 32 bit values, but we don't yet. + unsigned ValReg = SelectExpr(Node->getOperand(2)); + BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); + CountReg = SelectExpr(Node->getOperand(3)); + Opcode = X86::REP_STOSB; + } + + // No matter what the alignment is, we put the source in ESI, the + // destination in EDI, and the count in ECX. + unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); + BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); + BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); + BuildMI(BB, Opcode, 0); + return; + } + case ISD::MEMCPY: { + Select(N.getOperand(0)); // Select the chain. + unsigned Align = + (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue(); + if (Align == 0) Align = 1; + + // Turn the byte code into # iterations + unsigned CountReg; + unsigned Opcode; + switch (Align & 3) { + case 2: // WORD aligned + CountReg = MakeReg(MVT::i32); + if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { + BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); + } else { + unsigned ByteReg = SelectExpr(Node->getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); + } + Opcode = X86::REP_MOVSW; + break; + case 0: // DWORD aligned + CountReg = MakeReg(MVT::i32); + if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { + BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); + } else { + unsigned ByteReg = SelectExpr(Node->getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); + } + Opcode = X86::REP_MOVSD; + break; + default: // BYTE aligned + CountReg = SelectExpr(Node->getOperand(3)); + Opcode = X86::REP_MOVSB; + break; + } + + // No matter what the alignment is, we put the source in ESI, the + // destination in EDI, and the count in ECX. + unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); + unsigned TmpReg2 = SelectExpr(Node->getOperand(2)); + BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); + BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); + BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); + BuildMI(BB, Opcode, 0); + return; + } + case ISD::WRITEPORT: + if (Node->getOperand(2).getValueType() != MVT::i16) { + std::cerr << "llvm.writeport: Address size is not 16 bits\n"; + exit(1); + } + Select(Node->getOperand(0)); // Emit the chain. + + Tmp1 = SelectExpr(Node->getOperand(1)); + switch (Node->getOperand(1).getValueType()) { + case MVT::i8: + BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); + Tmp2 = X86::OUT8ir; Opc = X86::OUT8rr; + break; + case MVT::i16: + BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(Tmp1); + Tmp2 = X86::OUT16ir; Opc = X86::OUT16rr; + break; + case MVT::i32: + BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); + Tmp2 = X86::OUT32ir; Opc = X86::OUT32rr; + break; + default: + std::cerr << "llvm.writeport: invalid data type for X86 target"; + exit(1); + } + + // If the port is a single-byte constant, use the immediate form. + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node->getOperand(2))) + if ((CN->getValue() & 255) == CN->getValue()) { + BuildMI(BB, Tmp2, 1).addImm(CN->getValue()); + return; + } + + // Otherwise, move the I/O port address into the DX register. + unsigned Reg = SelectExpr(Node->getOperand(2)); + BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); + BuildMI(BB, Opc, 0); + return; + } + assert(0 && "Should not be reached!"); +} + + +/// createX86PatternInstructionSelector - This pass converts an LLVM function +/// into a machine code representation using pattern matching and a machine +/// description file. +/// +FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) { + return new ISel(TM); +} |