diff options
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r-- | lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp | 2964 |
1 files changed, 2964 insertions, 0 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp new file mode 100644 index 0000000000..a5e9661f1c --- /dev/null +++ b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp @@ -0,0 +1,2964 @@ +//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This ModuloScheduling pass is based on the Swing Modulo Scheduling +// algorithm. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "ModuloSched" + +#include "ModuloScheduling.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/CFG.h" +#include "llvm/Target/TargetSchedInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Timer.h" +#include <cmath> +#include <algorithm> +#include <fstream> +#include <sstream> +#include <utility> +#include <vector> +#include "../MachineCodeForInstruction.h" +#include "../SparcV9TmpInstr.h" +#include "../SparcV9Internals.h" +#include "../SparcV9RegisterInfo.h" +using namespace llvm; + +/// Create ModuloSchedulingPass +/// +FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { + DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); + return new ModuloSchedulingPass(targ); +} + + +//Graph Traits for printing out the dependence graph +template<typename GraphType> +static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, + const GraphType >) { + std::string Filename = GraphName + ".dot"; + O << "Writing '" << Filename << "'..."; + std::ofstream F(Filename.c_str()); + + if (F.good()) + WriteGraph(F, GT); + else + O << " error opening file for writing!"; + O << "\n"; +}; + + +#if 1 +#define TIME_REGION(VARNAME, DESC) \ + NamedRegionTimer VARNAME(DESC) +#else +#define TIME_REGION(VARNAME, DESC) +#endif + + +//Graph Traits for printing out the dependence graph +namespace llvm { + + //Loop statistics + Statistic<> ValidLoops("modulosched-validLoops", "Number of candidate loops modulo-scheduled"); + Statistic<> JumboBB("modulosched-jumboBB", "Basic Blocks with more then 100 instructions"); + Statistic<> LoopsWithCalls("modulosched-loopCalls", "Loops with calls"); + Statistic<> LoopsWithCondMov("modulosched-loopCondMov", "Loops with conditional moves"); + Statistic<> InvalidLoops("modulosched-invalidLoops", "Loops with unknown trip counts or loop invariant trip counts"); + Statistic<> SingleBBLoops("modulosched-singeBBLoops", "Number of single basic block loops"); + + //Scheduling Statistics + Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled"); + Statistic<> NoSched("modulosched-noSched", "No schedule"); + Statistic<> SameStage("modulosched-sameStage", "Max stage is 0"); + Statistic<> ResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources"); + Statistic<> RecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences"); + Statistic<> FinalIISum("modulosched-finalIISum", "Sum of all final II"); + Statistic<> IISum("modulosched-IISum", "Sum of all theoretical II"); + + template<> + struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits { + static std::string getGraphName(MSchedGraph *F) { + return "Dependence Graph"; + } + + static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { + if (Node->getInst()) { + std::stringstream ss; + ss << *(Node->getInst()); + return ss.str(); //((MachineInstr*)Node->getInst()); + } + else + return "No Inst"; + } + static std::string getEdgeSourceLabel(MSchedGraphNode *Node, + MSchedGraphNode::succ_iterator I) { + //Label each edge with the type of dependence + std::string edgelabel = ""; + switch (I.getEdge().getDepOrderType()) { + + case MSchedGraphEdge::TrueDep: + edgelabel = "True"; + break; + + case MSchedGraphEdge::AntiDep: + edgelabel = "Anti"; + break; + + case MSchedGraphEdge::OutputDep: + edgelabel = "Output"; + break; + + default: + edgelabel = "Unknown"; + break; + } + + //FIXME + int iteDiff = I.getEdge().getIteDiff(); + std::string intStr = "(IteDiff: "; + intStr += itostr(iteDiff); + + intStr += ")"; + edgelabel += intStr; + + return edgelabel; + } + }; +} + + +#include <unistd.h> + +/// ModuloScheduling::runOnFunction - main transformation entry point +/// The Swing Modulo Schedule algorithm has three basic steps: +/// 1) Computation and Analysis of the dependence graph +/// 2) Ordering of the nodes +/// 3) Scheduling +/// +bool ModuloSchedulingPass::runOnFunction(Function &F) { + alarm(100); + + bool Changed = false; + int numMS = 0; + + DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n"); + + //Get MachineFunction + MachineFunction &MF = MachineFunction::get(&F); + + DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>(); + + + //Worklist + std::vector<MachineBasicBlock*> Worklist; + + //Iterate over BasicBlocks and put them into our worklist if they are valid + for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) + if(MachineBBisValid(BI)) { + if(BI->size() < 100) { + Worklist.push_back(&*BI); + ++ValidLoops; + } + else + ++JumboBB; + + } + + defaultInst = 0; + + DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n"); + + //Iterate over the worklist and perform scheduling + for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(), + BE = Worklist.end(); BI != BE; ++BI) { + + //Print out BB for debugging + DEBUG(std::cerr << "BB Size: " << (*BI)->size() << "\n"); + DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr)); + + //Print out LLVM BB + DEBUG(std::cerr << "ModuloScheduling LLVMBB: \n"; (*BI)->getBasicBlock()->print(std::cerr)); + + //Catch the odd case where we only have TmpInstructions and no real Value*s + if(!CreateDefMap(*BI)) { + //Clear out our maps for the next basic block that is processed + nodeToAttributesMap.clear(); + partialOrder.clear(); + recurrenceList.clear(); + FinalNodeOrder.clear(); + schedule.clear(); + defMap.clear(); + continue; + } + + MSchedGraph *MSG = new MSchedGraph(*BI, target, indVarInstrs[*BI], DA, machineTollvm[*BI]); + + //Write Graph out to file + DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); + DEBUG(MSG->print(std::cerr)); + + //Calculate Resource II + int ResMII = calculateResMII(*BI); + + //Calculate Recurrence II + int RecMII = calculateRecMII(MSG, ResMII); + + DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n"); + + //Our starting initiation interval is the maximum of RecMII and ResMII + if(RecMII < ResMII) + ++RecurrenceConstraint; + else + ++ResourceConstraint; + + II = std::max(RecMII, ResMII); + int mII = II; + + //Print out II, RecMII, and ResMII + DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n"); + + //Dump node properties if in debug mode + DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), + E = nodeToAttributesMap.end(); I !=E; ++I) { + std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " + << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth + << " Height: " << I->second.height << "\n"; + }); + + //Calculate Node Properties + calculateNodeAttributes(MSG, ResMII); + + //Dump node properties if in debug mode + DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), + E = nodeToAttributesMap.end(); I !=E; ++I) { + std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " + << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth + << " Height: " << I->second.height << "\n"; + }); + + //Put nodes in order to schedule them + computePartialOrder(); + + //Dump out partial order + DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(), + E = partialOrder.end(); I !=E; ++I) { + std::cerr << "Start set in PO\n"; + for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) + std::cerr << "PO:" << **J << "\n"; + }); + + //Place nodes in final order + orderNodes(); + + //Dump out order of nodes + DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { + std::cerr << "FO:" << **I << "\n"; + }); + + //Finally schedule nodes + bool haveSched = computeSchedule(*BI, MSG); + + //Print out final schedule + DEBUG(schedule.print(std::cerr)); + + //Final scheduling step is to reconstruct the loop only if we actual have + //stage > 0 + if(haveSched) { + reconstructLoop(*BI); + ++MSLoops; + Changed = true; + FinalIISum += II; + IISum += mII; + + if(schedule.getMaxStage() == 0) + ++SameStage; + } + else { + ++NoSched; + } + + //Clear out our maps for the next basic block that is processed + nodeToAttributesMap.clear(); + partialOrder.clear(); + recurrenceList.clear(); + FinalNodeOrder.clear(); + schedule.clear(); + defMap.clear(); + //Clean up. Nuke old MachineBB and llvmBB + //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock(); + //Function *parent = (Function*) llvmBB->getParent(); + //Should't std::find work?? + //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB)); + //parent->getBasicBlockList().erase(llvmBB); + + //delete(llvmBB); + //delete(*BI); + } + + alarm(0); + return Changed; +} + +bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) { + defaultInst = 0; + + for(MachineBasicBlock::iterator I = BI->begin(), E = BI->end(); I != E; ++I) { + for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) { + const MachineOperand &mOp = I->getOperand(opNum); + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { + //assert if this is the second def we have seen + //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n"); + //assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map"); + if(defMap.count(mOp.getVRegValue())) + return false; + + defMap[mOp.getVRegValue()] = &*I; + } + + //See if we can use this Value* as our defaultInst + if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { + Value *V = mOp.getVRegValue(); + if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V)) + defaultInst = (Instruction*) V; + } + } + } + + if(!defaultInst) + return false; + + return true; + +} +/// This function checks if a Machine Basic Block is valid for modulo +/// scheduling. This means that it has no control flow (if/else or +/// calls) in the block. Currently ModuloScheduling only works on +/// single basic block loops. +bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { + + bool isLoop = false; + + //Check first if its a valid loop + for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), + E = succ_end(BI->getBasicBlock()); I != E; ++I) { + if (*I == BI->getBasicBlock()) // has single block loop + isLoop = true; + } + + if(!isLoop) + return false; + + //Check that we have a conditional branch (avoiding MS infinite loops) + if(BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator())) + if(b->isUnconditional()) + return false; + + //Check size of our basic block.. make sure we have more then just the terminator in it + if(BI->getBasicBlock()->size() == 1) + return false; + + //Increase number of single basic block loops for stats + ++SingleBBLoops; + + //Get Target machine instruction info + const TargetInstrInfo *TMI = target.getInstrInfo(); + + //Check each instruction and look for calls, keep map to get index later + std::map<const MachineInstr*, unsigned> indexMap; + + unsigned count = 0; + for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { + //Get opcode to check instruction type + MachineOpCode OC = I->getOpcode(); + + //Look for calls + if(TMI->isCall(OC)) { + ++LoopsWithCalls; + return false; + } + + //Look for conditional move + if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi + || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi + || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr + || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr + || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi + || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi + || OC == V9::MOVFNEr || OC == V9::MOVFNEi || OC == V9::MOVGr || OC == V9::MOVGi) { + ++LoopsWithCondMov; + return false; + } + + indexMap[I] = count; + + if(TMI->isNop(OC)) + continue; + + ++count; + } + + //Apply a simple pattern match to make sure this loop can be modulo scheduled + //This means only loops with a branch associated to the iteration count + + //Get the branch + BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator()); + + //Get the condition for the branch (we already checked if it was conditional) + Value *cond = b->getCondition(); + + DEBUG(std::cerr << "Condition: " << *cond << "\n"); + + //List of instructions associated with induction variable + std::set<Instruction*> indVar; + std::vector<Instruction*> stack; + + BasicBlock *BB = (BasicBlock*) BI->getBasicBlock(); + + //Add branch + indVar.insert(b); + + if(Instruction *I = dyn_cast<Instruction>(cond)) + if(I->getParent() == BB) { + if (!assocIndVar(I, indVar, stack, BB)) { + ++InvalidLoops; + return false; + } + } + else { + ++InvalidLoops; + return false; + } + else { + ++InvalidLoops; + return false; + } + //The indVar set must be >= 3 instructions for this loop to match (FIX ME!) + if(indVar.size() < 3 ) + return false; + + //Dump out instructions associate with indvar for debug reasons + DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) { + std::cerr << **N << "\n"; + }); + + //Create map of machine instr to llvm instr + std::map<MachineInstr*, Instruction*> mllvm; + for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I); + for (unsigned j = 0; j < tempMvec.size(); j++) { + mllvm[tempMvec[j]] = I; + } + } + + //Convert list of LLVM Instructions to list of Machine instructions + std::map<const MachineInstr*, unsigned> mIndVar; + for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) { + + //If we have a load, we can't handle this loop because there is no way to preserve dependences + //between loads and stores + if(isa<LoadInst>(*N)) + return false; + + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N); + for (unsigned j = 0; j < tempMvec.size(); j++) { + MachineOpCode OC = (tempMvec[j])->getOpcode(); + if(TMI->isNop(OC)) + continue; + if(!indexMap.count(tempMvec[j])) + continue; + mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]]; + DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n"); + } + } + + //Must have some guts to the loop body (more then 1 instr, dont count nops in size) + if(mIndVar.size() >= (BI->size()-3)) + return false; + + //Put into a map for future access + indVarInstrs[BI] = mIndVar; + machineTollvm[BI] = mllvm; + return true; +} + +bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar, + std::vector<Instruction*> &stack, BasicBlock *BB) { + + stack.push_back(I); + + //If this is a phi node, check if its the canonical indvar + if(PHINode *PN = dyn_cast<PHINode>(I)) { + if (Instruction *Inc = + dyn_cast<Instruction>(PN->getIncomingValueForBlock(BB))) + if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) + if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) + if (CI->equalsInt(1)) { + //We have found the indvar, so add the stack, and inc instruction to the set + indVar.insert(stack.begin(), stack.end()); + indVar.insert(Inc); + stack.pop_back(); + return true; + } + return false; + } + else { + //Loop over each of the instructions operands, check if they are an instruction and in this BB + for(unsigned i = 0; i < I->getNumOperands(); ++i) { + if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) { + if(N->getParent() == BB) + if(!assocIndVar(N, indVar, stack, BB)) + return false; + } + } + } + + stack.pop_back(); + return true; +} + +//ResMII is calculated by determining the usage count for each resource +//and using the maximum. +//FIXME: In future there should be a way to get alternative resources +//for each instruction +int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { + + TIME_REGION(X, "calculateResMII"); + + const TargetInstrInfo *mii = target.getInstrInfo(); + const TargetSchedInfo *msi = target.getSchedInfo(); + + int ResMII = 0; + + //Map to keep track of usage count of each resource + std::map<unsigned, unsigned> resourceUsageCount; + + for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { + + //Get resource usage for this instruction + InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); + std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; + + //Loop over resources in each cycle and increments their usage count + for(unsigned i=0; i < resources.size(); ++i) + for(unsigned j=0; j < resources[i].size(); ++j) { + if(!resourceUsageCount.count(resources[i][j])) { + resourceUsageCount[resources[i][j]] = 1; + } + else { + resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; + } + } + } + + //Find maximum usage count + + //Get max number of instructions that can be issued at once. (FIXME) + int issueSlots = msi->maxNumIssueTotal; + + for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { + + //Get the total number of the resources in our cpu + int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; + + //Get total usage count for this resources + unsigned usageCount = RB->second; + + //Divide the usage count by either the max number we can issue or the number of + //resources (whichever is its upper bound) + double finalUsageCount; + DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n"); + + if( resourceNum <= issueSlots) + finalUsageCount = ceil(1.0 * usageCount / resourceNum); + else + finalUsageCount = ceil(1.0 * usageCount / issueSlots); + + + //Only keep track of the max + ResMII = std::max( (int) finalUsageCount, ResMII); + + } + + return ResMII; + +} + +/// calculateRecMII - Calculates the value of the highest recurrence +/// By value we mean the total latency +int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { + /*std::vector<MSchedGraphNode*> vNodes; + //Loop over all nodes in the graph + for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { + findAllReccurrences(I->second, vNodes, MII); + vNodes.clear(); + }*/ + + TIME_REGION(X, "calculateRecMII"); + + findAllCircuits(graph, MII); + int RecMII = 0; + + for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { + RecMII = std::max(RecMII, I->first); + } + + return MII; +} + +/// calculateNodeAttributes - The following properties are calculated for +/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and +/// MOB. +void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { + + TIME_REGION(X, "calculateNodeAttributes"); + + assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared"); + + //Loop over the nodes and add them to the map + for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { + + DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n"); + + //Assert if its already in the map + assert(nodeToAttributesMap.count(I->second) == 0 && + "Node attributes are already in the map"); + + //Put into the map with default attribute values + nodeToAttributesMap[I->second] = MSNodeAttributes(); + } + + //Create set to deal with reccurrences + std::set<MSchedGraphNode*> visitedNodes; + + //Now Loop over map and calculate the node attributes + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + calculateASAP(I->first, MII, (MSchedGraphNode*) 0); + visitedNodes.clear(); + } + + int maxASAP = findMaxASAP(); + //Calculate ALAP which depends on ASAP being totally calculated + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); + visitedNodes.clear(); + } + + //Calculate MOB which depends on ASAP being totally calculated, also do depth and height + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); + + DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); + calculateDepth(I->first, (MSchedGraphNode*) 0); + calculateHeight(I->first, (MSchedGraphNode*) 0); + } + + +} + +/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not +bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { + if(destNode == 0 || srcNode ==0) + return false; + + bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); + + DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n"); + + return findEdge; +} + + +/// calculateASAP - Calculates the +int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { + + DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); + + //Get current node attributes + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.ASAP != -1) + return attributes.ASAP; + + int maxPredValue = 0; + + //Iterate over all of the predecessors and find max + for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { + + //Only process if we are not ignoring the edge + if(!ignoreEdge(*P, node)) { + int predASAP = -1; + predASAP = calculateASAP(*P, MII, node); + + assert(predASAP != -1 && "ASAP has not been calculated"); + int iteDiff = node->getInEdge(*P).getIteDiff(); + + int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); + DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); + maxPredValue = std::max(maxPredValue, currentPredValue); + } + } + + attributes.ASAP = maxPredValue; + + DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); + + return maxPredValue; +} + + +int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, + int maxASAP, MSchedGraphNode *srcNode) { + + DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); + + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.ALAP != -1) + return attributes.ALAP; + + if(node->hasSuccessors()) { + + //Trying to deal with the issue where the node has successors, but + //we are ignoring all of the edges to them. So this is my hack for + //now.. there is probably a more elegant way of doing this (FIXME) + bool processedOneEdge = false; + + //FIXME, set to something high to start + int minSuccValue = 9999999; + + //Iterate over all of the predecessors and fine max + for(MSchedGraphNode::succ_iterator P = node->succ_begin(), + E = node->succ_end(); P != E; ++P) { + + //Only process if we are not ignoring the edge + if(!ignoreEdge(node, *P)) { + processedOneEdge = true; + int succALAP = -1; + succALAP = calculateALAP(*P, MII, maxASAP, node); + + assert(succALAP != -1 && "Successors ALAP should have been caclulated"); + + int iteDiff = P.getEdge().getIteDiff(); + + int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; + + DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); + + minSuccValue = std::min(minSuccValue, currentSuccValue); + } + } + + if(processedOneEdge) + attributes.ALAP = minSuccValue; + + else + attributes.ALAP = maxASAP; + } + else + attributes.ALAP = maxASAP; + + DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); + + if(attributes.ALAP < 0) + attributes.ALAP = 0; + + return attributes.ALAP; +} + +int ModuloSchedulingPass::findMaxASAP() { + int maxASAP = 0; + + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), + E = nodeToAttributesMap.end(); I != E; ++I) + maxASAP = std::max(maxASAP, I->second.ASAP); + return maxASAP; +} + + +int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { + + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.height != -1) + return attributes.height; + + int maxHeight = 0; + + //Iterate over all of the predecessors and find max + for(MSchedGraphNode::succ_iterator P = node->succ_begin(), + E = node->succ_end(); P != E; ++P) { + + + if(!ignoreEdge(node, *P)) { + int succHeight = calculateHeight(*P, node); + + assert(succHeight != -1 && "Successors Height should have been caclulated"); + + int currentHeight = succHeight + node->getLatency(); + maxHeight = std::max(maxHeight, currentHeight); + } + } + attributes.height = maxHeight; + DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); + return maxHeight; +} + + +int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, + MSchedGraphNode *destNode) { + + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.depth != -1) + return attributes.depth; + + int maxDepth = 0; + + //Iterate over all of the predecessors and fine max + for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { + + if(!ignoreEdge(*P, node)) { + int predDepth = -1; + predDepth = calculateDepth(*P, node); + + assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); + + int currentDepth = predDepth + (*P)->getLatency(); + maxDepth = std::max(maxDepth, currentDepth); + } + } + attributes.depth = maxDepth; + + DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); + return maxDepth; +} + + + +void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { + //Check to make sure that this recurrence is unique + bool same = false; + + + //Loop over all recurrences already in our list + for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { + + bool all_same = true; + //First compare size + if(R->second.size() == recurrence.size()) { + + for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { + if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { + all_same = all_same && false; + break; + } + else + all_same = all_same && true; + } + if(all_same) { + same = true; + break; + } + } + } + + if(!same) { + srcBENode = recurrence.back(); + destBENode = recurrence.front(); + + //FIXME + if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { + //DEBUG(std::cerr << "NOT A BACKEDGE\n"); + //find actual backedge HACK HACK + for(unsigned i=0; i< recurrence.size()-1; ++i) { + if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { + srcBENode = recurrence[i]; + destBENode = recurrence[i+1]; + break; + } + + } + + } + DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); + edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); + recurrenceList.insert(std::make_pair(II, recurrence)); + } + +} + +int CircCount; + +void ModuloSchedulingPass::unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked, + std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B) { + + //Unblock u + DEBUG(std::cerr << "Unblocking: " << *u << "\n"); + blocked.erase(u); + + //std::set<MSchedGraphNode*> toErase; + while (!B[u].empty()) { + MSchedGraphNode *W = *B[u].begin(); + B[u].erase(W); + //toErase.insert(*W); + DEBUG(std::cerr << "Removed: " << *W << "from B-List\n"); + if(blocked.count(W)) + unblock(W, blocked, B); + } + +} + +bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack, + std::set<MSchedGraphNode*> &blocked, std::vector<MSchedGraphNode*> &SCC, + MSchedGraphNode *s, std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B, + int II, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) { + bool f = false; + + DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n"); + + //Push node onto the stack + stack.push_back(v); + + //block this node + blocked.insert(v); + + //Loop over all successors of node v that are in the scc, create Adjaceny list + std::set<MSchedGraphNode*> AkV; + for(MSchedGraphNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) { + if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) { + AkV.insert(*I); + } + } + + for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) { + if(*I == s) { + //We have a circuit, so add it to our list + addRecc(stack, newNodes); + f = true; + } + else if(!blocked.count(*I)) { + if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes)) + f = true; + } + else + DEBUG(std::cerr << "Blocked: " << **I << "\n"); + } + + + if(f) { + unblock(v, blocked, B); + } + else { + for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) + B[*I].insert(v); + + } + + //Pop v + stack.pop_back(); + + return f; + +} + +void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) { + std::vector<MSchedGraphNode*> recc; + //Dump recurrence for now + DEBUG(std::cerr << "Starting Recc\n"); + + int totalDelay = 0; + int totalDistance = 0; + MSchedGraphNode *lastN = 0; + MSchedGraphNode *start = 0; + MSchedGraphNode *end = 0; + + //Loop over recurrence, get delay and distance + for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) { + DEBUG(std::cerr << **N << "\n"); + totalDelay += (*N)->getLatency(); + if(lastN) { + int iteDiff = (*N)->getInEdge(lastN).getIteDiff(); + totalDistance += iteDiff; + + if(iteDiff > 0) { + start = lastN; + end = *N; + } + } + //Get the original node + lastN = *N; + recc.push_back(newNodes[*N]); + + + } + + //Get the loop edge + totalDistance += lastN->getIteDiff(*stack.begin()); + + DEBUG(std::cerr << "End Recc\n"); + CircCount++; + + if(start && end) { + //Insert reccurrence into the list + DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); + edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); + } + else { + //Insert reccurrence into the list + DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n"); + edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN]))); + + } + //Adjust II until we get close to the inequality delay - II*distance <= 0 + int RecMII = II; //Starting value + int value = totalDelay-(RecMII * totalDistance); + int lastII = II; + while(value < 0) { + + lastII = RecMII; + RecMII--; + value = totalDelay-(RecMII * totalDistance); + } + + recurrenceList.insert(std::make_pair(lastII, recc)); + +} + +void ModuloSchedulingPass::addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) { + + int totalDelay = 0; + int totalDistance = 0; + std::vector<MSchedGraphNode*> recc; + MSchedGraphNode *start = 0; + MSchedGraphNode *end = 0; + + //Loop over recurrence, get delay and distance + for(std::vector<MSchedGraphNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) { + DEBUG(std::cerr << **N << "\n"); + totalDelay += (*N)->getLatency(); + + for(unsigned i = 0; i < (*N)->succ_size(); ++i) { + MSchedGraphEdge *edge = (*N)->getSuccessor(i); + if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) { + totalDistance += edge->getIteDiff(); + if(edge->getIteDiff() > 0) + if(!start && !end) { + start = *N; + end = edge->getDest(); + } + + } + } + + + //Get the original node + recc.push_back(newNodes[*N]); + + + } + + DEBUG(std::cerr << "End Recc\n"); + CircCount++; + + assert( (start && end) && "Must have start and end node to ignore edge for SCC"); + + if(start && end) { + //Insert reccurrence into the list + DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); + edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); + } + + int lastII = totalDelay / totalDistance; + + + recurrenceList.insert(std::make_pair(lastII, recc)); + +} + +void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) { + + CircCount = 0; + + //Keep old to new node mapping information + std::map<MSchedGraphNode*, MSchedGraphNode*> newNodes; + + //copy the graph + MSchedGraph *MSG = new MSchedGraph(*g, newNodes); + + DEBUG(std::cerr << "Finding All Circuits\n"); + + //Set of blocked nodes + std::set<MSchedGraphNode*> blocked; + + //Stack holding current circuit + std::vector<MSchedGraphNode*> stack; + + //Map for B Lists + std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > B; + + //current node + MSchedGraphNode *s; + + + //Iterate over the graph until its down to one node or empty + while(MSG->size() > 1) { + + //Write Graph out to file + //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG); + + DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n"); + DEBUG(std::cerr << "Finding strong component Vk with least vertex\n"); + + //Iterate over all the SCCs in the graph + std::set<MSchedGraphNode*> Visited; + std::vector<MSchedGraphNode*> Vk; + MSchedGraphNode* s = 0; + int numEdges = 0; + + //Find scc with the least vertex + for (MSchedGraph::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI) + if (Visited.insert(GI->second).second) { + for (scc_iterator<MSchedGraphNode*> SCCI = scc_begin(GI->second), + E = scc_end(GI->second); SCCI != E; ++SCCI) { + std::vector<MSchedGraphNode*> &nextSCC = *SCCI; + + if (Visited.insert(nextSCC[0]).second) { + Visited.insert(nextSCC.begin()+1, nextSCC.end()); + + if(nextSCC.size() > 1) { + std::cerr << "SCC size: " << nextSCC.size() << "\n"; + + for(unsigned i = 0; i < nextSCC.size(); ++i) { + //Loop over successor and see if in scc, then count edge + MSchedGraphNode *node = nextSCC[i]; + for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { + if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end()) + numEdges++; + } + } + std::cerr << "Num Edges: " << numEdges << "\n"; + } + + //Ignore self loops + if(nextSCC.size() > 1) { + + //Get least vertex in Vk + if(!s) { + s = nextSCC[0]; + Vk = nextSCC; + } + + for(unsigned i = 0; i < nextSCC.size(); ++i) { + if(nextSCC[i] < s) { + s = nextSCC[i]; + Vk = nextSCC; + } + } + } + } + } + } + + + + //Process SCC + DEBUG(for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end(); + N != NE; ++N) { std::cerr << *((*N)->getInst()); }); + + //Iterate over all nodes in this scc + for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end(); + N != NE; ++N) { + blocked.erase(*N); + B[*N].clear(); + } + if(Vk.size() > 1) { + if(numEdges < 98) + circuit(s, stack, blocked, Vk, s, B, II, newNodes); + else + addSCC(Vk, newNodes); + + //Delete nodes from the graph + //Find all nodes up to s and delete them + std::vector<MSchedGraphNode*> nodesToRemove; + nodesToRemove.push_back(s); + for(MSchedGraph::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) { + if(N->second < s ) + nodesToRemove.push_back(N->second); + } + for(std::vector<MSchedGraphNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) { + DEBUG(std::cerr << "Deleting Node: " << **N << "\n"); + MSG->deleteNode(*N); + } + } + else + break; + } + DEBUG(std::cerr << "Num Circuits found: " << CircCount << "\n"); +} + + +void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, + std::vector<MSchedGraphNode*> &visitedNodes, + int II) { + + + if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { + std::vector<MSchedGraphNode*> recurrence; + bool first = true; + int delay = 0; + int distance = 0; + int RecMII = II; //Starting value + MSchedGraphNode *last = node; + MSchedGraphNode *srcBackEdge = 0; + MSchedGraphNode *destBackEdge = 0; + + + + for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end(); + I !=E; ++I) { + + if(*I == node) + first = false; + if(first) + continue; + + delay = delay + (*I)->getLatency(); + + if(*I != node) { + int diff = (*I)->getInEdge(last).getIteDiff(); + distance += diff; + if(diff > 0) { + srcBackEdge = last; + destBackEdge = *I; + } + } + + recurrence.push_back(*I); + last = *I; + } + + + + //Get final distance calc + distance += node->getInEdge(last).getIteDiff(); + DEBUG(std::cerr << "Reccurrence Distance: " << distance << "\n"); + + //Adjust II until we get close to the inequality delay - II*distance <= 0 + + int value = delay-(RecMII * distance); + int lastII = II; + while(value <= 0) { + + lastII = RecMII; + RecMII--; + value = delay-(RecMII * distance); + } + + + DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); + addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); + assert(distance != 0 && "Recurrence distance should not be zero"); + return; + } + + unsigned count = 0; + for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { + visitedNodes.push_back(node); + //if(!edgesToIgnore.count(std::make_pair(node, count))) + findAllReccurrences(*I, visitedNodes, II); + visitedNodes.pop_back(); + count++; + } +} + +void ModuloSchedulingPass::searchPath(MSchedGraphNode *node, + std::vector<MSchedGraphNode*> &path, + std::set<MSchedGraphNode*> &nodesToAdd, + std::set<MSchedGraphNode*> &new_reccurrence) { + //Push node onto the path + path.push_back(node); + + //Loop over all successors and see if there is a path from this node to + //a recurrence in the partial order, if so.. add all nodes to be added to recc + for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; + ++S) { + + //Check if we should ignore this edge first + if(ignoreEdge(node,*S)) + continue; + + //check if successor is in this recurrence, we will get to it eventually + if(new_reccurrence.count(*S)) + continue; + + //If this node exists in a recurrence already in the partial + //order, then add all nodes in the path to the set of nodes to add + //Check if its already in our partial order, if not add it to the + //final vector + bool found = false; + for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), + PE = partialOrder.end(); PO != PE; ++PO) { + + if(PO->count(*S)) { + found = true; + break; + } + } + + if(!found) { + nodesToAdd.insert(*S); + searchPath(*S, path, nodesToAdd, new_reccurrence); + } + } + + //Pop Node off the path + path.pop_back(); +} + +void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node, + std::vector<MSchedGraphNode*> &path, + std::set<MSchedGraphNode*> &poSet, + std::set<MSchedGraphNode*> &lastNodes) { + //Push node onto the path + path.push_back(node); + + DEBUG(std::cerr << "Current node: " << *node << "\n"); + + //Loop over all successors and see if there is a path from this node to + //a recurrence in the partial order, if so.. add all nodes to be added to recc + for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; + ++S) { + DEBUG(std::cerr << "Succ:" << **S << "\n"); + //Check if we should ignore this edge first + if(ignoreEdge(node,*S)) + continue; + + if(poSet.count(*S)) { + DEBUG(std::cerr << "Found path to recc from no pred\n"); + //Loop over path, if it exists in lastNodes, then add to poset, and remove from lastNodes + for(std::vector<MSchedGraphNode*>::iterator I = path.begin(), IE = path.end(); I != IE; ++I) { + if(lastNodes.count(*I)) { + DEBUG(std::cerr << "Inserting node into recc: " << **I << "\n"); + poSet.insert(*I); + lastNodes.erase(*I); + } + } + } + else + pathToRecc(*S, path, poSet, lastNodes); + } + + //Pop Node off the path + path.pop_back(); +} + +void ModuloSchedulingPass::computePartialOrder() { + + TIME_REGION(X, "calculatePartialOrder"); + + DEBUG(std::cerr << "Computing Partial Order\n"); + + //Only push BA branches onto the final node order, we put other + //branches after it FIXME: Should we really be pushing branches on + //it a specific order instead of relying on BA being there? + + std::vector<MSchedGraphNode*> branches; + + //Steps to add a recurrence to the partial order 1) Find reccurrence + //with the highest RecMII. Add it to the partial order. 2) For each + //recurrence with decreasing RecMII, add it to the partial order + //along with any nodes that connect this recurrence to recurrences + //already in the partial order + for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator + I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { + + std::set<MSchedGraphNode*> new_recurrence; + + //Loop through recurrence and remove any nodes already in the partial order + for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), + NE = I->second.end(); N != NE; ++N) { + + bool found = false; + for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), + PE = partialOrder.end(); PO != PE; ++PO) { + if(PO->count(*N)) + found = true; + } + + //Check if its a branch, and remove to handle special + if(!found) { + if((*N)->isBranch() && !(*N)->hasPredecessors()) { + branches.push_back(*N); + } + else + new_recurrence.insert(*N); + } + + } + + + if(new_recurrence.size() > 0) { + + std::vector<MSchedGraphNode*> path; + std::set<MSchedGraphNode*> nodesToAdd; + + //Dump recc we are dealing with (minus nodes already in PO) + DEBUG(std::cerr << "Recc: "); + DEBUG(for(std::set<MSchedGraphNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; }); + + //Add nodes that connect this recurrence to recurrences in the partial path + for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(), + NE = new_recurrence.end(); N != NE; ++N) + searchPath(*N, path, nodesToAdd, new_recurrence); + + //Add nodes to this recurrence if they are not already in the partial order + for(std::set<MSchedGraphNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end(); + N != NE; ++N) { + bool found = false; + for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), + PE = partialOrder.end(); PO != PE; ++PO) { + if(PO->count(*N)) + found = true; + } + if(!found) { + assert("FOUND CONNECTOR"); + new_recurrence.insert(*N); + } + } + + partialOrder.push_back(new_recurrence); + + + //Dump out partial order + DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(), + E = partialOrder.end(); I !=E; ++I) { + std::cerr << "Start set in PO\n"; + for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) + std::cerr << "PO:" << **J << "\n"; + }); + + } + } + + //Add any nodes that are not already in the partial order + //Add them in a set, one set per connected component + std::set<MSchedGraphNode*> lastNodes; + std::set<MSchedGraphNode*> noPredNodes; + for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), + E = nodeToAttributesMap.end(); I != E; ++I) { + + bool found = false; + + //Check if its already in our partial order, if not add it to the final vector + for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), + PE = partialOrder.end(); PO != PE; ++PO) { + if(PO->count(I->first)) + found = true; + } + if(!found) + lastNodes.insert(I->first); + } + + //For each node w/out preds, see if there is a path to one of the + //recurrences, and if so add them to that current recc + /*for(std::set<MSchedGraphNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end(); + N != NE; ++N) { + DEBUG(std::cerr << "No Pred Path from: " << **N << "\n"); + for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), + PE = partialOrder.end(); PO != PE; ++PO) { + std::vector<MSchedGraphNode*> path; + pathToRecc(*N, path, *PO, lastNodes); + } + }*/ + + + //Break up remaining nodes that are not in the partial order + ///into their connected compoenents + while(lastNodes.size() > 0) { + std::set<MSchedGraphNode*> ccSet; + connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes); + if(ccSet.size() > 0) + partialOrder.push_back(ccSet); + } + + + //Clean up branches by putting them in final order + assert(branches.size() == 0 && "We should not have any branches in our graph"); +} + + +void ModuloSchedulingPass::connectedComponentSet(MSchedGraphNode *node, std::set<MSchedGraphNode*> &ccSet, std::set<MSchedGraphNode*> &lastNodes) { + +//Add to final set + if( !ccSet.count(node) && lastNodes.count(node)) { + lastNodes.erase(node); + ccSet.insert(node); + } + else + return; + + //Loop over successors and recurse if we have not seen this node before + for(MSchedGraphNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) { + connectedComponentSet(*node_succ, ccSet, lastNodes); + } + +} + +void ModuloSchedulingPass::predIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) { + + for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { + for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), + E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { + + //Check if we are supposed to ignore this edge or not + if(ignoreEdge(*P,FinalNodeOrder[j])) + continue; + + if(CurrentSet.count(*P)) + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.insert(*P); + } + } +} + + + + + +void ModuloSchedulingPass::succIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) { + + for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { + for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), + E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { + + //Check if we are supposed to ignore this edge or not + if(ignoreEdge(FinalNodeOrder[j],*P)) + continue; + + if(CurrentSet.count(*P)) + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.insert(*P); + } + } +} + +void dumpIntersection(std::set<MSchedGraphNode*> &IntersectCurrent) { + std::cerr << "Intersection ("; + for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) + std::cerr << **I << ", "; + std::cerr << ")\n"; +} + + + +void ModuloSchedulingPass::orderNodes() { + + TIME_REGION(X, "orderNodes"); + + int BOTTOM_UP = 0; + int TOP_DOWN = 1; + + //Set default order + int order = BOTTOM_UP; + + + //Loop over all the sets and place them in the final node order + for(std::vector<std::set<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { + + DEBUG(std::cerr << "Processing set in S\n"); + DEBUG(dumpIntersection(*CurrentSet)); + + //Result of intersection + std::set<MSchedGraphNode*> IntersectCurrent; + + predIntersect(*CurrentSet, IntersectCurrent); + + //If the intersection of predecessor and current set is not empty + //sort nodes bottom up + if(IntersectCurrent.size() != 0) { + DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); + order = BOTTOM_UP; + } + //If empty, use successors + else { + DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); + + succIntersect(*CurrentSet, IntersectCurrent); + + //sort top-down + if(IntersectCurrent.size() != 0) { + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); + order = TOP_DOWN; + } + else { + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); + //Find node with max ASAP in current Set + MSchedGraphNode *node; + int maxASAP = 0; + DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); + for(std::set<MSchedGraphNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) { + //Get node attributes + MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; + //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); + + if(maxASAP <= nodeAttr.ASAP) { + maxASAP = nodeAttr.ASAP; + node = *J; + } + } + assert(node != 0 && "In node ordering node should not be null"); + IntersectCurrent.insert(node); + order = BOTTOM_UP; + } + } + + //Repeat until all nodes are put into the final order from current set + while(IntersectCurrent.size() > 0) { + + if(order == TOP_DOWN) { + DEBUG(std::cerr << "Order is TOP DOWN\n"); + + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); + + int MOB = 0; + int height = 0; + MSchedGraphNode *highestHeightNode = *(IntersectCurrent.begin()); + + //Find node in intersection with highest heigh and lowest MOB + for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + + //Get current nodes properties + MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; + + if(height < nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; + } + else if(height == nodeAttr.height) { + if(MOB > nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; + } + } + } + + //Append our node with greatest height to the NodeOrder + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); + FinalNodeOrder.push_back(highestHeightNode); + } + + //Remove V from IntersectOrder + IntersectCurrent.erase(std::find(IntersectCurrent.begin(), + IntersectCurrent.end(), highestHeightNode)); + + + //Intersect V's successors with CurrentSet + for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), + E = highestHeightNode->succ_end(); P != E; ++P) { + //if(lower_bound(CurrentSet->begin(), + // CurrentSet->end(), *P) != CurrentSet->end()) { + if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { + if(ignoreEdge(highestHeightNode, *P)) + continue; + //If not already in Intersect, add + if(!IntersectCurrent.count(*P)) + IntersectCurrent.insert(*P); + } + } + } //End while loop over Intersect Size + + //Change direction + order = BOTTOM_UP; + + //Reset Intersect to reflect changes in OrderNodes + IntersectCurrent.clear(); + predIntersect(*CurrentSet, IntersectCurrent); + + } //End If TOP_DOWN + + //Begin if BOTTOM_UP + else { + DEBUG(std::cerr << "Order is BOTTOM UP\n"); + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); + + //dump intersection + DEBUG(dumpIntersection(IntersectCurrent)); + //Get node with highest depth, if a tie, use one with lowest + //MOB + int MOB = 0; + int depth = 0; + MSchedGraphNode *highestDepthNode = *(IntersectCurrent.begin()); + + for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + //Find node attribute in graph + MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; + + if(depth < nodeAttr.depth) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; + } + else if(depth == nodeAttr.depth) { + if(MOB > nodeAttr.MOB) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; + } + } + } + + + + //Append highest depth node to the NodeOrder + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); + FinalNodeOrder.push_back(highestDepthNode); + } + //Remove heightestDepthNode from IntersectOrder + IntersectCurrent.erase(highestDepthNode); + + + //Intersect heightDepthNode's pred with CurrentSet + for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), + E = highestDepthNode->pred_end(); P != E; ++P) { + if(CurrentSet->count(*P)) { + if(ignoreEdge(*P, highestDepthNode)) + continue; + + //If not already in Intersect, add + if(!IntersectCurrent.count(*P)) + IntersectCurrent.insert(*P); + } + } + + } //End while loop over Intersect Size + + //Change order + order = TOP_DOWN; + + //Reset IntersectCurrent to reflect changes in OrderNodes + IntersectCurrent.clear(); + succIntersect(*CurrentSet, IntersectCurrent); + } //End if BOTTOM_DOWN + + DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); + } + //End Wrapping while loop + DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); + }//End for over all sets of nodes + + //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no + //data dependencies) to the final order. We add this manually. It will always be + //in the last set of S since its not part of a recurrence + //Loop over all the sets and place them in the final node order + std::vector<std::set<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin(); + for(std::set<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end(); + CurrentNode != LastNode; ++CurrentNode) { + if((*CurrentNode)->getInst()->getOpcode() == V9::BA) + FinalNodeOrder.push_back(*CurrentNode); + } + //Return final Order + //return FinalNodeOrder; +} + +bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG) { + + TIME_REGION(X, "computeSchedule"); + + bool success = false; + + //FIXME: Should be set to max II of the original loop + //Cap II in order to prevent infinite loop + int capII = MSG->totalDelay(); + + while(!success) { + + //Keep track of branches, but do not insert into the schedule + std::vector<MSchedGraphNode*> branches; + + //Loop over the final node order and process each node + for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), + E = FinalNodeOrder.end(); I != E; ++I) { + + //CalculateEarly and Late start + bool initialLSVal = false; + bool initialESVal = false; + int EarlyStart = 0; + int LateStart = 0; + bool hasSucc = false; + bool hasPred = false; + bool sched; + + if((*I)->isBranch()) + if((*I)->hasPredecessors()) + sched = true; + else + sched = false; + else + sched = true; + + if(sched) { + //Loop over nodes in the schedule and determine if they are predecessors + //or successors of the node we are trying to schedule + for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); + nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { + + //For this cycle, get the vector of nodes schedule and loop over it + for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { + + if((*I)->isPredecessor(*schedNode)) { + int diff = (*I)->getInEdge(*schedNode).getIteDiff(); + int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); + DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); + if(initialESVal) + EarlyStart = std::max(EarlyStart, ES_Temp); + else { + EarlyStart = ES_Temp; + initialESVal = true; + } + hasPred = true; + } + if((*I)->isSuccessor(*schedNode)) { + int diff = (*schedNode)->getInEdge(*I).getIteDiff(); + int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); + DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); + if(initialLSVal) + LateStart = std::min(LateStart, LS_Temp); + else { + LateStart = LS_Temp; + initialLSVal = true; + } + hasSucc = true; + } + } + } + } + else { + branches.push_back(*I); + continue; + } + + //Check if this node is a pred or succ to a branch, and restrict its placement + //even though the branch is not in the schedule + /*int count = branches.size(); + for(std::vector<MSchedGraphNode*>::iterator B = branches.begin(), BE = branches.end(); + B != BE; ++B) { + if((*I)->isPredecessor(*B)) { + int diff = (*I)->getInEdge(*B).getIteDiff(); + int ES_Temp = (II+count-1) + (*B)->getLatency() - diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count)-1 << "\n"); + DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); + EarlyStart = std::max(EarlyStart, ES_Temp); + hasPred = true; + } + + if((*I)->isSuccessor(*B)) { + int diff = (*B)->getInEdge(*I).getIteDiff(); + int LS_Temp = (II+count-1) - (*I)->getLatency() + diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count-1) << "\n"); + DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); + LateStart = std::min(LateStart, LS_Temp); + hasSucc = true; + } + + count--; + }*/ + + //Check if the node has no pred or successors and set Early Start to its ASAP + if(!hasSucc && !hasPred) + EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; + + DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); + DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); + + //Now, try to schedule this node depending upon its pred and successor in the schedule + //already + if(!hasSucc && hasPred) + success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); + else if(!hasPred && hasSucc) + success = scheduleNode(*I, LateStart, (LateStart - II +1)); + else if(hasPred && hasSucc) { + if(EarlyStart > LateStart) { + success = false; + //LateStart = EarlyStart; + DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n"); + } + else + success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); + } + else + success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); + + if(!success) { + ++II; + schedule.clear(); + break; + } + + } + + if(success) { + DEBUG(std::cerr << "Constructing Schedule Kernel\n"); + success = schedule.constructKernel(II, branches, indVarInstrs[BB]); + DEBUG(std::cerr << "Done Constructing Schedule Kernel\n"); + if(!success) { + ++II; + schedule.clear(); + } + DEBUG(std::cerr << "Final II: " << II << "\n"); + } + + + if(II >= capII) { + DEBUG(std::cerr << "Maximum II reached, giving up\n"); + return false; + } + + assert(II < capII && "The II should not exceed the original loop number of cycles"); + } + return true; +} + + +bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, + int start, int end) { + bool success = false; + + DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); + + //Make sure start and end are not negative + //if(start < 0) { + //start = 0; + + //} + //if(end < 0) + //end = 0; + + bool forward = true; + if(start > end) + forward = false; + + bool increaseSC = true; + int cycle = start ; + + + while(increaseSC) { + + increaseSC = false; + + increaseSC = schedule.insert(node, cycle, II); + + if(!increaseSC) + return true; + + //Increment cycle to try again + if(forward) { + ++cycle; + DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); + if(cycle > end) + return false; + } + else { + --cycle; + DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); + if(cycle < end) + return false; + } + } + + return success; +} + +void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) { + + //Keep a map to easily know whats in the kernel + std::map<int, std::set<const MachineInstr*> > inKernel; + int maxStageCount = 0; + + //Keep a map of new values we consumed in case they need to be added back + std::map<Value*, std::map<int, Value*> > consumedValues; + + MSchedGraphNode *branch = 0; + MSchedGraphNode *BAbranch = 0; + + DEBUG(schedule.print(std::cerr)); + + std::vector<MSchedGraphNode*> branches; + + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + maxStageCount = std::max(maxStageCount, I->second); + + //Put int the map so we know what instructions in each stage are in the kernel + DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n"); + inKernel[I->second].insert(I->first); + } + + //Get target information to look at machine operands + const TargetInstrInfo *mii = target.getInstrInfo(); + + //Now write the prologues + for(int i = 0; i < maxStageCount; ++i) { + BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent())); + MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); + + DEBUG(std::cerr << "i=" << i << "\n"); + for(int j = i; j >= 0; --j) { + for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { + if(inKernel[j].count(&*MI)) { + MachineInstr *instClone = MI->clone(); + machineBB->push_back(instClone); + + //If its a branch, insert a nop + if(mii->isBranch(instClone->getOpcode())) + BuildMI(machineBB, V9::NOP, 0); + + + DEBUG(std::cerr << "Cloning: " << *MI << "\n"); + + //After cloning, we may need to save the value that this instruction defines + for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { + Instruction *tmp; + + //get machine operand + MachineOperand &mOp = instClone->getOperand(opNum); + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { + + //Check if this is a value we should save + if(valuesToSave.count(mOp.getVRegValue())) { + //Save copy in tmpInstruction + tmp = new TmpInstruction(mOp.getVRegValue()); + + //Add TmpInstruction to safe LLVM Instruction MCFI + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n"); + + newValues[mOp.getVRegValue()][i]= tmp; + newValLocation[tmp] = machineBB; + + DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); + + //Create machine instruction and put int machineBB + MachineInstr *saveValue; + if(mOp.getVRegValue()->getType() == Type::FloatTy) + saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + + DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); + } + } + + //We may also need to update the value that we use if its from an earlier prologue + if(j != 0) { + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + if(newValues.count(mOp.getVRegValue())) { + if(newValues[mOp.getVRegValue()].count(i-1)) { + Value *oldV = mOp.getVRegValue(); + DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); + //Update the operand with the right value + mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]); + + //Remove this value since we have consumed it + //NOTE: Should this only be done if j != maxStage? + consumedValues[oldV][i-1] = (newValues[oldV][i-1]); + DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n"); + newValues[oldV].erase(i-1); + } + } + else + if(consumedValues.count(mOp.getVRegValue())) + assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value"); + } + } + } + } + } + } + + MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent()); + MachineFunction::BasicBlockListType &BL = F->getBasicBlockList(); + MachineFunction::BasicBlockListType::iterator BLI = origBB; + assert(BLI != BL.end() && "Must find original BB in machine function\n"); + BL.insert(BLI,machineBB); + prologues.push_back(machineBB); + llvm_prologues.push_back(llvmBB); + } +} + +void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) { + + std::map<int, std::set<const MachineInstr*> > inKernel; + + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + + //Ignore the branch, we will handle this separately + //if(I->first->isBranch()) + //continue; + + //Put int the map so we know what instructions in each stage are in the kernel + inKernel[I->second].insert(I->first); + } + + std::map<Value*, Value*> valPHIs; + + //some debug stuff, will remove later + DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) { + std::cerr << "Old Value: " << *(V->first) << "\n"; + for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) + std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; + }); + + //some debug stuff, will remove later + DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) { + std::cerr << "Old Value: " << *(V->first) << "\n"; + for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) + std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; + }); + + //Now write the epilogues + for(int i = schedule.getMaxStage()-1; i >= 0; --i) { + BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent())); + MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); + + DEBUG(std::cerr << " Epilogue #: " << i << "\n"); + + + std::map<Value*, int> inEpilogue; + + for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { + for(int j=schedule.getMaxStage(); j > i; --j) { + if(inKernel[j].count(&*MI)) { + DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); + MachineInstr *clone = MI->clone(); + + //Update operands that need to use the result from the phi + for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { + //get machine operand + const MachineOperand &mOp = clone->getOperand(opNum); + + if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { + + DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); + + //If this is the last instructions for the max iterations ago, don't update operands + if(inEpilogue.count(mOp.getVRegValue())) + if(inEpilogue[mOp.getVRegValue()] == i) + continue; + + //Quickly write appropriate phis for this operand + if(newValues.count(mOp.getVRegValue())) { + if(newValues[mOp.getVRegValue()].count(i)) { + Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + //assert of no kernelPHI for this value + assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi"); + + MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + valPHIs[mOp.getVRegValue()] = tmp; + } + } + + if(valPHIs.count(mOp.getVRegValue())) { + //Update the operand in the cloned instruction + clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); + } + } + else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { + inEpilogue[mOp.getVRegValue()] = i; + } + } + machineBB->push_back(clone); + } + } + } + + MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent()); + MachineFunction::BasicBlockListType &BL = F->getBasicBlockList(); + MachineFunction::BasicBlockListType::iterator BLI = (MachineBasicBlock*) origBB; + assert(BLI != BL.end() && "Must find original BB in machine function\n"); + BL.insert(BLI,machineBB); + epilogues.push_back(machineBB); + llvm_epilogues.push_back(llvmBB); + + DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); + DEBUG(machineBB->print(std::cerr)); + } +} + +void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) { + + //Keep track of operands that are read and saved from a previous iteration. The new clone + //instruction will use the result of the phi instead. + std::map<Value*, Value*> finalPHIValue; + std::map<Value*, Value*> kernelValue; + + //Branches are a special case + std::vector<MachineInstr*> branches; + + //Get target information to look at machine operands + const TargetInstrInfo *mii = target.getInstrInfo(); + + //Create TmpInstructions for the final phis + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + + DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";); + + //Clone instruction + const MachineInstr *inst = I->first; + MachineInstr *instClone = inst->clone(); + + //Insert into machine basic block + machineBB->push_back(instClone); + + if(mii->isBranch(instClone->getOpcode())) + BuildMI(machineBB, V9::NOP, 0); + + DEBUG(std::cerr << "Cloned Inst: " << *instClone << "\n"); + + //Loop over Machine Operands + for(unsigned i=0; i < inst->getNumOperands(); ++i) { + //get machine operand + const MachineOperand &mOp = inst->getOperand(i); + + if(I->second != 0) { + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + + //Check to see where this operand is defined if this instruction is from max stage + if(I->second == schedule.getMaxStage()) { + DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); + } + + //If its in the value saved, we need to create a temp instruction and use that instead + if(valuesToSave.count(mOp.getVRegValue())) { + + //Check if we already have a final PHI value for this + if(!finalPHIValue.count(mOp.getVRegValue())) { + //Only create phi if the operand def is from a stage before this one + if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) { + TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + //Update the operand in the cloned instruction + instClone->getOperand(i).setValueReg(tmp); + + //save this as our final phi + finalPHIValue[mOp.getVRegValue()] = tmp; + newValLocation[tmp] = machineBB; + } + } + else { + //Use the previous final phi value + instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); + } + } + } + } + if(I->second != schedule.getMaxStage()) { + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { + if(valuesToSave.count(mOp.getVRegValue())) { + + TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); + + //Get machine code for this instruction + MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); + tempVec.addTemp((Value*) tmp); + + //Create new machine instr and put in MBB + MachineInstr *saveValue; + if(mOp.getVRegValue()->getType() == Type::FloatTy) + saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + + //Save for future cleanup + kernelValue[mOp.getVRegValue()] = tmp; + newValLocation[tmp] = machineBB; + kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; + } + } + } + } + + } + + //Add branches + for(std::vector<MachineInstr*>::iterator I = branches.begin(), E = branches.end(); I != E; ++I) { + machineBB->push_back(*I); + BuildMI(machineBB, V9::NOP, 0); + } + + + DEBUG(std::cerr << "KERNEL before PHIs\n"); + DEBUG(machineBB->print(std::cerr)); + + + //Loop over each value we need to generate phis for + for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), + E = newValues.end(); V != E; ++V) { + + + DEBUG(std::cerr << "Writing phi for" << *(V->first)); + DEBUG(std::cerr << "\nMap of Value* for this phi\n"); + DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(), + IE = V->second.end(); I != IE; ++I) { + std::cerr << "Stage: " << I->first; + std::cerr << " Value: " << *(I->second) << "\n"; + }); + + //If we only have one current iteration live, its safe to set lastPhi = to kernel value + if(V->second.size() == 1) { + assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi"); + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); + DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n"); + kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first]; + DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n"); + } + else { + + //Keep track of last phi created. + Instruction *lastPhi = 0; + + unsigned count = 1; + //Loop over the the map backwards to generate phis + for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); + I != IE; ++I) { + + if(count < (V->second).size()) { + if(lastPhi == 0) { + lastPhi = new TmpInstruction(I->second); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) lastPhi); + + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + newValLocation[lastPhi] = machineBB; + } + else { + Instruction *tmp = new TmpInstruction(I->second); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + lastPhi = tmp; + kernelPHIs[V->first][I->first] = lastPhi; + newValLocation[lastPhi] = machineBB; + } + } + //Final phi value + else { + //The resulting value must be the Value* we created earlier + assert(lastPhi != 0 && "Last phi is NULL!\n"); + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; + } + + ++count; + } + + } + } + + DEBUG(std::cerr << "KERNEL after PHIs\n"); + DEBUG(machineBB->print(std::cerr)); +} + + +void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) { + + //Worklist to delete things + std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist; + + //Worklist of TmpInstructions that need to be added to a MCFI + std::vector<Instruction*> addToMCFI; + + //Worklist to add OR instructions to end of kernel so not to invalidate the iterator + //std::vector<std::pair<Instruction*, Value*> > newORs; + + const TargetInstrInfo *TMI = target.getInstrInfo(); + + //Start with the kernel and for each phi insert a copy for the phi def and for each arg + for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) { + + DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); + //Get op code and check if its a phi + if(I->getOpcode() == V9::PHI) { + + DEBUG(std::cerr << "Replacing PHI: " << *I << "\n"); + Instruction *tmp = 0; + + for(unsigned i = 0; i < I->getNumOperands(); ++i) { + //Get Operand + const MachineOperand &mOp = I->getOperand(i); + assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); + + if(!tmp) { + tmp = new TmpInstruction(mOp.getVRegValue()); + addToMCFI.push_back(tmp); + } + + //Now for all our arguments we read, OR to the new TmpInstruction that we created + if(mOp.isUse()) { + DEBUG(std::cerr << "Use: " << mOp << "\n"); + //Place a copy at the end of its BB but before the branches + assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); + //Reverse iterate to find the branches, we can safely assume no instructions have been + //put in the nop positions + for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { + MachineOpCode opc = inst->getOpcode(); + if(TMI->isBranch(opc) || TMI->isNop(opc)) + continue; + else { + if(mOp.getVRegValue()->getType() == Type::FloatTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + break; + } + + } + + } + else { + //Remove the phi and replace it with an OR + DEBUG(std::cerr << "Def: " << mOp << "\n"); + //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue())); + if(tmp->getType() == Type::FloatTy) + BuildMI(*kernelBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else if(tmp->getType() == Type::DoubleTy) + BuildMI(*kernelBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else + BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); + + + worklist.push_back(std::make_pair(kernelBB, I)); + } + + } + + } + + + } + + //Add TmpInstructions to some MCFI + if(addToMCFI.size() > 0) { + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + for(unsigned x = 0; x < addToMCFI.size(); ++x) { + tempMvec.addTemp(addToMCFI[x]); + } + addToMCFI.clear(); + } + + + //Remove phis from epilogue + for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) { + for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) { + + DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); + //Get op code and check if its a phi + if(I->getOpcode() == V9::PHI) { + Instruction *tmp = 0; + + for(unsigned i = 0; i < I->getNumOperands(); ++i) { + //Get Operand + const MachineOperand &mOp = I->getOperand(i); + assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); + + if(!tmp) { + tmp = new TmpInstruction(mOp.getVRegValue()); + addToMCFI.push_back(tmp); + } + + //Now for all our arguments we read, OR to the new TmpInstruction that we created + if(mOp.isUse()) { + DEBUG(std::cerr << "Use: " << mOp << "\n"); + //Place a copy at the end of its BB but before the branches + assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); + //Reverse iterate to find the branches, we can safely assume no instructions have been + //put in the nop positions + for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { + MachineOpCode opc = inst->getOpcode(); + if(TMI->isBranch(opc) || TMI->isNop(opc)) + continue; + else { + if(mOp.getVRegValue()->getType() == Type::FloatTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + + break; + } + + } + + } + else { + //Remove the phi and replace it with an OR + DEBUG(std::cerr << "Def: " << mOp << "\n"); + if(tmp->getType() == Type::FloatTy) + BuildMI(**MB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else if(tmp->getType() == Type::DoubleTy) + BuildMI(**MB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else + BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); + + worklist.push_back(std::make_pair(*MB,I)); + } + + } + } + + + } + } + + + if(addToMCFI.size() > 0) { + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + for(unsigned x = 0; x < addToMCFI.size(); ++x) { + tempMvec.addTemp(addToMCFI[x]); + } + addToMCFI.clear(); + } + + //Delete the phis + for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { + + DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n"); + I->first->erase(I->second); + + } + + + assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction"); +} + + +void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { + + TIME_REGION(X, "reconstructLoop"); + + + DEBUG(std::cerr << "Reconstructing Loop\n"); + + //First find the value *'s that we need to "save" + std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave; + + //Keep track of instructions we have already seen and their stage because + //we don't want to "save" values if they are used in the kernel immediately + std::map<const MachineInstr*, int> lastInstrs; + std::map<const Value*, int> phiUses; + + //Loop over kernel and only look at instructions from a stage > 0 + //Look at its operands and save values *'s that are read + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { + + if(I->second !=0) { + //For this instruction, get the Value*'s that it reads and put them into the set. + //Assert if there is an operand of another type that we need to save + const MachineInstr *inst = I->first; + lastInstrs[inst] = I->second; + + for(unsigned i=0; i < inst->getNumOperands(); ++i) { + //get machine operand + const MachineOperand &mOp = inst->getOperand(i); + + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + //find the value in the map + if (const Value* srcI = mOp.getVRegValue()) { + + if(isa<Constant>(srcI) || isa<Argument>(srcI)) + continue; + + //Before we declare this Value* one that we should save + //make sure its def is not of the same stage as this instruction + //because it will be consumed before its used + Instruction *defInst = (Instruction*) srcI; + + //Should we save this value? + bool save = true; + + //Continue if not in the def map, loop invariant code does not need to be saved + if(!defMap.count(srcI)) + continue; + + MachineInstr *defInstr = defMap[srcI]; + + + if(lastInstrs.count(defInstr)) { + if(lastInstrs[defInstr] == I->second) { + save = false; + + } + } + + if(save) { + assert(!phiUses.count(srcI) && "Did not expect to see phi use twice"); + if(isa<PHINode>(srcI)) + phiUses[srcI] = I->second; + + valuesToSave[srcI] = std::make_pair(I->first, i); + + } + } + } + else if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { + if (const Value* destI = mOp.getVRegValue()) { + if(!isa<PHINode>(destI)) + continue; + if(phiUses.count(destI)) { + if(phiUses[destI] == I->second) { + //remove from save list + valuesToSave.erase(destI); + } + } + } + } + + if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { + assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); + } + } + } + } + + //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. + + //Map to keep track of old to new values + std::map<Value*, std::map<int, Value*> > newValues; + + //Map to keep track of old to new values in kernel + std::map<Value*, std::map<int, Value*> > kernelPHIs; + + //Another map to keep track of what machine basic blocks these new value*s are in since + //they have no llvm instruction equivalent + std::map<Value*, MachineBasicBlock*> newValLocation; + + std::vector<MachineBasicBlock*> prologues; + std::vector<BasicBlock*> llvm_prologues; + + + //Write prologue + if(schedule.getMaxStage() != 0) + writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation); + + //Print out epilogues and prologue + DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); + I != E; ++I) { + std::cerr << "PROLOGUE\n"; + (*I)->print(std::cerr); + }); + + BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent())); + MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB); + + MachineFunction *F = (((MachineBasicBlock*)BB)->getParent()); + MachineFunction::BasicBlockListType &BL = F->getBasicBlockList(); + MachineFunction::BasicBlockListType::iterator BLI = BB; + assert(BLI != BL.end() && "Must find original BB in machine function\n"); + BL.insert(BLI,machineKernelBB); + + //(((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB); + writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs); + + + std::vector<MachineBasicBlock*> epilogues; + std::vector<BasicBlock*> llvm_epilogues; + + //Write epilogues + if(schedule.getMaxStage() != 0) + writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs); + + + //Fix our branches + fixBranches(prologues, llvm_prologues, machineKernelBB, llvmKernelBB, epilogues, llvm_epilogues, BB); + + //Remove phis + removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation); + + //Print out epilogues and prologue + DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); + I != E; ++I) { + std::cerr << "PROLOGUE\n"; + (*I)->print(std::cerr); + }); + + DEBUG(std::cerr << "KERNEL\n"); + DEBUG(machineKernelBB->print(std::cerr)); + + DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); + I != E; ++I) { + std::cerr << "EPILOGUE\n"; + (*I)->print(std::cerr); + }); + + + DEBUG(std::cerr << "New Machine Function" << "\n"); + DEBUG(std::cerr << BB->getParent() << "\n"); + + +} + +void ModuloSchedulingPass::fixBranches(std::vector<MachineBasicBlock *> &prologues, std::vector<BasicBlock*> &llvm_prologues, MachineBasicBlock *machineKernelBB, BasicBlock *llvmKernelBB, std::vector<MachineBasicBlock *> &epilogues, std::vector<BasicBlock*> &llvm_epilogues, MachineBasicBlock *BB) { + + const TargetInstrInfo *TMI = target.getInstrInfo(); + + if(schedule.getMaxStage() != 0) { + //Fix prologue branches + for(unsigned I = 0; I < prologues.size(); ++I) { + + //Find terminator since getFirstTerminator does not work! + for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) { + MachineOpCode OC = mInst->getOpcode(); + //If its a branch update its branchto + if(TMI->isBranch(OC)) { + for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { + MachineOperand &mOp = mInst->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + //Check if we are branching to the kernel, if not branch to epilogue + if(mOp.getVRegValue() == BB->getBasicBlock()) { + if(I == prologues.size()-1) + mOp.setValueReg(llvmKernelBB); + else + mOp.setValueReg(llvm_prologues[I+1]); + } + else { + mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]); + } + } + } + + DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); + } + } + + + //Update llvm basic block with our new branch instr + DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n"); + const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); + + if(I == prologues.size()-1) { + TerminatorInst *newBranch = new BranchInst(llvmKernelBB, + llvm_epilogues[(llvm_epilogues.size()-1-I)], + branchVal->getCondition(), + llvm_prologues[I]); + } + else + TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1], + llvm_epilogues[(llvm_epilogues.size()-1-I)], + branchVal->getCondition(), + llvm_prologues[I]); + + } + } + + Value *origBranchExit = 0; + + //Fix up kernel machine branches + for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) { + MachineOpCode OC = mInst->getOpcode(); + if(TMI->isBranch(OC)) { + for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { + MachineOperand &mOp = mInst->getOperand(opNum); + + if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + if(mOp.getVRegValue() == BB->getBasicBlock()) + mOp.setValueReg(llvmKernelBB); + else + if(llvm_epilogues.size() > 0) { + assert(origBranchExit == 0 && "There should only be one branch out of the loop"); + + origBranchExit = mOp.getVRegValue(); + mOp.setValueReg(llvm_epilogues[0]); + } + else + origBranchExit = mOp.getVRegValue(); + } + } + } + } + + //Update kernelLLVM branches + const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); + + assert(origBranchExit != 0 && "We must have the original bb the kernel exits to!"); + + if(epilogues.size() > 0) { + TerminatorInst *newBranch = new BranchInst(llvmKernelBB, + llvm_epilogues[0], + branchVal->getCondition(), + llvmKernelBB); + } + else { + BasicBlock *origBBExit = dyn_cast<BasicBlock>(origBranchExit); + assert(origBBExit !=0 && "Original exit basic block must be set"); + TerminatorInst *newBranch = new BranchInst(llvmKernelBB, + origBBExit, + branchVal->getCondition(), + llvmKernelBB); + } + + if(schedule.getMaxStage() != 0) { + //Lastly add unconditional branches for the epilogues + for(unsigned I = 0; I < epilogues.size(); ++I) { + + //Now since we don't have fall throughs, add a unconditional branch to the next prologue + if(I != epilogues.size()-1) { + BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]); + //Add unconditional branch to end of epilogue + TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], + llvm_epilogues[I]); + + } + else { + BuildMI(epilogues[I], V9::BA, 1).addPCDisp(origBranchExit); + + + //Update last epilogue exit branch + BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); + //Find where we are supposed to branch to + BasicBlock *nextBlock = 0; + for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) { + if(branchVal->getSuccessor(j) != BB->getBasicBlock()) + nextBlock = branchVal->getSuccessor(j); + } + + assert((nextBlock != 0) && "Next block should not be null!"); + TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]); + } + //Add one more nop! + BuildMI(epilogues[I], V9::NOP, 0); + + } + } + + //FIX UP Machine BB entry!! + //We are looking at the predecesor of our loop basic block and we want to change its ba instruction + + + //Find all llvm basic blocks that branch to the loop entry and change to our first prologue. + const BasicBlock *llvmBB = BB->getBasicBlock(); + + std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB)); + + //for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) { + for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), PE = Preds.end(); P != PE; ++P) { + if(*P == llvmBB) + continue; + else { + DEBUG(std::cerr << "Found our entry BB\n"); + //Get the Terminator instruction for this basic block and print it out + DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); + //Update the terminator + TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); + for(unsigned i=0; i < term->getNumSuccessors(); ++i) { + if(term->getSuccessor(i) == llvmBB) { + DEBUG(std::cerr << "Replacing successor bb\n"); + if(llvm_prologues.size() > 0) { + term->setSuccessor(i, llvm_prologues[0]); + //Also update its corresponding machine instruction + MachineCodeForInstruction & tempMvec = + MachineCodeForInstruction::get(term); + for (unsigned j = 0; j < tempMvec.size(); j++) { + MachineInstr *temp = tempMvec[j]; + MachineOpCode opc = temp->getOpcode(); + if(TMI->isBranch(opc)) { + DEBUG(std::cerr << *temp << "\n"); + //Update branch + for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { + MachineOperand &mOp = temp->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + if(mOp.getVRegValue() == llvmBB) + mOp.setValueReg(llvm_prologues[0]); + } + } + } + } + } + else { + term->setSuccessor(i, llvmKernelBB); + //Also update its corresponding machine instruction + MachineCodeForInstruction & tempMvec = + MachineCodeForInstruction::get(term); + for (unsigned j = 0; j < tempMvec.size(); j++) { + MachineInstr *temp = tempMvec[j]; + MachineOpCode opc = temp->getOpcode(); + if(TMI->isBranch(opc)) { + DEBUG(std::cerr << *temp << "\n"); + //Update branch + for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { + MachineOperand &mOp = temp->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + if(mOp.getVRegValue() == llvmBB) + mOp.setValueReg(llvmKernelBB); + } + } + } + } + } + } + } + break; + } + } + + + //BB->getParent()->getBasicBlockList().erase(BB); + +} + |