aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r--lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp2964
1 files changed, 0 insertions, 2964 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
deleted file mode 100644
index a5e9661f1c..0000000000
--- a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
+++ /dev/null
@@ -1,2964 +0,0 @@
-//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This ModuloScheduling pass is based on the Swing Modulo Scheduling
-// algorithm.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "ModuloSched"
-
-#include "ModuloScheduling.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Target/TargetSchedInfo.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/Timer.h"
-#include <cmath>
-#include <algorithm>
-#include <fstream>
-#include <sstream>
-#include <utility>
-#include <vector>
-#include "../MachineCodeForInstruction.h"
-#include "../SparcV9TmpInstr.h"
-#include "../SparcV9Internals.h"
-#include "../SparcV9RegisterInfo.h"
-using namespace llvm;
-
-/// Create ModuloSchedulingPass
-///
-FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
- DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
- return new ModuloSchedulingPass(targ);
-}
-
-
-//Graph Traits for printing out the dependence graph
-template<typename GraphType>
-static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
- const GraphType &GT) {
- std::string Filename = GraphName + ".dot";
- O << "Writing '" << Filename << "'...";
- std::ofstream F(Filename.c_str());
-
- if (F.good())
- WriteGraph(F, GT);
- else
- O << " error opening file for writing!";
- O << "\n";
-};
-
-
-#if 1
-#define TIME_REGION(VARNAME, DESC) \
- NamedRegionTimer VARNAME(DESC)
-#else
-#define TIME_REGION(VARNAME, DESC)
-#endif
-
-
-//Graph Traits for printing out the dependence graph
-namespace llvm {
-
- //Loop statistics
- Statistic<> ValidLoops("modulosched-validLoops", "Number of candidate loops modulo-scheduled");
- Statistic<> JumboBB("modulosched-jumboBB", "Basic Blocks with more then 100 instructions");
- Statistic<> LoopsWithCalls("modulosched-loopCalls", "Loops with calls");
- Statistic<> LoopsWithCondMov("modulosched-loopCondMov", "Loops with conditional moves");
- Statistic<> InvalidLoops("modulosched-invalidLoops", "Loops with unknown trip counts or loop invariant trip counts");
- Statistic<> SingleBBLoops("modulosched-singeBBLoops", "Number of single basic block loops");
-
- //Scheduling Statistics
- Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
- Statistic<> NoSched("modulosched-noSched", "No schedule");
- Statistic<> SameStage("modulosched-sameStage", "Max stage is 0");
- Statistic<> ResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources");
- Statistic<> RecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences");
- Statistic<> FinalIISum("modulosched-finalIISum", "Sum of all final II");
- Statistic<> IISum("modulosched-IISum", "Sum of all theoretical II");
-
- template<>
- struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
- static std::string getGraphName(MSchedGraph *F) {
- return "Dependence Graph";
- }
-
- static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
- if (Node->getInst()) {
- std::stringstream ss;
- ss << *(Node->getInst());
- return ss.str(); //((MachineInstr*)Node->getInst());
- }
- else
- return "No Inst";
- }
- static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
- MSchedGraphNode::succ_iterator I) {
- //Label each edge with the type of dependence
- std::string edgelabel = "";
- switch (I.getEdge().getDepOrderType()) {
-
- case MSchedGraphEdge::TrueDep:
- edgelabel = "True";
- break;
-
- case MSchedGraphEdge::AntiDep:
- edgelabel = "Anti";
- break;
-
- case MSchedGraphEdge::OutputDep:
- edgelabel = "Output";
- break;
-
- default:
- edgelabel = "Unknown";
- break;
- }
-
- //FIXME
- int iteDiff = I.getEdge().getIteDiff();
- std::string intStr = "(IteDiff: ";
- intStr += itostr(iteDiff);
-
- intStr += ")";
- edgelabel += intStr;
-
- return edgelabel;
- }
- };
-}
-
-
-#include <unistd.h>
-
-/// ModuloScheduling::runOnFunction - main transformation entry point
-/// The Swing Modulo Schedule algorithm has three basic steps:
-/// 1) Computation and Analysis of the dependence graph
-/// 2) Ordering of the nodes
-/// 3) Scheduling
-///
-bool ModuloSchedulingPass::runOnFunction(Function &F) {
- alarm(100);
-
- bool Changed = false;
- int numMS = 0;
-
- DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
-
- //Get MachineFunction
- MachineFunction &MF = MachineFunction::get(&F);
-
- DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>();
-
-
- //Worklist
- std::vector<MachineBasicBlock*> Worklist;
-
- //Iterate over BasicBlocks and put them into our worklist if they are valid
- for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
- if(MachineBBisValid(BI)) {
- if(BI->size() < 100) {
- Worklist.push_back(&*BI);
- ++ValidLoops;
- }
- else
- ++JumboBB;
-
- }
-
- defaultInst = 0;
-
- DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
-
- //Iterate over the worklist and perform scheduling
- for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
- BE = Worklist.end(); BI != BE; ++BI) {
-
- //Print out BB for debugging
- DEBUG(std::cerr << "BB Size: " << (*BI)->size() << "\n");
- DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
-
- //Print out LLVM BB
- DEBUG(std::cerr << "ModuloScheduling LLVMBB: \n"; (*BI)->getBasicBlock()->print(std::cerr));
-
- //Catch the odd case where we only have TmpInstructions and no real Value*s
- if(!CreateDefMap(*BI)) {
- //Clear out our maps for the next basic block that is processed
- nodeToAttributesMap.clear();
- partialOrder.clear();
- recurrenceList.clear();
- FinalNodeOrder.clear();
- schedule.clear();
- defMap.clear();
- continue;
- }
-
- MSchedGraph *MSG = new MSchedGraph(*BI, target, indVarInstrs[*BI], DA, machineTollvm[*BI]);
-
- //Write Graph out to file
- DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
- DEBUG(MSG->print(std::cerr));
-
- //Calculate Resource II
- int ResMII = calculateResMII(*BI);
-
- //Calculate Recurrence II
- int RecMII = calculateRecMII(MSG, ResMII);
-
- DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
-
- //Our starting initiation interval is the maximum of RecMII and ResMII
- if(RecMII < ResMII)
- ++RecurrenceConstraint;
- else
- ++ResourceConstraint;
-
- II = std::max(RecMII, ResMII);
- int mII = II;
-
- //Print out II, RecMII, and ResMII
- DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
-
- //Dump node properties if in debug mode
- DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
- E = nodeToAttributesMap.end(); I !=E; ++I) {
- std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
- << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
- << " Height: " << I->second.height << "\n";
- });
-
- //Calculate Node Properties
- calculateNodeAttributes(MSG, ResMII);
-
- //Dump node properties if in debug mode
- DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
- E = nodeToAttributesMap.end(); I !=E; ++I) {
- std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
- << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
- << " Height: " << I->second.height << "\n";
- });
-
- //Put nodes in order to schedule them
- computePartialOrder();
-
- //Dump out partial order
- DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
- E = partialOrder.end(); I !=E; ++I) {
- std::cerr << "Start set in PO\n";
- for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
- std::cerr << "PO:" << **J << "\n";
- });
-
- //Place nodes in final order
- orderNodes();
-
- //Dump out order of nodes
- DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
- std::cerr << "FO:" << **I << "\n";
- });
-
- //Finally schedule nodes
- bool haveSched = computeSchedule(*BI, MSG);
-
- //Print out final schedule
- DEBUG(schedule.print(std::cerr));
-
- //Final scheduling step is to reconstruct the loop only if we actual have
- //stage > 0
- if(haveSched) {
- reconstructLoop(*BI);
- ++MSLoops;
- Changed = true;
- FinalIISum += II;
- IISum += mII;
-
- if(schedule.getMaxStage() == 0)
- ++SameStage;
- }
- else {
- ++NoSched;
- }
-
- //Clear out our maps for the next basic block that is processed
- nodeToAttributesMap.clear();
- partialOrder.clear();
- recurrenceList.clear();
- FinalNodeOrder.clear();
- schedule.clear();
- defMap.clear();
- //Clean up. Nuke old MachineBB and llvmBB
- //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
- //Function *parent = (Function*) llvmBB->getParent();
- //Should't std::find work??
- //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
- //parent->getBasicBlockList().erase(llvmBB);
-
- //delete(llvmBB);
- //delete(*BI);
- }
-
- alarm(0);
- return Changed;
-}
-
-bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) {
- defaultInst = 0;
-
- for(MachineBasicBlock::iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
- for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) {
- const MachineOperand &mOp = I->getOperand(opNum);
- if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
- //assert if this is the second def we have seen
- //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n");
- //assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
- if(defMap.count(mOp.getVRegValue()))
- return false;
-
- defMap[mOp.getVRegValue()] = &*I;
- }
-
- //See if we can use this Value* as our defaultInst
- if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) {
- Value *V = mOp.getVRegValue();
- if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V))
- defaultInst = (Instruction*) V;
- }
- }
- }
-
- if(!defaultInst)
- return false;
-
- return true;
-
-}
-/// This function checks if a Machine Basic Block is valid for modulo
-/// scheduling. This means that it has no control flow (if/else or
-/// calls) in the block. Currently ModuloScheduling only works on
-/// single basic block loops.
-bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
-
- bool isLoop = false;
-
- //Check first if its a valid loop
- for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
- E = succ_end(BI->getBasicBlock()); I != E; ++I) {
- if (*I == BI->getBasicBlock()) // has single block loop
- isLoop = true;
- }
-
- if(!isLoop)
- return false;
-
- //Check that we have a conditional branch (avoiding MS infinite loops)
- if(BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator()))
- if(b->isUnconditional())
- return false;
-
- //Check size of our basic block.. make sure we have more then just the terminator in it
- if(BI->getBasicBlock()->size() == 1)
- return false;
-
- //Increase number of single basic block loops for stats
- ++SingleBBLoops;
-
- //Get Target machine instruction info
- const TargetInstrInfo *TMI = target.getInstrInfo();
-
- //Check each instruction and look for calls, keep map to get index later
- std::map<const MachineInstr*, unsigned> indexMap;
-
- unsigned count = 0;
- for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
- //Get opcode to check instruction type
- MachineOpCode OC = I->getOpcode();
-
- //Look for calls
- if(TMI->isCall(OC)) {
- ++LoopsWithCalls;
- return false;
- }
-
- //Look for conditional move
- if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
- || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi
- || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr
- || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
- || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
- || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
- || OC == V9::MOVFNEr || OC == V9::MOVFNEi || OC == V9::MOVGr || OC == V9::MOVGi) {
- ++LoopsWithCondMov;
- return false;
- }
-
- indexMap[I] = count;
-
- if(TMI->isNop(OC))
- continue;
-
- ++count;
- }
-
- //Apply a simple pattern match to make sure this loop can be modulo scheduled
- //This means only loops with a branch associated to the iteration count
-
- //Get the branch
- BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator());
-
- //Get the condition for the branch (we already checked if it was conditional)
- Value *cond = b->getCondition();
-
- DEBUG(std::cerr << "Condition: " << *cond << "\n");
-
- //List of instructions associated with induction variable
- std::set<Instruction*> indVar;
- std::vector<Instruction*> stack;
-
- BasicBlock *BB = (BasicBlock*) BI->getBasicBlock();
-
- //Add branch
- indVar.insert(b);
-
- if(Instruction *I = dyn_cast<Instruction>(cond))
- if(I->getParent() == BB) {
- if (!assocIndVar(I, indVar, stack, BB)) {
- ++InvalidLoops;
- return false;
- }
- }
- else {
- ++InvalidLoops;
- return false;
- }
- else {
- ++InvalidLoops;
- return false;
- }
- //The indVar set must be >= 3 instructions for this loop to match (FIX ME!)
- if(indVar.size() < 3 )
- return false;
-
- //Dump out instructions associate with indvar for debug reasons
- DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
- std::cerr << **N << "\n";
- });
-
- //Create map of machine instr to llvm instr
- std::map<MachineInstr*, Instruction*> mllvm;
- for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I);
- for (unsigned j = 0; j < tempMvec.size(); j++) {
- mllvm[tempMvec[j]] = I;
- }
- }
-
- //Convert list of LLVM Instructions to list of Machine instructions
- std::map<const MachineInstr*, unsigned> mIndVar;
- for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
-
- //If we have a load, we can't handle this loop because there is no way to preserve dependences
- //between loads and stores
- if(isa<LoadInst>(*N))
- return false;
-
- MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N);
- for (unsigned j = 0; j < tempMvec.size(); j++) {
- MachineOpCode OC = (tempMvec[j])->getOpcode();
- if(TMI->isNop(OC))
- continue;
- if(!indexMap.count(tempMvec[j]))
- continue;
- mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]];
- DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n");
- }
- }
-
- //Must have some guts to the loop body (more then 1 instr, dont count nops in size)
- if(mIndVar.size() >= (BI->size()-3))
- return false;
-
- //Put into a map for future access
- indVarInstrs[BI] = mIndVar;
- machineTollvm[BI] = mllvm;
- return true;
-}
-
-bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
- std::vector<Instruction*> &stack, BasicBlock *BB) {
-
- stack.push_back(I);
-
- //If this is a phi node, check if its the canonical indvar
- if(PHINode *PN = dyn_cast<PHINode>(I)) {
- if (Instruction *Inc =
- dyn_cast<Instruction>(PN->getIncomingValueForBlock(BB)))
- if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
- if (CI->equalsInt(1)) {
- //We have found the indvar, so add the stack, and inc instruction to the set
- indVar.insert(stack.begin(), stack.end());
- indVar.insert(Inc);
- stack.pop_back();
- return true;
- }
- return false;
- }
- else {
- //Loop over each of the instructions operands, check if they are an instruction and in this BB
- for(unsigned i = 0; i < I->getNumOperands(); ++i) {
- if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) {
- if(N->getParent() == BB)
- if(!assocIndVar(N, indVar, stack, BB))
- return false;
- }
- }
- }
-
- stack.pop_back();
- return true;
-}
-
-//ResMII is calculated by determining the usage count for each resource
-//and using the maximum.
-//FIXME: In future there should be a way to get alternative resources
-//for each instruction
-int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
-
- TIME_REGION(X, "calculateResMII");
-
- const TargetInstrInfo *mii = target.getInstrInfo();
- const TargetSchedInfo *msi = target.getSchedInfo();
-
- int ResMII = 0;
-
- //Map to keep track of usage count of each resource
- std::map<unsigned, unsigned> resourceUsageCount;
-
- for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
-
- //Get resource usage for this instruction
- InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
- std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
-
- //Loop over resources in each cycle and increments their usage count
- for(unsigned i=0; i < resources.size(); ++i)
- for(unsigned j=0; j < resources[i].size(); ++j) {
- if(!resourceUsageCount.count(resources[i][j])) {
- resourceUsageCount[resources[i][j]] = 1;
- }
- else {
- resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1;
- }
- }
- }
-
- //Find maximum usage count
-
- //Get max number of instructions that can be issued at once. (FIXME)
- int issueSlots = msi->maxNumIssueTotal;
-
- for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
-
- //Get the total number of the resources in our cpu
- int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
-
- //Get total usage count for this resources
- unsigned usageCount = RB->second;
-
- //Divide the usage count by either the max number we can issue or the number of
- //resources (whichever is its upper bound)
- double finalUsageCount;
- DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
-
- if( resourceNum <= issueSlots)
- finalUsageCount = ceil(1.0 * usageCount / resourceNum);
- else
- finalUsageCount = ceil(1.0 * usageCount / issueSlots);
-
-
- //Only keep track of the max
- ResMII = std::max( (int) finalUsageCount, ResMII);
-
- }
-
- return ResMII;
-
-}
-
-/// calculateRecMII - Calculates the value of the highest recurrence
-/// By value we mean the total latency
-int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
- /*std::vector<MSchedGraphNode*> vNodes;
- //Loop over all nodes in the graph
- for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
- findAllReccurrences(I->second, vNodes, MII);
- vNodes.clear();
- }*/
-
- TIME_REGION(X, "calculateRecMII");
-
- findAllCircuits(graph, MII);
- int RecMII = 0;
-
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
- RecMII = std::max(RecMII, I->first);
- }
-
- return MII;
-}
-
-/// calculateNodeAttributes - The following properties are calculated for
-/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
-/// MOB.
-void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
-
- TIME_REGION(X, "calculateNodeAttributes");
-
- assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared");
-
- //Loop over the nodes and add them to the map
- for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
-
- DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n");
-
- //Assert if its already in the map
- assert(nodeToAttributesMap.count(I->second) == 0 &&
- "Node attributes are already in the map");
-
- //Put into the map with default attribute values
- nodeToAttributesMap[I->second] = MSNodeAttributes();
- }
-
- //Create set to deal with reccurrences
- std::set<MSchedGraphNode*> visitedNodes;
-
- //Now Loop over map and calculate the node attributes
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
- visitedNodes.clear();
- }
-
- int maxASAP = findMaxASAP();
- //Calculate ALAP which depends on ASAP being totally calculated
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
- visitedNodes.clear();
- }
-
- //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
-
- DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
- calculateDepth(I->first, (MSchedGraphNode*) 0);
- calculateHeight(I->first, (MSchedGraphNode*) 0);
- }
-
-
-}
-
-/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
-bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
- if(destNode == 0 || srcNode ==0)
- return false;
-
- bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
-
- DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
-
- return findEdge;
-}
-
-
-/// calculateASAP - Calculates the
-int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
-
- DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
-
- //Get current node attributes
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.ASAP != -1)
- return attributes.ASAP;
-
- int maxPredValue = 0;
-
- //Iterate over all of the predecessors and find max
- for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
-
- //Only process if we are not ignoring the edge
- if(!ignoreEdge(*P, node)) {
- int predASAP = -1;
- predASAP = calculateASAP(*P, MII, node);
-
- assert(predASAP != -1 && "ASAP has not been calculated");
- int iteDiff = node->getInEdge(*P).getIteDiff();
-
- int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
- DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
- maxPredValue = std::max(maxPredValue, currentPredValue);
- }
- }
-
- attributes.ASAP = maxPredValue;
-
- DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
-
- return maxPredValue;
-}
-
-
-int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
- int maxASAP, MSchedGraphNode *srcNode) {
-
- DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.ALAP != -1)
- return attributes.ALAP;
-
- if(node->hasSuccessors()) {
-
- //Trying to deal with the issue where the node has successors, but
- //we are ignoring all of the edges to them. So this is my hack for
- //now.. there is probably a more elegant way of doing this (FIXME)
- bool processedOneEdge = false;
-
- //FIXME, set to something high to start
- int minSuccValue = 9999999;
-
- //Iterate over all of the predecessors and fine max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
- E = node->succ_end(); P != E; ++P) {
-
- //Only process if we are not ignoring the edge
- if(!ignoreEdge(node, *P)) {
- processedOneEdge = true;
- int succALAP = -1;
- succALAP = calculateALAP(*P, MII, maxASAP, node);
-
- assert(succALAP != -1 && "Successors ALAP should have been caclulated");
-
- int iteDiff = P.getEdge().getIteDiff();
-
- int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
-
- DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
-
- minSuccValue = std::min(minSuccValue, currentSuccValue);
- }
- }
-
- if(processedOneEdge)
- attributes.ALAP = minSuccValue;
-
- else
- attributes.ALAP = maxASAP;
- }
- else
- attributes.ALAP = maxASAP;
-
- DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
-
- if(attributes.ALAP < 0)
- attributes.ALAP = 0;
-
- return attributes.ALAP;
-}
-
-int ModuloSchedulingPass::findMaxASAP() {
- int maxASAP = 0;
-
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
- E = nodeToAttributesMap.end(); I != E; ++I)
- maxASAP = std::max(maxASAP, I->second.ASAP);
- return maxASAP;
-}
-
-
-int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.height != -1)
- return attributes.height;
-
- int maxHeight = 0;
-
- //Iterate over all of the predecessors and find max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
- E = node->succ_end(); P != E; ++P) {
-
-
- if(!ignoreEdge(node, *P)) {
- int succHeight = calculateHeight(*P, node);
-
- assert(succHeight != -1 && "Successors Height should have been caclulated");
-
- int currentHeight = succHeight + node->getLatency();
- maxHeight = std::max(maxHeight, currentHeight);
- }
- }
- attributes.height = maxHeight;
- DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
- return maxHeight;
-}
-
-
-int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
- MSchedGraphNode *destNode) {
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.depth != -1)
- return attributes.depth;
-
- int maxDepth = 0;
-
- //Iterate over all of the predecessors and fine max
- for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
-
- if(!ignoreEdge(*P, node)) {
- int predDepth = -1;
- predDepth = calculateDepth(*P, node);
-
- assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
-
- int currentDepth = predDepth + (*P)->getLatency();
- maxDepth = std::max(maxDepth, currentDepth);
- }
- }
- attributes.depth = maxDepth;
-
- DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
- return maxDepth;
-}
-
-
-
-void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
- //Check to make sure that this recurrence is unique
- bool same = false;
-
-
- //Loop over all recurrences already in our list
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
-
- bool all_same = true;
- //First compare size
- if(R->second.size() == recurrence.size()) {
-
- for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
- if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
- all_same = all_same && false;
- break;
- }
- else
- all_same = all_same && true;
- }
- if(all_same) {
- same = true;
- break;
- }
- }
- }
-
- if(!same) {
- srcBENode = recurrence.back();
- destBENode = recurrence.front();
-
- //FIXME
- if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
- //DEBUG(std::cerr << "NOT A BACKEDGE\n");
- //find actual backedge HACK HACK
- for(unsigned i=0; i< recurrence.size()-1; ++i) {
- if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
- srcBENode = recurrence[i];
- destBENode = recurrence[i+1];
- break;
- }
-
- }
-
- }
- DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
- edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
- recurrenceList.insert(std::make_pair(II, recurrence));
- }
-
-}
-
-int CircCount;
-
-void ModuloSchedulingPass::unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked,
- std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B) {
-
- //Unblock u
- DEBUG(std::cerr << "Unblocking: " << *u << "\n");
- blocked.erase(u);
-
- //std::set<MSchedGraphNode*> toErase;
- while (!B[u].empty()) {
- MSchedGraphNode *W = *B[u].begin();
- B[u].erase(W);
- //toErase.insert(*W);
- DEBUG(std::cerr << "Removed: " << *W << "from B-List\n");
- if(blocked.count(W))
- unblock(W, blocked, B);
- }
-
-}
-
-bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack,
- std::set<MSchedGraphNode*> &blocked, std::vector<MSchedGraphNode*> &SCC,
- MSchedGraphNode *s, std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B,
- int II, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
- bool f = false;
-
- DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n");
-
- //Push node onto the stack
- stack.push_back(v);
-
- //block this node
- blocked.insert(v);
-
- //Loop over all successors of node v that are in the scc, create Adjaceny list
- std::set<MSchedGraphNode*> AkV;
- for(MSchedGraphNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) {
- if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) {
- AkV.insert(*I);
- }
- }
-
- for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
- if(*I == s) {
- //We have a circuit, so add it to our list
- addRecc(stack, newNodes);
- f = true;
- }
- else if(!blocked.count(*I)) {
- if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
- f = true;
- }
- else
- DEBUG(std::cerr << "Blocked: " << **I << "\n");
- }
-
-
- if(f) {
- unblock(v, blocked, B);
- }
- else {
- for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
- B[*I].insert(v);
-
- }
-
- //Pop v
- stack.pop_back();
-
- return f;
-
-}
-
-void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
- std::vector<MSchedGraphNode*> recc;
- //Dump recurrence for now
- DEBUG(std::cerr << "Starting Recc\n");
-
- int totalDelay = 0;