aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r--lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp2964
1 files changed, 2964 insertions, 0 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
new file mode 100644
index 0000000000..a5e9661f1c
--- /dev/null
+++ b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
@@ -0,0 +1,2964 @@
+//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This ModuloScheduling pass is based on the Swing Modulo Scheduling
+// algorithm.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "ModuloSched"
+
+#include "ModuloScheduling.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Target/TargetSchedInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Timer.h"
+#include <cmath>
+#include <algorithm>
+#include <fstream>
+#include <sstream>
+#include <utility>
+#include <vector>
+#include "../MachineCodeForInstruction.h"
+#include "../SparcV9TmpInstr.h"
+#include "../SparcV9Internals.h"
+#include "../SparcV9RegisterInfo.h"
+using namespace llvm;
+
+/// Create ModuloSchedulingPass
+///
+FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
+ DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
+ return new ModuloSchedulingPass(targ);
+}
+
+
+//Graph Traits for printing out the dependence graph
+template<typename GraphType>
+static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
+ const GraphType &GT) {
+ std::string Filename = GraphName + ".dot";
+ O << "Writing '" << Filename << "'...";
+ std::ofstream F(Filename.c_str());
+
+ if (F.good())
+ WriteGraph(F, GT);
+ else
+ O << " error opening file for writing!";
+ O << "\n";
+};
+
+
+#if 1
+#define TIME_REGION(VARNAME, DESC) \
+ NamedRegionTimer VARNAME(DESC)
+#else
+#define TIME_REGION(VARNAME, DESC)
+#endif
+
+
+//Graph Traits for printing out the dependence graph
+namespace llvm {
+
+ //Loop statistics
+ Statistic<> ValidLoops("modulosched-validLoops", "Number of candidate loops modulo-scheduled");
+ Statistic<> JumboBB("modulosched-jumboBB", "Basic Blocks with more then 100 instructions");
+ Statistic<> LoopsWithCalls("modulosched-loopCalls", "Loops with calls");
+ Statistic<> LoopsWithCondMov("modulosched-loopCondMov", "Loops with conditional moves");
+ Statistic<> InvalidLoops("modulosched-invalidLoops", "Loops with unknown trip counts or loop invariant trip counts");
+ Statistic<> SingleBBLoops("modulosched-singeBBLoops", "Number of single basic block loops");
+
+ //Scheduling Statistics
+ Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
+ Statistic<> NoSched("modulosched-noSched", "No schedule");
+ Statistic<> SameStage("modulosched-sameStage", "Max stage is 0");
+ Statistic<> ResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources");
+ Statistic<> RecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences");
+ Statistic<> FinalIISum("modulosched-finalIISum", "Sum of all final II");
+ Statistic<> IISum("modulosched-IISum", "Sum of all theoretical II");
+
+ template<>
+ struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
+ static std::string getGraphName(MSchedGraph *F) {
+ return "Dependence Graph";
+ }
+
+ static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
+ if (Node->getInst()) {
+ std::stringstream ss;
+ ss << *(Node->getInst());
+ return ss.str(); //((MachineInstr*)Node->getInst());
+ }
+ else
+ return "No Inst";
+ }
+ static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
+ MSchedGraphNode::succ_iterator I) {
+ //Label each edge with the type of dependence
+ std::string edgelabel = "";
+ switch (I.getEdge().getDepOrderType()) {
+
+ case MSchedGraphEdge::TrueDep:
+ edgelabel = "True";
+ break;
+
+ case MSchedGraphEdge::AntiDep:
+ edgelabel = "Anti";
+ break;
+
+ case MSchedGraphEdge::OutputDep:
+ edgelabel = "Output";
+ break;
+
+ default:
+ edgelabel = "Unknown";
+ break;
+ }
+
+ //FIXME
+ int iteDiff = I.getEdge().getIteDiff();
+ std::string intStr = "(IteDiff: ";
+ intStr += itostr(iteDiff);
+
+ intStr += ")";
+ edgelabel += intStr;
+
+ return edgelabel;
+ }
+ };
+}
+
+
+#include <unistd.h>
+
+/// ModuloScheduling::runOnFunction - main transformation entry point
+/// The Swing Modulo Schedule algorithm has three basic steps:
+/// 1) Computation and Analysis of the dependence graph
+/// 2) Ordering of the nodes
+/// 3) Scheduling
+///
+bool ModuloSchedulingPass::runOnFunction(Function &F) {
+ alarm(100);
+
+ bool Changed = false;
+ int numMS = 0;
+
+ DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
+
+ //Get MachineFunction
+ MachineFunction &MF = MachineFunction::get(&F);
+
+ DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>();
+
+
+ //Worklist
+ std::vector<MachineBasicBlock*> Worklist;
+
+ //Iterate over BasicBlocks and put them into our worklist if they are valid
+ for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
+ if(MachineBBisValid(BI)) {
+ if(BI->size() < 100) {
+ Worklist.push_back(&*BI);
+ ++ValidLoops;
+ }
+ else
+ ++JumboBB;
+
+ }
+
+ defaultInst = 0;
+
+ DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
+
+ //Iterate over the worklist and perform scheduling
+ for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
+ BE = Worklist.end(); BI != BE; ++BI) {
+
+ //Print out BB for debugging
+ DEBUG(std::cerr << "BB Size: " << (*BI)->size() << "\n");
+ DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
+
+ //Print out LLVM BB
+ DEBUG(std::cerr << "ModuloScheduling LLVMBB: \n"; (*BI)->getBasicBlock()->print(std::cerr));
+
+ //Catch the odd case where we only have TmpInstructions and no real Value*s
+ if(!CreateDefMap(*BI)) {
+ //Clear out our maps for the next basic block that is processed
+ nodeToAttributesMap.clear();
+ partialOrder.clear();
+ recurrenceList.clear();
+ FinalNodeOrder.clear();
+ schedule.clear();
+ defMap.clear();
+ continue;
+ }
+
+ MSchedGraph *MSG = new MSchedGraph(*BI, target, indVarInstrs[*BI], DA, machineTollvm[*BI]);
+
+ //Write Graph out to file
+ DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
+ DEBUG(MSG->print(std::cerr));
+
+ //Calculate Resource II
+ int ResMII = calculateResMII(*BI);
+
+ //Calculate Recurrence II
+ int RecMII = calculateRecMII(MSG, ResMII);
+
+ DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
+
+ //Our starting initiation interval is the maximum of RecMII and ResMII
+ if(RecMII < ResMII)
+ ++RecurrenceConstraint;
+ else
+ ++ResourceConstraint;
+
+ II = std::max(RecMII, ResMII);
+ int mII = II;
+
+ //Print out II, RecMII, and ResMII
+ DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
+
+ //Dump node properties if in debug mode
+ DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ E = nodeToAttributesMap.end(); I !=E; ++I) {
+ std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
+ << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
+ << " Height: " << I->second.height << "\n";
+ });
+
+ //Calculate Node Properties
+ calculateNodeAttributes(MSG, ResMII);
+
+ //Dump node properties if in debug mode
+ DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ E = nodeToAttributesMap.end(); I !=E; ++I) {
+ std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
+ << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
+ << " Height: " << I->second.height << "\n";
+ });
+
+ //Put nodes in order to schedule them
+ computePartialOrder();
+
+ //Dump out partial order
+ DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
+ E = partialOrder.end(); I !=E; ++I) {
+ std::cerr << "Start set in PO\n";
+ for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
+ std::cerr << "PO:" << **J << "\n";
+ });
+
+ //Place nodes in final order
+ orderNodes();
+
+ //Dump out order of nodes
+ DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
+ std::cerr << "FO:" << **I << "\n";
+ });
+
+ //Finally schedule nodes
+ bool haveSched = computeSchedule(*BI, MSG);
+
+ //Print out final schedule
+ DEBUG(schedule.print(std::cerr));
+
+ //Final scheduling step is to reconstruct the loop only if we actual have
+ //stage > 0
+ if(haveSched) {
+ reconstructLoop(*BI);
+ ++MSLoops;
+ Changed = true;
+ FinalIISum += II;
+ IISum += mII;
+
+ if(schedule.getMaxStage() == 0)
+ ++SameStage;
+ }
+ else {
+ ++NoSched;
+ }
+
+ //Clear out our maps for the next basic block that is processed
+ nodeToAttributesMap.clear();
+ partialOrder.clear();
+ recurrenceList.clear();
+ FinalNodeOrder.clear();
+ schedule.clear();
+ defMap.clear();
+ //Clean up. Nuke old MachineBB and llvmBB
+ //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
+ //Function *parent = (Function*) llvmBB->getParent();
+ //Should't std::find work??
+ //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
+ //parent->getBasicBlockList().erase(llvmBB);
+
+ //delete(llvmBB);
+ //delete(*BI);
+ }
+
+ alarm(0);
+ return Changed;
+}
+
+bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) {
+ defaultInst = 0;
+
+ for(MachineBasicBlock::iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
+ for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) {
+ const MachineOperand &mOp = I->getOperand(opNum);
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+ //assert if this is the second def we have seen
+ //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n");
+ //assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
+ if(defMap.count(mOp.getVRegValue()))
+ return false;
+
+ defMap[mOp.getVRegValue()] = &*I;
+ }
+
+ //See if we can use this Value* as our defaultInst
+ if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) {
+ Value *V = mOp.getVRegValue();
+ if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V))
+ defaultInst = (Instruction*) V;
+ }
+ }
+ }
+
+ if(!defaultInst)
+ return false;
+
+ return true;
+
+}
+/// This function checks if a Machine Basic Block is valid for modulo
+/// scheduling. This means that it has no control flow (if/else or
+/// calls) in the block. Currently ModuloScheduling only works on
+/// single basic block loops.
+bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
+
+ bool isLoop = false;
+
+ //Check first if its a valid loop
+ for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
+ E = succ_end(BI->getBasicBlock()); I != E; ++I) {
+ if (*I == BI->getBasicBlock()) // has single block loop
+ isLoop = true;
+ }
+
+ if(!isLoop)
+ return false;
+
+ //Check that we have a conditional branch (avoiding MS infinite loops)
+ if(BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator()))
+ if(b->isUnconditional())
+ return false;
+
+ //Check size of our basic block.. make sure we have more then just the terminator in it
+ if(BI->getBasicBlock()->size() == 1)
+ return false;
+
+ //Increase number of single basic block loops for stats
+ ++SingleBBLoops;
+
+ //Get Target machine instruction info
+ const TargetInstrInfo *TMI = target.getInstrInfo();
+
+ //Check each instruction and look for calls, keep map to get index later
+ std::map<const MachineInstr*, unsigned> indexMap;
+
+ unsigned count = 0;
+ for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
+ //Get opcode to check instruction type
+ MachineOpCode OC = I->getOpcode();
+
+ //Look for calls
+ if(TMI->isCall(OC)) {
+ ++LoopsWithCalls;
+ return false;
+ }
+
+ //Look for conditional move
+ if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
+ || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi
+ || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr
+ || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
+ || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
+ || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
+ || OC == V9::MOVFNEr || OC == V9::MOVFNEi || OC == V9::MOVGr || OC == V9::MOVGi) {
+ ++LoopsWithCondMov;
+ return false;
+ }
+
+ indexMap[I] = count;
+
+ if(TMI->isNop(OC))
+ continue;
+
+ ++count;
+ }
+
+ //Apply a simple pattern match to make sure this loop can be modulo scheduled
+ //This means only loops with a branch associated to the iteration count
+
+ //Get the branch
+ BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator());
+
+ //Get the condition for the branch (we already checked if it was conditional)
+ Value *cond = b->getCondition();
+
+ DEBUG(std::cerr << "Condition: " << *cond << "\n");
+
+ //List of instructions associated with induction variable
+ std::set<Instruction*> indVar;
+ std::vector<Instruction*> stack;
+
+ BasicBlock *BB = (BasicBlock*) BI->getBasicBlock();
+
+ //Add branch
+ indVar.insert(b);
+
+ if(Instruction *I = dyn_cast<Instruction>(cond))
+ if(I->getParent() == BB) {
+ if (!assocIndVar(I, indVar, stack, BB)) {
+ ++InvalidLoops;
+ return false;
+ }
+ }
+ else {
+ ++InvalidLoops;
+ return false;
+ }
+ else {
+ ++InvalidLoops;
+ return false;
+ }
+ //The indVar set must be >= 3 instructions for this loop to match (FIX ME!)
+ if(indVar.size() < 3 )
+ return false;
+
+ //Dump out instructions associate with indvar for debug reasons
+ DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
+ std::cerr << **N << "\n";
+ });
+
+ //Create map of machine instr to llvm instr
+ std::map<MachineInstr*, Instruction*> mllvm;
+ for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I);
+ for (unsigned j = 0; j < tempMvec.size(); j++) {
+ mllvm[tempMvec[j]] = I;
+ }
+ }
+
+ //Convert list of LLVM Instructions to list of Machine instructions
+ std::map<const MachineInstr*, unsigned> mIndVar;
+ for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
+
+ //If we have a load, we can't handle this loop because there is no way to preserve dependences
+ //between loads and stores
+ if(isa<LoadInst>(*N))
+ return false;
+
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N);
+ for (unsigned j = 0; j < tempMvec.size(); j++) {
+ MachineOpCode OC = (tempMvec[j])->getOpcode();
+ if(TMI->isNop(OC))
+ continue;
+ if(!indexMap.count(tempMvec[j]))
+ continue;
+ mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]];
+ DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n");
+ }
+ }
+
+ //Must have some guts to the loop body (more then 1 instr, dont count nops in size)
+ if(mIndVar.size() >= (BI->size()-3))
+ return false;
+
+ //Put into a map for future access
+ indVarInstrs[BI] = mIndVar;
+ machineTollvm[BI] = mllvm;
+ return true;
+}
+
+bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
+ std::vector<Instruction*> &stack, BasicBlock *BB) {
+
+ stack.push_back(I);
+
+ //If this is a phi node, check if its the canonical indvar
+ if(PHINode *PN = dyn_cast<PHINode>(I)) {
+ if (Instruction *Inc =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(BB)))
+ if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+ if (CI->equalsInt(1)) {
+ //We have found the indvar, so add the stack, and inc instruction to the set
+ indVar.insert(stack.begin(), stack.end());
+ indVar.insert(Inc);
+ stack.pop_back();
+ return true;
+ }
+ return false;
+ }
+ else {
+ //Loop over each of the instructions operands, check if they are an instruction and in this BB
+ for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+ if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) {
+ if(N->getParent() == BB)
+ if(!assocIndVar(N, indVar, stack, BB))
+ return false;
+ }
+ }
+ }
+
+ stack.pop_back();
+ return true;
+}
+
+//ResMII is calculated by determining the usage count for each resource
+//and using the maximum.
+//FIXME: In future there should be a way to get alternative resources
+//for each instruction
+int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
+
+ TIME_REGION(X, "calculateResMII");
+
+ const TargetInstrInfo *mii = target.getInstrInfo();
+ const TargetSchedInfo *msi = target.getSchedInfo();
+
+ int ResMII = 0;
+
+ //Map to keep track of usage count of each resource
+ std::map<unsigned, unsigned> resourceUsageCount;
+
+ for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
+
+ //Get resource usage for this instruction
+ InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
+ std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
+
+ //Loop over resources in each cycle and increments their usage count
+ for(unsigned i=0; i < resources.size(); ++i)
+ for(unsigned j=0; j < resources[i].size(); ++j) {
+ if(!resourceUsageCount.count(resources[i][j])) {
+ resourceUsageCount[resources[i][j]] = 1;
+ }
+ else {
+ resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1;
+ }
+ }
+ }
+
+ //Find maximum usage count
+
+ //Get max number of instructions that can be issued at once. (FIXME)
+ int issueSlots = msi->maxNumIssueTotal;
+
+ for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
+
+ //Get the total number of the resources in our cpu
+ int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
+
+ //Get total usage count for this resources
+ unsigned usageCount = RB->second;
+
+ //Divide the usage count by either the max number we can issue or the number of
+ //resources (whichever is its upper bound)
+ double finalUsageCount;
+ DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
+
+ if( resourceNum <= issueSlots)
+ finalUsageCount = ceil(1.0 * usageCount / resourceNum);
+ else
+ finalUsageCount = ceil(1.0 * usageCount / issueSlots);
+
+
+ //Only keep track of the max
+ ResMII = std::max( (int) finalUsageCount, ResMII);
+
+ }
+
+ return ResMII;
+
+}
+
+/// calculateRecMII - Calculates the value of the highest recurrence
+/// By value we mean the total latency
+int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
+ /*std::vector<MSchedGraphNode*> vNodes;
+ //Loop over all nodes in the graph
+ for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
+ findAllReccurrences(I->second, vNodes, MII);
+ vNodes.clear();
+ }*/
+
+ TIME_REGION(X, "calculateRecMII");
+
+ findAllCircuits(graph, MII);
+ int RecMII = 0;
+
+ for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
+ RecMII = std::max(RecMII, I->first);
+ }
+
+ return MII;
+}
+
+/// calculateNodeAttributes - The following properties are calculated for
+/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
+/// MOB.
+void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
+
+ TIME_REGION(X, "calculateNodeAttributes");
+
+ assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared");
+
+ //Loop over the nodes and add them to the map
+ for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
+
+ DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n");
+
+ //Assert if its already in the map
+ assert(nodeToAttributesMap.count(I->second) == 0 &&
+ "Node attributes are already in the map");
+
+ //Put into the map with default attribute values
+ nodeToAttributesMap[I->second] = MSNodeAttributes();
+ }
+
+ //Create set to deal with reccurrences
+ std::set<MSchedGraphNode*> visitedNodes;
+
+ //Now Loop over map and calculate the node attributes
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+ calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
+ visitedNodes.clear();
+ }
+
+ int maxASAP = findMaxASAP();
+ //Calculate ALAP which depends on ASAP being totally calculated
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+ calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
+ visitedNodes.clear();
+ }
+
+ //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+ (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
+
+ DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
+ calculateDepth(I->first, (MSchedGraphNode*) 0);
+ calculateHeight(I->first, (MSchedGraphNode*) 0);
+ }
+
+
+}
+
+/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
+bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
+ if(destNode == 0 || srcNode ==0)
+ return false;
+
+ bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
+
+ DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
+
+ return findEdge;
+}
+
+
+/// calculateASAP - Calculates the
+int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
+
+ DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
+
+ //Get current node attributes
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.ASAP != -1)
+ return attributes.ASAP;
+
+ int maxPredValue = 0;
+
+ //Iterate over all of the predecessors and find max
+ for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+ //Only process if we are not ignoring the edge
+ if(!ignoreEdge(*P, node)) {
+ int predASAP = -1;
+ predASAP = calculateASAP(*P, MII, node);
+
+ assert(predASAP != -1 && "ASAP has not been calculated");
+ int iteDiff = node->getInEdge(*P).getIteDiff();
+
+ int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
+ DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
+ maxPredValue = std::max(maxPredValue, currentPredValue);
+ }
+ }
+
+ attributes.ASAP = maxPredValue;
+
+ DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
+
+ return maxPredValue;
+}
+
+
+int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
+ int maxASAP, MSchedGraphNode *srcNode) {
+
+ DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
+
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.ALAP != -1)
+ return attributes.ALAP;
+
+ if(node->hasSuccessors()) {
+
+ //Trying to deal with the issue where the node has successors, but
+ //we are ignoring all of the edges to them. So this is my hack for
+ //now.. there is probably a more elegant way of doing this (FIXME)
+ bool processedOneEdge = false;
+
+ //FIXME, set to something high to start
+ int minSuccValue = 9999999;
+
+ //Iterate over all of the predecessors and fine max
+ for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
+ E = node->succ_end(); P != E; ++P) {
+
+ //Only process if we are not ignoring the edge
+ if(!ignoreEdge(node, *P)) {
+ processedOneEdge = true;
+ int succALAP = -1;
+ succALAP = calculateALAP(*P, MII, maxASAP, node);
+
+ assert(succALAP != -1 && "Successors ALAP should have been caclulated");
+
+ int iteDiff = P.getEdge().getIteDiff();
+
+ int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
+
+ DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
+
+ minSuccValue = std::min(minSuccValue, currentSuccValue);
+ }
+ }
+
+ if(processedOneEdge)
+ attributes.ALAP = minSuccValue;
+
+ else
+ attributes.ALAP = maxASAP;
+ }
+ else
+ attributes.ALAP = maxASAP;
+
+ DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
+
+ if(attributes.ALAP < 0)
+ attributes.ALAP = 0;
+
+ return attributes.ALAP;
+}
+
+int ModuloSchedulingPass::findMaxASAP() {
+ int maxASAP = 0;
+
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ E = nodeToAttributesMap.end(); I != E; ++I)
+ maxASAP = std::max(maxASAP, I->second.ASAP);
+ return maxASAP;
+}
+
+
+int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
+
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.height != -1)
+ return attributes.height;
+
+ int maxHeight = 0;
+
+ //Iterate over all of the predecessors and find max
+ for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
+ E = node->succ_end(); P != E; ++P) {
+
+
+ if(!ignoreEdge(node, *P)) {
+ int succHeight = calculateHeight(*P, node);
+
+ assert(succHeight != -1 && "Successors Height should have been caclulated");
+
+ int currentHeight = succHeight + node->getLatency();
+ maxHeight = std::max(maxHeight, currentHeight);
+ }
+ }
+ attributes.height = maxHeight;
+ DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
+ return maxHeight;
+}
+
+
+int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
+ MSchedGraphNode *destNode) {
+
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.depth != -1)
+ return attributes.depth;
+
+ int maxDepth = 0;
+
+ //Iterate over all of the predecessors and fine max
+ for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+ if(!ignoreEdge(*P, node)) {
+ int predDepth = -1;
+ predDepth = calculateDepth(*P, node);
+
+ assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
+
+ int currentDepth = predDepth + (*P)->getLatency();
+ maxDepth = std::max(maxDepth, currentDepth);
+ }
+ }
+ attributes.depth = maxDepth;
+
+ DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
+ return maxDepth;
+}
+
+
+
+void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
+ //Check to make sure that this recurrence is unique
+ bool same = false;
+
+
+ //Loop over all recurrences already in our list
+ for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
+
+ bool all_same = true;
+ //First compare size
+ if(R->second.size() == recurrence.size()) {
+
+ for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
+ if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
+ all_same = all_same && false;
+ break;
+ }
+ else
+ all_same = all_same && true;
+ }
+ if(all_same) {
+ same = true;
+ break;
+ }
+ }
+ }
+
+ if(!same) {
+ srcBENode = recurrence.back();
+ destBENode = recurrence.front();
+
+ //FIXME
+ if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
+ //DEBUG(std::cerr << "NOT A BACKEDGE\n");
+ //find actual backedge HACK HACK
+ for(unsigned i=0; i< recurrence.size()-1; ++i) {
+ if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
+ srcBENode = recurrence[i];
+ destBENode = recurrence[i+1];
+ break;
+ }
+
+ }
+
+ }
+ DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
+ edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
+ recurrenceList.insert(std::make_pair(II, recurrence));
+ }
+
+}
+
+int CircCount;
+
+void ModuloSchedulingPass::unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked,
+ std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B) {
+
+ //Unblock u
+ DEBUG(std::cerr << "Unblocking: " << *u << "\n");
+ blocked.erase(u);
+
+ //std::set<MSchedGraphNode*> toErase;
+ while (!B[u].empty()) {
+ MSchedGraphNode *W = *B[u].begin();
+ B[u].erase(W);
+ //toErase.insert(*W);
+ DEBUG(std::cerr << "Removed: " << *W << "from B-List\n");
+ if(blocked.count(W))
+ unblock(W, blocked, B);
+ }
+
+}
+
+bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack,
+ std::set<MSchedGraphNode*> &blocked, std::vector<MSchedGraphNode*> &SCC,
+ MSchedGraphNode *s, std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B,
+ int II, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
+ bool f = false;
+
+ DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n");
+
+ //Push node onto the stack
+ stack.push_back(v);
+
+ //block this node
+ blocked.insert(v);
+
+ //Loop over all successors of node v that are in the scc, create Adjaceny list
+ std::set<MSchedGraphNode*> AkV;
+ for(MSchedGraphNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) {
+ if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) {
+ AkV.insert(*I);
+ }
+ }
+
+ for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
+ if(*I == s) {
+ //We have a circuit, so add it to our list
+ addRecc(stack, newNodes);
+ f = true;
+ }
+ else if(!blocked.count(*I)) {
+ if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
+ f = true;
+ }
+ else
+ DEBUG(std::cerr << "Blocked: " << **I << "\n");
+ }
+
+
+ if(f) {
+ unblock(v, blocked, B);
+ }
+ else {
+ for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
+ B[*I].insert(v);
+
+ }
+
+ //Pop v
+ stack.pop_back();
+
+ return f;
+
+}
+
+void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
+ std::vector<MSchedGraphNode*> recc;
+ //Dump recurrence for now
+ DEBUG(std::cerr << "Starting Recc\n");
+
+ int totalDelay = 0;
+ int totalDistance = 0;
+ MSchedGraphNode *lastN = 0;
+ MSchedGraphNode *start = 0;
+ MSchedGraphNode *end = 0;
+
+ //Loop over recurrence, get delay and distance
+ for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
+ DEBUG(std::cerr << **N << "\n");
+ totalDelay += (*N)->getLatency();
+ if(lastN) {
+ int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
+ totalDistance += iteDiff;
+
+ if(iteDiff > 0) {
+ start = lastN;
+ end = *N;
+ }
+ }
+ //Get the original node
+ lastN = *N;
+ recc.push_back(newNodes[*N]);
+
+
+ }
+
+ //Get the loop edge
+ totalDistance += lastN->getIteDiff(*stack.begin());
+
+ DEBUG(std::cerr << "End Recc\n");
+ CircCount++;
+
+ if(start && end) {
+ //Insert reccurrence into the list
+ DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+ edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+ }
+ else {
+ //Insert reccurrence into the list
+ DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
+ edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
+
+ }
+ //Adjust II until we get close to the inequality delay - II*distance <= 0
+ int RecMII = II; //Starting value
+ int value = totalDelay-(RecMII * totalDistance);
+ int lastII = II;
+ while(value < 0) {
+
+ lastII = RecMII;
+ RecMII--;
+ value = totalDelay-(RecMII * totalDistance);
+ }
+
+ recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
+
+void ModuloSchedulingPass::addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
+
+ int totalDelay = 0;
+ int totalDistance = 0;
+ std::vector<MSchedGraphNode*> recc;
+ MSchedGraphNode *start = 0;
+ MSchedGraphNode *end = 0;
+
+ //Loop over recurrence, get delay and distance
+ for(std::vector<MSchedGraphNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) {
+ DEBUG(std::cerr << **N << "\n");
+ totalDelay += (*N)->getLatency();
+
+ for(unsigned i = 0; i < (*N)->succ_size(); ++i) {
+ MSchedGraphEdge *edge = (*N)->getSuccessor(i);
+ if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) {
+ totalDistance += edge->getIteDiff();
+ if(edge->getIteDiff() > 0)
+ if(!start && !end) {
+ start = *N;
+ end = edge->getDest();
+ }
+
+ }
+ }
+
+
+ //Get the original node
+ recc.push_back(newNodes[*N]);
+
+
+ }
+
+ DEBUG(std::cerr << "End Recc\n");
+ CircCount++;
+
+ assert( (start && end) && "Must have start and end node to ignore edge for SCC");
+
+ if(start && end) {
+ //Insert reccurrence into the list
+ DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+ edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+ }
+
+ int lastII = totalDelay / totalDistance;
+
+
+ recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
+
+void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
+
+ CircCount = 0;
+
+ //Keep old to new node mapping information
+ std::map<MSchedGraphNode*, MSchedGraphNode*> newNodes;
+
+ //copy the graph
+ MSchedGraph *MSG = new MSchedGraph(*g, newNodes);
+
+ DEBUG(std::cerr << "Finding All Circuits\n");
+
+ //Set of blocked nodes
+ std::set<MSchedGraphNode*> blocked;
+
+ //Stack holding current circuit
+ std::vector<MSchedGraphNode*> stack;
+
+ //Map for B Lists
+ std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > B;
+
+ //current node
+ MSchedGraphNode *s;
+
+
+ //Iterate over the graph until its down to one node or empty
+ while(MSG->size() > 1) {
+
+ //Write Graph out to file
+ //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG);
+
+ DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n");
+ DEBUG(std::cerr << "Finding strong component Vk with least vertex\n");
+
+ //Iterate over all the SCCs in the graph
+ std::set<MSchedGraphNode*> Visited;
+ std::vector<MSchedGraphNode*> Vk;
+ MSchedGraphNode* s = 0;
+ int numEdges = 0;
+
+ //Find scc with the least vertex
+ for (MSchedGraph::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI)
+ if (Visited.insert(GI->second).second) {
+ for (scc_iterator<MSchedGraphNode*> SCCI = scc_begin(GI->second),
+ E = scc_end(GI->second); SCCI != E; ++SCCI) {
+ std::vector<MSchedGraphNode*> &nextSCC = *SCCI;
+
+ if (Visited.insert(nextSCC[0]).second) {
+ Visited.insert(nextSCC.begin()+1, nextSCC.end());
+
+ if(nextSCC.size() > 1) {
+ std::cerr << "SCC size: " << nextSCC.size() << "\n";
+
+ for(unsigned i = 0; i < nextSCC.size(); ++i) {
+ //Loop over successor and see if in scc, then count edge
+ MSchedGraphNode *node = nextSCC[i];
+ for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) {
+ if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end())
+ numEdges++;
+ }
+ }
+ std::cerr << "Num Edges: " << numEdges << "\n";
+ }
+
+ //Ignore self loops
+ if(nextSCC.size() > 1) {
+
+ //Get least vertex in Vk
+ if(!s) {
+ s = nextSCC[0];
+ Vk = nextSCC;
+ }
+
+ for(unsigned i = 0; i < nextSCC.size(); ++i) {
+ if(nextSCC[i] < s) {
+ s = nextSCC[i];
+ Vk = nextSCC;
+ }
+ }
+ }
+ }
+ }
+ }
+
+
+
+ //Process SCC
+ DEBUG(for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end();
+ N != NE; ++N) { std::cerr << *((*N)->getInst()); });
+
+ //Iterate over all nodes in this scc
+ for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end();
+ N != NE; ++N) {
+ blocked.erase(*N);
+ B[*N].clear();
+ }
+ if(Vk.size() > 1) {
+ if(numEdges < 98)
+ circuit(s, stack, blocked, Vk, s, B, II, newNodes);
+ else
+ addSCC(Vk, newNodes);
+
+ //Delete nodes from the graph
+ //Find all nodes up to s and delete them
+ std::vector<MSchedGraphNode*> nodesToRemove;
+ nodesToRemove.push_back(s);
+ for(MSchedGraph::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) {
+ if(N->second < s )
+ nodesToRemove.push_back(N->second);
+ }
+ for(std::vector<MSchedGraphNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) {
+ DEBUG(std::cerr << "Deleting Node: " << **N << "\n");
+ MSG->deleteNode(*N);
+ }
+ }
+ else
+ break;
+ }
+ DEBUG(std::cerr << "Num Circuits found: " << CircCount << "\n");
+}
+
+
+void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
+ std::vector<MSchedGraphNode*> &visitedNodes,
+ int II) {
+
+
+ if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
+ std::vector<MSchedGraphNode*> recurrence;
+ bool first = true;
+ int delay = 0;
+ int distance = 0;
+ int RecMII = II; //Starting value
+ MSchedGraphNode *last = node;
+ MSchedGraphNode *srcBackEdge = 0;
+ MSchedGraphNode *destBackEdge = 0;
+
+
+
+ for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
+ I !=E; ++I) {
+
+ if(*I == node)
+ first = false;
+ if(first)
+ continue;
+
+ delay = delay + (*I)->getLatency();
+
+ if(*I != node) {
+ int diff = (*I)->getInEdge(last).getIteDiff();
+ distance += diff;
+ if(diff > 0) {
+ srcBackEdge = last;
+ destBackEdge = *I;
+ }
+ }
+
+ recurrence.push_back(*I);
+ last = *I;
+ }
+
+
+
+ //Get final distance calc
+ distance += node->getInEdge(last).getIteDiff();
+ DEBUG(std::cerr << "Reccurrence Distance: " << distance << "\n");
+
+ //Adjust II until we get close to the inequality delay - II*distance <= 0
+
+ int value = delay-(RecMII * distance);
+ int lastII = II;
+ while(value <= 0) {
+
+ lastII = RecMII;
+ RecMII--;
+ value = delay-(RecMII * distance);
+ }
+
+
+ DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
+ addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
+ assert(distance != 0 && "Recurrence distance should not be zero");
+ return;
+ }
+
+ unsigned count = 0;
+ for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
+ visitedNodes.push_back(node);
+ //if(!edgesToIgnore.count(std::make_pair(node, count)))
+ findAllReccurrences(*I, visitedNodes, II);
+ visitedNodes.pop_back();
+ count++;
+ }
+}
+
+void ModuloSchedulingPass::searchPath(MSchedGraphNode *node,
+ std::vector<MSchedGraphNode*> &path,
+ std::set<MSchedGraphNode*> &nodesToAdd,
+ std::set<MSchedGraphNode*> &new_reccurrence) {
+ //Push node onto the path
+ path.push_back(node);
+
+ //Loop over all successors and see if there is a path from this node to
+ //a recurrence in the partial order, if so.. add all nodes to be added to recc
+ for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
+ ++S) {
+
+ //Check if we should ignore this edge first
+ if(ignoreEdge(node,*S))
+ continue;
+
+ //check if successor is in this recurrence, we will get to it eventually
+ if(new_reccurrence.count(*S))
+ continue;
+
+ //If this node exists in a recurrence already in the partial
+ //order, then add all nodes in the path to the set of nodes to add
+ //Check if its already in our partial order, if not add it to the
+ //final vector
+ bool found = false;
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ PE = partialOrder.end(); PO != PE; ++PO) {
+
+ if(PO->count(*S)) {
+ found = true;
+ break;
+ }
+ }
+
+ if(!found) {
+ nodesToAdd.insert(*S);
+ searchPath(*S, path, nodesToAdd, new_reccurrence);
+ }
+ }
+
+ //Pop Node off the path
+ path.pop_back();
+}
+
+void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
+ std::vector<MSchedGraphNode*> &path,
+ std::set<MSchedGraphNode*> &poSet,
+ std::set<MSchedGraphNode*> &lastNodes) {
+ //Push node onto the path
+ path.push_back(node);
+
+ DEBUG(std::cerr << "Current node: " << *node << "\n");
+
+ //Loop over all successors and see if there is a path from this node to
+ //a recurrence in the partial order, if so.. add all nodes to be added to recc
+ for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
+ ++S) {
+ DEBUG(std::cerr << "Succ:" << **S << "\n");
+ //Check if we should ignore this edge first
+ if(ignoreEdge(node,*S))
+ continue;
+
+ if(poSet.count(*S)) {
+ DEBUG(std::cerr << "Found path to recc from no pred\n");
+ //Loop over path, if it exists in lastNodes, then add to poset, and remove from lastNodes
+ for(std::vector<MSchedGraphNode*>::iterator I = path.begin(), IE = path.end(); I != IE; ++I) {
+ if(lastNodes.count(*I)) {
+ DEBUG(std::cerr << "Inserting node into recc: " << **I << "\n");
+ poSet.insert(*I);
+ lastNodes.erase(*I);
+ }
+ }
+ }
+ else
+ pathToRecc(*S, path, poSet, lastNodes);
+ }
+
+ //Pop Node off the path
+ path.pop_back();
+}
+
+void ModuloSchedulingPass::computePartialOrder() {
+
+ TIME_REGION(X, "calculatePartialOrder");
+
+ DEBUG(std::cerr << "Computing Partial Order\n");
+
+ //Only push BA branches onto the final node order, we put other
+ //branches after it FIXME: Should we really be pushing branches on
+ //it a specific order instead of relying on BA being there?
+
+ std::vector<MSchedGraphNode*> branches;
+
+ //Steps to add a recurrence to the partial order 1) Find reccurrence
+ //with the highest RecMII. Add it to the partial order. 2) For each
+ //recurrence with decreasing RecMII, add it to the partial order
+ //along with any nodes that connect this recurrence to recurrences
+ //already in the partial order
+ for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
+ I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
+
+ std::set<MSchedGraphNode*> new_recurrence;
+
+ //Loop through recurrence and remove any nodes already in the partial order
+ for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(),
+ NE = I->second.end(); N != NE; ++N) {
+
+ bool found = false;
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ PE = partialOrder.end(); PO != PE; ++PO) {
+ if(PO->count(*N))
+ found = true;
+ }
+
+ //Check if its a branch, and remove to handle special
+ if(!found) {
+ if((*N)->isBranch() && !(*N)->hasPredecessors()) {
+ branches.push_back(*N);
+ }
+ else
+ new_recurrence.insert(*N);
+ }
+
+ }
+
+
+ if(new_recurrence.size() > 0) {
+
+ std::vector<MSchedGraphNode*> path;
+ std::set<MSchedGraphNode*> nodesToAdd;
+
+ //Dump recc we are dealing with (minus nodes already in PO)
+ DEBUG(std::cerr << "Recc: ");
+ DEBUG(for(std::set<MSchedGraphNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; });
+
+ //Add nodes that connect this recurrence to recurrences in the partial path
+ for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(),
+ NE = new_recurrence.end(); N != NE; ++N)
+ searchPath(*N, path, nodesToAdd, new_recurrence);
+
+ //Add nodes to this recurrence if they are not already in the partial order
+ for(std::set<MSchedGraphNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
+ N != NE; ++N) {
+ bool found = false;
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ PE = partialOrder.end(); PO != PE; ++PO) {
+ if(PO->count(*N))
+ found = true;
+ }
+ if(!found) {
+ assert("FOUND CONNECTOR");
+ new_recurrence.insert(*N);
+ }
+ }
+
+ partialOrder.push_back(new_recurrence);
+
+
+ //Dump out partial order
+ DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
+ E = partialOrder.end(); I !=E; ++I) {
+ std::cerr << "Start set in PO\n";
+ for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
+ std::cerr << "PO:" << **J << "\n";
+ });
+
+ }
+ }
+
+ //Add any nodes that are not already in the partial order
+ //Add them in a set, one set per connected component
+ std::set<MSchedGraphNode*> lastNodes;
+ std::set<MSchedGraphNode*> noPredNodes;
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ E = nodeToAttributesMap.end(); I != E; ++I) {
+
+ bool found = false;
+
+ //Check if its already in our partial order, if not add it to the final vector
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ PE = partialOrder.end(); PO != PE; ++PO) {
+ if(PO->count(I->first))
+ found = true;
+ }
+ if(!found)
+ lastNodes.insert(I->first);
+ }
+
+ //For each node w/out preds, see if there is a path to one of the
+ //recurrences, and if so add them to that current recc
+ /*for(std::set<MSchedGraphNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end();
+ N != NE; ++N) {
+ DEBUG(std::cerr << "No Pred Path from: " << **N << "\n");
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ PE = partialOrder.end(); PO != PE; ++PO) {
+ std::vector<MSchedGraphNode*> path;
+ pathToRecc(*N, path, *PO, lastNodes);
+ }
+ }*/
+
+
+ //Break up remaining nodes that are not in the partial order
+ ///into their connected compoenents
+ while(lastNodes.size() > 0) {
+ std::set<MSchedGraphNode*> ccSet;
+ connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes);
+ if(ccSet.size() > 0)
+ partialOrder.push_back(ccSet);
+ }
+
+
+ //Clean up branches by putting them in final order
+ assert(branches.size() == 0 && "We should not have any branches in our graph");
+}
+
+
+void ModuloSchedulingPass::connectedComponentSet(MSchedGraphNode *node, std::set<MSchedGraphNode*> &ccSet, std::set<MSchedGraphNode*> &lastNodes) {
+
+//Add to final set
+ if( !ccSet.count(node) && lastNodes.count(node)) {
+ lastNodes.erase(node);
+ ccSet.insert(node);
+ }
+ else
+ return;
+
+ //Loop over successors and recurse if we have not seen this node before
+ for(MSchedGraphNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) {
+ connectedComponentSet(*node_succ, ccSet, lastNodes);
+ }
+
+}
+
+void ModuloSchedulingPass::predIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) {
+
+ for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+ for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
+ E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
+
+ //Check if we are supposed to ignore this edge or not
+ if(ignoreEdge(*P,FinalNodeOrder[j]))
+ continue;
+
+ if(CurrentSet.count(*P))
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+ IntersectResult.insert(*P);
+ }
+ }
+}
+
+
+
+
+
+void ModuloSchedulingPass::succIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) {
+
+ for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+ for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
+ E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
+
+ //Check if we are supposed to ignore this edge or not
+ if(ignoreEdge(FinalNodeOrder[j],*P))
+ continue;
+
+ if(CurrentSet.count(*P))
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+ IntersectResult.insert(*P);
+ }
+ }
+}
+
+void dumpIntersection(std::set<MSchedGraphNode*> &IntersectCurrent) {
+ std::cerr << "Intersection (";
+ for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
+ std::cerr << **I << ", ";
+ std::cerr << ")\n";
+}
+
+
+
+void ModuloSchedulingPass::orderNodes() {
+
+ TIME_REGION(X, "orderNodes");
+
+ int BOTTOM_UP = 0;
+ int TOP_DOWN = 1;
+
+ //Set default order
+ int order = BOTTOM_UP;
+
+
+ //Loop over all the sets and place them in the final node order
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
+
+ DEBUG(std::cerr << "Processing set in S\n");
+ DEBUG(dumpIntersection(*CurrentSet));
+
+ //Result of intersection
+ std::set<MSchedGraphNode*> IntersectCurrent;
+
+ predIntersect(*CurrentSet, IntersectCurrent);
+
+ //If the intersection of predecessor and current set is not empty
+ //sort nodes bottom up
+ if(IntersectCurrent.size() != 0) {
+ DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
+ order = BOTTOM_UP;
+ }
+ //If empty, use successors
+ else {
+ DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
+
+ succIntersect(*CurrentSet, IntersectCurrent);
+
+ //sort top-down
+ if(IntersectCurrent.size() != 0) {
+ DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
+ order = TOP_DOWN;
+ }
+ else {
+ DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
+ //Find node with max ASAP in current Set
+ MSchedGraphNode *node;
+ int maxASAP = 0;
+ DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
+ for(std::set<MSchedGraphNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) {
+ //Get node attributes
+ MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*J)->second;
+ //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
+
+ if(maxASAP <= nodeAttr.ASAP) {
+ maxASAP = nodeAttr.ASAP;
+ node = *J;
+ }
+ }
+ assert(node != 0 && "In node ordering node should not be null");
+ IntersectCurrent.insert(node);
+ order = BOTTOM_UP;
+ }
+ }
+
+ //Repeat until all nodes are put into the final order from current set
+ while(IntersectCurrent.size() > 0) {
+
+ if(order == TOP_DOWN) {
+ DEBUG(std::cerr << "Order is TOP DOWN\n");
+
+ while(IntersectCurrent.size() > 0) {
+ DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
+
+ int MOB = 0;
+ int height = 0;
+ MSchedGraphNode *highestHeightNode = *(IntersectCurrent.begin());
+
+ //Find node in intersection with highest heigh and lowest MOB
+ for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
+ E = IntersectCurrent.end(); I != E; ++I) {
+
+ //Get current nodes properties
+ MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+
+ if(height < nodeAttr.height) {
+ highestHeightNode = *I;
+ height = nodeAttr.height;
+ MOB = nodeAttr.MOB;
+ }
+ else if(height == nodeAttr.height) {
+ if(MOB > nodeAttr.height) {
+ highestHeightNode = *I;
+ height = nodeAttr.height;
+ MOB = nodeAttr.MOB;
+ }
+ }
+ }
+
+ //Append our node with greatest height to the NodeOrder
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
+ DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
+ FinalNodeOrder.push_back(highestHeightNode);
+ }
+
+ //Remove V from IntersectOrder
+ IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
+ IntersectCurrent.end(), highestHeightNode));
+
+
+ //Intersect V's successors with CurrentSet
+ for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
+ E = highestHeightNode->succ_end(); P != E; ++P) {
+ //if(lower_bound(CurrentSet->begin(),
+ // CurrentSet->end(), *P) != CurrentSet->end()) {
+ if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
+ if(ignoreEdge(highestHeightNode, *P))
+ continue;
+ //If not already in Intersect, add
+ if(!IntersectCurrent.count(*P))
+ IntersectCurrent.insert(*P);
+ }
+ }
+ } //End while loop over Intersect Size
+
+ //Change direction
+ order = BOTTOM_UP;
+
+ //Reset Intersect to reflect changes in OrderNodes
+ IntersectCurrent.clear();
+ predIntersect(*CurrentSet, IntersectCurrent);
+
+ } //End If TOP_DOWN
+
+ //Begin if BOTTOM_UP
+ else {
+ DEBUG(std::cerr << "Order is BOTTOM UP\n");
+ while(IntersectCurrent.size() > 0) {
+ DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
+
+ //dump intersection
+ DEBUG(dumpIntersection(IntersectCurrent));
+ //Get node with highest depth, if a tie, use one with lowest
+ //MOB
+ int MOB = 0;
+ int depth = 0;
+ MSchedGraphNode *highestDepthNode = *(IntersectCurrent.begin());
+
+ for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
+ E = IntersectCurrent.end(); I != E; ++I) {
+ //Find node attribute in graph
+ MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+
+ if(depth < nodeAttr.depth) {
+ highestDepthNode = *I;
+ depth = nodeAttr.depth;
+ MOB = nodeAttr.MOB;
+ }
+ else if(depth == nodeAttr.depth) {
+ if(MOB > nodeAttr.MOB) {
+ highestDepthNode = *I;
+ depth = nodeAttr.depth;
+ MOB = nodeAttr.MOB;
+ }
+ }
+ }
+
+
+
+ //Append highest depth node to the NodeOrder
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
+ DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
+ FinalNodeOrder.push_back(highestDepthNode);
+ }
+ //Remove heightestDepthNode from IntersectOrder
+ IntersectCurrent.erase(highestDepthNode);
+
+
+ //Intersect heightDepthNode's pred with CurrentSet
+ for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(),
+ E = highestDepthNode->pred_end(); P != E; ++P) {
+ if(CurrentSet->count(*P)) {
+ if(ignoreEdge(*P, highestDepthNode))
+ continue;
+
+ //If not already in Intersect, add
+ if(!IntersectCurrent.count(*P))
+ IntersectCurrent.insert(*P);
+ }
+ }
+
+ } //End while loop over Intersect Size
+
+ //Change order
+ order = TOP_DOWN;
+
+ //Reset IntersectCurrent to reflect changes in OrderNodes
+ IntersectCurrent.clear();
+ succIntersect(*CurrentSet, IntersectCurrent);
+ } //End if BOTTOM_DOWN
+
+ DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
+ }
+ //End Wrapping while loop
+ DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
+ }//End for over all sets of nodes
+
+ //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
+ //data dependencies) to the final order. We add this manually. It will always be
+ //in the last set of S since its not part of a recurrence
+ //Loop over all the sets and place them in the final node order
+ std::vector<std::set<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
+ for(std::set<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
+ CurrentNode != LastNode; ++CurrentNode) {
+ if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
+ FinalNodeOrder.push_back(*CurrentNode);
+ }
+ //Return final Order
+ //return FinalNodeOrder;
+}
+
+bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG) {
+
+ TIME_REGION(X, "computeSchedule");
+
+ bool success = false;
+
+ //FIXME: Should be set to max II of the original loop
+ //Cap II in order to prevent infinite loop
+ int capII = MSG->totalDelay();
+
+ while(!success) {
+
+ //Keep track of branches, but do not insert into the schedule
+ std::vector<MSchedGraphNode*> branches;
+
+ //Loop over the final node order and process each node
+ for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(),
+ E = FinalNodeOrder.end(); I != E; ++I) {
+
+ //CalculateEarly and Late start
+ bool initialLSVal = false;
+ bool initialESVal = false;
+ int EarlyStart = 0;
+ int LateStart = 0;
+ bool hasSucc = false;
+ bool hasPred = false;
+ bool sched;
+
+ if((*I)->isBranch())
+ if((*I)->hasPredecessors())
+ sched = true;
+ else
+ sched = false;
+ else
+ sched = true;
+
+ if(sched) {
+ //Loop over nodes in the schedule and determine if they are predecessors
+ //or successors of the node we are trying to schedule
+ for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
+ nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
+
+ //For this cycle, get the vector of nodes schedule and loop over it
+ for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
+
+ if((*I)->isPredecessor(*schedNode)) {
+ int diff = (*I)->getInEdge(*schedNode).getIteDiff();
+ int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
+ DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+ DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
+ if(initialESVal)
+ EarlyStart = std::max(EarlyStart, ES_Temp);
+ else {
+ EarlyStart = ES_Temp;
+ initialESVal = true;
+ }
+ hasPred = true;
+ }
+ if((*I)->isSuccessor(*schedNode)) {
+ int diff = (*schedNode)->getInEdge(*I).getIteDiff();
+ int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
+ DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+ DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
+ if(initialLSVal)
+ LateStart = std::min(LateStart, LS_Temp);
+ else {
+ LateStart = LS_Temp;
+ initialLSVal = true;
+ }
+ hasSucc = true;
+ }
+ }
+ }
+ }
+ else {
+ branches.push_back(*I);
+ continue;
+ }
+
+ //Check if this node is a pred or succ to a branch, and restrict its placement
+ //even though the branch is not in the schedule
+ /*int count = branches.size();
+ for(std::vector<MSchedGraphNode*>::iterator B = branches.begin(), BE = branches.end();
+ B != BE; ++B) {
+ if((*I)->isPredecessor(*B)) {
+ int diff = (*I)->getInEdge(*B).getIteDiff();
+ int ES_Temp = (II+count-1) + (*B)->getLatency() - diff * II;
+ DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count)-1 << "\n");
+ DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
+ EarlyStart = std::max(EarlyStart, ES_Temp);
+ hasPred = true;
+ }
+
+ if((*I)->isSuccessor(*B)) {
+ int diff = (*B)->getInEdge(*I).getIteDiff();
+ int LS_Temp = (II+count-1) - (*I)->getLatency() + diff * II;
+ DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count-1) << "\n");
+ DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
+ LateStart = std::min(LateStart, LS_Temp);
+ hasSucc = true;
+ }
+
+ count--;
+ }*/
+
+ //Check if the node has no pred or successors and set Early Start to its ASAP
+ if(!hasSucc && !hasPred)
+ EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
+
+ DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
+ DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
+
+ //Now, try to schedule this node depending upon its pred and successor in the schedule
+ //already
+ if(!hasSucc && hasPred)
+ success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
+ else if(!hasPred && hasSucc)
+ success = scheduleNode(*I, LateStart, (LateStart - II +1));
+ else if(hasPred && hasSucc) {
+ if(EarlyStart > LateStart) {
+ success = false;
+ //LateStart = EarlyStart;
+ DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n");
+ }
+ else
+ success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
+ }
+ else
+ success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
+
+ if(!success) {
+ ++II;
+ schedule.clear();
+ break;
+ }
+
+ }
+
+ if(success) {
+ DEBUG(std::cerr << "Constructing Schedule Kernel\n");
+ success = schedule.constructKernel(II, branches, indVarInstrs[BB]);
+ DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
+ if(!success) {
+ ++II;
+ schedule.clear();
+ }
+ DEBUG(std::cerr << "Final II: " << II << "\n");
+ }
+
+
+ if(II >= capII) {
+ DEBUG(std::cerr << "Maximum II reached, giving up\n");
+ return false;
+ }
+
+ assert(II < capII && "The II should not exceed the original loop number of cycles");
+ }
+ return true;
+}
+
+
+bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node,
+ int start, int end) {
+ bool success = false;
+
+ DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
+
+ //Make sure start and end are not negative
+ //if(start < 0) {
+ //start = 0;
+
+ //}
+ //if(end < 0)
+ //end = 0;
+
+ bool forward = true;
+ if(start > end)
+ forward = false;
+
+ bool increaseSC = true;
+ int cycle = start ;
+
+
+ while(increaseSC) {
+
+ increaseSC = false;
+
+ increaseSC = schedule.insert(node, cycle, II);
+
+ if(!increaseSC)
+ return true;
+
+ //Increment cycle to try again
+ if(forward) {
+ ++cycle;
+ DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
+ if(cycle > end)
+ return false;
+ }
+ else {
+ --cycle;
+ DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
+ if(cycle < end)
+ return false;
+ }
+ }
+
+ return success;
+}
+
+void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+ //Keep a map to easily know whats in the kernel
+ std::map<int, std::set<const MachineInstr*> > inKernel;
+ int maxStageCount = 0;
+
+ //Keep a map of new values we consumed in case they need to be added back
+ std::map<Value*, std::map<int, Value*> > consumedValues;
+
+ MSchedGraphNode *branch = 0;
+ MSchedGraphNode *BAbranch = 0;
+
+ DEBUG(schedule.print(std::cerr));
+
+ std::vector<MSchedGraphNode*> branches;
+
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+ maxStageCount = std::max(maxStageCount, I->second);
+
+ //Put int the map so we know what instructions in each stage are in the kernel
+ DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n");
+ inKernel[I->second].insert(I->first);
+ }
+
+ //Get target information to look at machine operands
+ const TargetInstrInfo *mii = target.getInstrInfo();
+
+ //Now write the prologues
+ for(int i = 0; i < maxStageCount; ++i) {
+ BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
+ MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+
+ DEBUG(std::cerr << "i=" << i << "\n");
+ for(int j = i; j >= 0; --j) {
+ for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
+ if(inKernel[j].count(&*MI)) {
+ MachineInstr *instClone = MI->clone();
+ machineBB->push_back(instClone);
+
+ //If its a branch, insert a nop
+ if(mii->isBranch(instClone->getOpcode()))
+ BuildMI(machineBB, V9::NOP, 0);
+
+
+ DEBUG(std::cerr << "Cloning: " << *MI << "\n");
+
+ //After cloning, we may need to save the value that this instruction defines
+ for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
+ Instruction *tmp;
+
+ //get machine operand
+ MachineOperand &mOp = instClone->getOperand(opNum);
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+
+ //Check if this is a value we should save
+ if(valuesToSave.count(mOp.getVRegValue())) {
+ //Save copy in tmpInstruction
+ tmp = new TmpInstruction(mOp.getVRegValue());
+
+ //Add TmpInstruction to safe LLVM Instruction MCFI
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+ tempMvec.addTemp((Value*) tmp);
+
+ DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n");
+
+ newValues[mOp.getVRegValue()][i]= tmp;
+ newValLocation[tmp] = machineBB;
+
+ DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
+
+ //Create machine instruction and put int machineBB
+ MachineInstr *saveValue;
+ if(mOp.getVRegValue()->getType() == Type::FloatTy)
+ saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+ saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else
+ saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+
+
+ DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
+ }
+ }
+
+ //We may also need to update the value that we use if its from an earlier prologue
+ if(j != 0) {
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+ if(newValues.count(mOp.getVRegValue())) {
+ if(newValues[mOp.getVRegValue()].count(i-1)) {
+ Value *oldV = mOp.getVRegValue();
+ DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
+ //Update the operand with the right value
+ mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]);
+
+ //Remove this value since we have consumed it
+ //NOTE: Should this only be done if j != maxStage?
+ consumedValues[oldV][i-1] = (newValues[oldV][i-1]);
+ DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n");
+ newValues[oldV].erase(i-1);
+ }
+ }
+ else
+ if(consumedValues.count(mOp.getVRegValue()))
+ assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value");
+ }
+ }
+ }
+ }
+ }
+ }
+
+ MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
+ MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+ MachineFunction::BasicBlockListType::iterator BLI = origBB;
+ assert(BLI != BL.end() && "Must find original BB in machine function\n");
+ BL.insert(BLI,machineBB);
+ prologues.push_back(machineBB);
+ llvm_prologues.push_back(llvmBB);
+ }
+}
+
+void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
+
+ std::map<int, std::set<const MachineInstr*> > inKernel;
+
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+ //Ignore the branch, we will handle this separately
+ //if(I->first->isBranch())
+ //continue;
+
+ //Put int the map so we know what instructions in each stage are in the kernel
+ inKernel[I->second].insert(I->first);
+ }
+
+ std::map<Value*, Value*> valPHIs;
+
+ //some debug stuff, will remove later
+ DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
+ std::cerr << "Old Value: " << *(V->first) << "\n";
+ for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
+ std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
+ });
+
+ //some debug stuff, will remove later
+ DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) {
+ std::cerr << "Old Value: " << *(V->first) << "\n";
+ for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
+ std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
+ });
+
+ //Now write the epilogues
+ for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
+ BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
+ MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+
+ DEBUG(std::cerr << " Epilogue #: " << i << "\n");
+
+
+ std::map<Value*, int> inEpilogue;
+
+ for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
+ for(int j=schedule.getMaxStage(); j > i; --j) {
+ if(inKernel[j].count(&*MI)) {
+ DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
+ MachineInstr *clone = MI->clone();
+
+ //Update operands that need to use the result from the phi
+ for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
+ //get machine operand
+ const MachineOperand &mOp = clone->getOperand(opNum);
+
+ if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
+
+ DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n");
+
+ //If this is the last instructions for the max iterations ago, don't update operands
+ if(inEpilogue.count(mOp.getVRegValue()))
+ if(inEpilogue[mOp.getVRegValue()] == i)
+ continue;
+
+ //Quickly write appropriate phis for this operand
+ if(newValues.count(mOp.getVRegValue())) {
+ if(newValues[mOp.getVRegValue()].count(i)) {
+ Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
+
+ //Get machine code for this instruction
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+ tempMvec.addTemp((Value*) tmp);
+
+ //assert of no kernelPHI for this value
+ assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi");
+
+ MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ valPHIs[mOp.getVRegValue()] = tmp;
+ }
+ }
+
+ if(valPHIs.count(mOp.getVRegValue())) {
+ //Update the operand in the cloned instruction
+ clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]);
+ }
+ }
+ else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) {
+ inEpilogue[mOp.getVRegValue()] = i;
+ }
+ }
+ machineBB->push_back(clone);
+ }
+ }
+ }
+
+ MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
+ MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+ MachineFunction::BasicBlockListType::iterator BLI = (MachineBasicBlock*) origBB;
+ assert(BLI != BL.end() && "Must find original BB in machine function\n");
+ BL.insert(BLI,machineBB);
+ epilogues.push_back(machineBB);
+ llvm_epilogues.push_back(llvmBB);
+
+ DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
+ DEBUG(machineBB->print(std::cerr));
+ }
+}
+
+void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
+
+ //Keep track of operands that are read and saved from a previous iteration. The new clone
+ //instruction will use the result of the phi instead.
+ std::map<Value*, Value*> finalPHIValue;
+ std::map<Value*, Value*> kernelValue;
+
+ //Branches are a special case
+ std::vector<MachineInstr*> branches;
+
+ //Get target information to look at machine operands
+ const TargetInstrInfo *mii = target.getInstrInfo();
+
+ //Create TmpInstructions for the final phis
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+ DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
+
+ //Clone instruction
+ const MachineInstr *inst = I->first;
+ MachineInstr *instClone = inst->clone();
+
+ //Insert into machine basic block
+ machineBB->push_back(instClone);
+
+ if(mii->isBranch(instClone->getOpcode()))
+ BuildMI(machineBB, V9::NOP, 0);
+
+ DEBUG(std::cerr << "Cloned Inst: " << *instClone << "\n");
+
+ //Loop over Machine Operands
+ for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+ //get machine operand
+ const MachineOperand &mOp = inst->getOperand(i);
+
+ if(I->second != 0) {
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+
+ //Check to see where this operand is defined if this instruction is from max stage
+ if(I->second == schedule.getMaxStage()) {
+ DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
+ }
+
+ //If its in the value saved, we need to create a temp instruction and use that instead
+ if(valuesToSave.count(mOp.getVRegValue())) {
+
+ //Check if we already have a final PHI value for this
+ if(!finalPHIValue.count(mOp.getVRegValue())) {
+ //Only create phi if the operand def is from a stage before this one
+ if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) {
+ TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+
+ //Get machine code for this instruction
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+ tempMvec.addTemp((Value*) tmp);
+
+ //Update the operand in the cloned instruction
+ instClone->getOperand(i).setValueReg(tmp);
+
+ //save this as our final phi
+ finalPHIValue[mOp.getVRegValue()] = tmp;
+ newValLocation[tmp] = machineBB;
+ }
+ }
+ else {
+ //Use the previous final phi value
+ instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]);
+ }
+ }
+ }
+ }
+ if(I->second != schedule.getMaxStage()) {
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+ if(valuesToSave.count(mOp.getVRegValue())) {
+
+ TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+
+ //Get machine code for this instruction
+ MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst);
+ tempVec.addTemp((Value*) tmp);
+
+ //Create new machine instr and put in MBB
+ MachineInstr *saveValue;
+ if(mOp.getVRegValue()->getType() == Type::FloatTy)
+ saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+ saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else
+ saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+
+
+ //Save for future cleanup
+ kernelValue[mOp.getVRegValue()] = tmp;
+ newValLocation[tmp] = machineBB;
+ kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
+ }
+ }
+ }
+ }
+
+ }
+
+ //Add branches
+ for(std::vector<MachineInstr*>::iterator I = branches.begin(), E = branches.end(); I != E; ++I) {
+ machineBB->push_back(*I);
+ BuildMI(machineBB, V9::NOP, 0);
+ }
+
+
+ DEBUG(std::cerr << "KERNEL before PHIs\n");
+ DEBUG(machineBB->print(std::cerr));
+
+
+ //Loop over each value we need to generate phis for
+ for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(),
+ E = newValues.end(); V != E; ++V) {
+
+
+ DEBUG(std::cerr << "Writing phi for" << *(V->first));
+ DEBUG(std::cerr << "\nMap of Value* for this phi\n");
+ DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(),
+ IE = V->second.end(); I != IE; ++I) {
+ std::cerr << "Stage: " << I->first;
+ std::cerr << " Value: " << *(I->second) << "\n";
+ });
+
+ //If we only have one current iteration live, its safe to set lastPhi = to kernel value
+ if(V->second.size() == 1) {
+ assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
+ DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n");
+ kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first];
+ DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n");
+ }
+ else {
+
+ //Keep track of last phi created.
+ Instruction *lastPhi = 0;
+
+ unsigned count = 1;
+ //Loop over the the map backwards to generate phis
+ for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend();
+ I != IE; ++I) {
+
+ if(count < (V->second).size()) {
+ if(lastPhi == 0) {
+ lastPhi = new TmpInstruction(I->second);
+
+ //Get machine code for this instruction
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+ tempMvec.addTemp((Value*) lastPhi);
+
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ newValLocation[lastPhi] = machineBB;
+ }
+ else {
+ Instruction *tmp = new TmpInstruction(I->second);
+
+ //Get machine code for this instruction
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+ tempMvec.addTemp((Value*) tmp);
+
+
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ lastPhi = tmp;
+ kernelPHIs[V->first][I->first] = lastPhi;
+ newValLocation[lastPhi] = machineBB;
+ }
+ }
+ //Final phi value
+ else {
+ //The resulting value must be the Value* we created earlier
+ assert(lastPhi != 0 && "Last phi is NULL!\n");
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
+ }
+
+ ++count;
+ }
+
+ }
+ }
+
+ DEBUG(std::cerr << "KERNEL after PHIs\n");
+ DEBUG(machineBB->print(std::cerr));
+}
+
+
+void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+ //Worklist to delete things
+ std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
+
+ //Worklist of TmpInstructions that need to be added to a MCFI
+ std::vector<Instruction*> addToMCFI;
+
+ //Worklist to add OR instructions to end of kernel so not to invalidate the iterator
+ //std::vector<std::pair<Instruction*, Value*> > newORs;
+
+ const TargetInstrInfo *TMI = target.getInstrInfo();
+
+ //Start with the kernel and for each phi insert a copy for the phi def and for each arg
+ for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) {
+
+ DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
+ //Get op code and check if its a phi
+ if(I->getOpcode() == V9::PHI) {
+
+ DEBUG(std::cerr << "Replacing PHI: " << *I << "\n");
+ Instruction *tmp = 0;
+
+ for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+ //Get Operand
+ const MachineOperand &mOp = I->getOperand(i);
+ assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
+
+ if(!tmp) {
+ tmp = new TmpInstruction(mOp.getVRegValue());
+ addToMCFI.push_back(tmp);
+ }
+
+ //Now for all our arguments we read, OR to the new TmpInstruction that we created
+ if(mOp.isUse()) {
+ DEBUG(std::cerr << "Use: " << mOp << "\n");
+ //Place a copy at the end of its BB but before the branches
+ assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+ //Reverse iterate to find the branches, we can safely assume no instructions have been
+ //put in the nop positions
+ for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+ MachineOpCode opc = inst->getOpcode();
+ if(TMI->isBranch(opc) || TMI->isNop(opc))
+ continue;
+ else {
+ if(mOp.getVRegValue()->getType() == Type::FloatTy)
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+
+ break;
+ }
+
+ }
+
+ }
+ else {
+ //Remove the phi and replace it with an OR
+ DEBUG(std::cerr << "Def: " << mOp << "\n");
+ //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue()));
+ if(tmp->getType() == Type::FloatTy)
+ BuildMI(*kernelBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+ else if(tmp->getType() == Type::DoubleTy)
+ BuildMI(*kernelBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+ else
+ BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+
+
+ worklist.push_back(std::make_pair(kernelBB, I));
+ }
+
+ }
+
+ }
+
+
+ }
+
+ //Add TmpInstructions to some MCFI
+ if(addToMCFI.size() > 0) {
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+ for(unsigned x = 0; x < addToMCFI.size(); ++x) {
+ tempMvec.addTemp(addToMCFI[x]);
+ }
+ addToMCFI.clear();
+ }
+
+
+ //Remove phis from epilogue
+ for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) {
+ for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) {
+
+ DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
+ //Get op code and check if its a phi
+ if(I->getOpcode() == V9::PHI) {
+ Instruction *tmp = 0;
+
+ for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+ //Get Operand
+ const MachineOperand &mOp = I->getOperand(i);
+ assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
+
+ if(!tmp) {
+ tmp = new TmpInstruction(mOp.getVRegValue());
+ addToMCFI.push_back(tmp);
+ }
+
+ //Now for all our arguments we read, OR to the new TmpInstruction that we created
+ if(mOp.isUse()) {
+ DEBUG(std::cerr << "Use: " << mOp << "\n");
+ //Place a copy at the end of its BB but before the branches
+ assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+ //Reverse iterate to find the branches, we can safely assume no instructions have been
+ //put in the nop positions
+ for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+ MachineOpCode opc = inst->getOpcode();
+ if(TMI->isBranch(opc) || TMI->isNop(opc))
+ continue;
+ else {
+ if(mOp.getVRegValue()->getType() == Type::FloatTy)
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+ else
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+
+
+ break;
+ }
+
+ }
+
+ }
+ else {
+ //Remove the phi and replace it with an OR
+ DEBUG(std::cerr << "Def: " << mOp << "\n");
+ if(tmp->getType() == Type::FloatTy)
+ BuildMI(**MB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+ else if(tmp->getType() == Type::DoubleTy)
+ BuildMI(**MB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+ else
+ BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+
+ worklist.push_back(std::make_pair(*MB,I));
+ }
+
+ }
+ }
+
+
+ }
+ }
+
+
+ if(addToMCFI.size() > 0) {
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+ for(unsigned x = 0; x < addToMCFI.size(); ++x) {
+ tempMvec.addTemp(addToMCFI[x]);
+ }
+ addToMCFI.clear();
+ }
+
+ //Delete the phis
+ for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) {
+
+ DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n");
+ I->first->erase(I->second);
+
+ }
+
+
+ assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction");
+}
+
+
+void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
+
+ TIME_REGION(X, "reconstructLoop");
+
+
+ DEBUG(std::cerr << "Reconstructing Loop\n");
+
+ //First find the value *'s that we need to "save"
+ std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave;
+
+ //Keep track of instructions we have already seen and their stage because
+ //we don't want to "save" values if they are used in the kernel immediately
+ std::map<const MachineInstr*, int> lastInstrs;
+ std::map<const Value*, int> phiUses;
+
+ //Loop over kernel and only look at instructions from a stage > 0
+ //Look at its operands and save values *'s that are read
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+ if(I->second !=0) {
+ //For this instruction, get the Value*'s that it reads and put them into the set.
+ //Assert if there is an operand of another type that we need to save
+ const MachineInstr *inst = I->first;
+ lastInstrs[inst] = I->second;
+
+ for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+ //get machine operand
+ const MachineOperand &mOp = inst->getOperand(i);
+
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+ //find the value in the map
+ if (const Value* srcI = mOp.getVRegValue()) {
+
+ if(isa<Constant>(srcI) || isa<Argument>(srcI))
+ continue;
+
+ //Before we declare this Value* one that we should save
+ //make sure its def is not of the same stage as this instruction
+ //because it will be consumed before its used
+ Instruction *defInst = (Instruction*) srcI;
+
+ //Should we save this value?
+ bool save = true;
+
+ //Continue if not in the def map, loop invariant code does not need to be saved
+ if(!defMap.count(srcI))
+ continue;
+
+ MachineInstr *defInstr = defMap[srcI];
+
+
+ if(lastInstrs.count(defInstr)) {
+ if(lastInstrs[defInstr] == I->second) {
+ save = false;
+
+ }
+ }
+
+ if(save) {
+ assert(!phiUses.count(srcI) && "Did not expect to see phi use twice");
+ if(isa<PHINode>(srcI))
+ phiUses[srcI] = I->second;
+
+ valuesToSave[srcI] = std::make_pair(I->first, i);
+
+ }
+ }
+ }
+ else if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+ if (const Value* destI = mOp.getVRegValue()) {
+ if(!isa<PHINode>(destI))
+ continue;
+ if(phiUses.count(destI)) {
+ if(phiUses[destI] == I->second) {
+ //remove from save list
+ valuesToSave.erase(destI);
+ }
+ }
+ }
+ }
+
+ if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+ assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
+ }
+ }
+ }
+ }
+
+ //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
+
+ //Map to keep track of old to new values
+ std::map<Value*, std::map<int, Value*> > newValues;
+
+ //Map to keep track of old to new values in kernel
+ std::map<Value*, std::map<int, Value*> > kernelPHIs;
+
+ //Another map to keep track of what machine basic blocks these new value*s are in since
+ //they have no llvm instruction equivalent
+ std::map<Value*, MachineBasicBlock*> newValLocation;
+
+ std::vector<MachineBasicBlock*> prologues;
+ std::vector<BasicBlock*> llvm_prologues;
+
+
+ //Write prologue
+ if(schedule.getMaxStage() != 0)
+ writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation);
+
+ //Print out epilogues and prologue
+ DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
+ I != E; ++I) {
+ std::cerr << "PROLOGUE\n";
+ (*I)->print(std::cerr);
+ });
+
+ BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
+ MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
+
+ MachineFunction *F = (((MachineBasicBlock*)BB)->getParent());
+ MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+ MachineFunction::BasicBlockListType::iterator BLI = BB;
+ assert(BLI != BL.end() && "Must find original BB in machine function\n");
+ BL.insert(BLI,machineKernelBB);
+
+ //(((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
+ writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+ std::vector<MachineBasicBlock*> epilogues;
+ std::vector<BasicBlock*> llvm_epilogues;
+
+ //Write epilogues
+ if(schedule.getMaxStage() != 0)
+ writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+ //Fix our branches
+ fixBranches(prologues, llvm_prologues, machineKernelBB, llvmKernelBB, epilogues, llvm_epilogues, BB);
+
+ //Remove phis
+ removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation);
+
+ //Print out epilogues and prologue
+ DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
+ I != E; ++I) {
+ std::cerr << "PROLOGUE\n";
+ (*I)->print(std::cerr);
+ });
+
+ DEBUG(std::cerr << "KERNEL\n");
+ DEBUG(machineKernelBB->print(std::cerr));
+
+ DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end();
+ I != E; ++I) {
+ std::cerr << "EPILOGUE\n";
+ (*I)->print(std::cerr);
+ });
+
+
+ DEBUG(std::cerr << "New Machine Function" << "\n");
+ DEBUG(std::cerr << BB->getParent() << "\n");
+
+
+}
+
+void ModuloSchedulingPass::fixBranches(std::vector<MachineBasicBlock *> &prologues, std::vector<BasicBlock*> &llvm_prologues, MachineBasicBlock *machineKernelBB, BasicBlock *llvmKernelBB, std::vector<MachineBasicBlock *> &epilogues, std::vector<BasicBlock*> &llvm_epilogues, MachineBasicBlock *BB) {
+
+ const TargetInstrInfo *TMI = target.getInstrInfo();
+
+ if(schedule.getMaxStage() != 0) {
+ //Fix prologue branches
+ for(unsigned I = 0; I < prologues.size(); ++I) {
+
+ //Find terminator since getFirstTerminator does not work!
+ for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) {
+ MachineOpCode OC = mInst->getOpcode();
+ //If its a branch update its branchto
+ if(TMI->isBranch(OC)) {
+ for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = mInst->getOperand(opNum);
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ //Check if we are branching to the kernel, if not branch to epilogue
+ if(mOp.getVRegValue() == BB->getBasicBlock()) {
+ if(I == prologues.size()-1)
+ mOp.setValueReg(llvmKernelBB);
+ else
+ mOp.setValueReg(llvm_prologues[I+1]);
+ }
+ else {
+ mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]);
+ }
+ }
+ }
+
+ DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
+ }
+ }
+
+
+ //Update llvm basic block with our new branch instr
+ DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n");
+ const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
+
+ if(I == prologues.size()-1) {
+ TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
+ llvm_epilogues[(llvm_epilogues.size()-1-I)],
+ branchVal->getCondition(),
+ llvm_prologues[I]);
+ }
+ else
+ TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1],
+ llvm_epilogues[(llvm_epilogues.size()-1-I)],
+ branchVal->getCondition(),
+ llvm_prologues[I]);
+
+ }
+ }
+
+ Value *origBranchExit = 0;
+
+ //Fix up kernel machine branches
+ for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) {
+ MachineOpCode OC = mInst->getOpcode();
+ if(TMI->isBranch(OC)) {
+ for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = mInst->getOperand(opNum);
+
+ if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ if(mOp.getVRegValue() == BB->getBasicBlock())
+ mOp.setValueReg(llvmKernelBB);
+ else
+ if(llvm_epilogues.size() > 0) {
+ assert(origBranchExit == 0 && "There should only be one branch out of the loop");
+
+ origBranchExit = mOp.getVRegValue();
+ mOp.setValueReg(llvm_epilogues[0]);
+ }
+ else
+ origBranchExit = mOp.getVRegValue();
+ }
+ }
+ }
+ }
+
+ //Update kernelLLVM branches
+ const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
+
+ assert(origBranchExit != 0 && "We must have the original bb the kernel exits to!");
+
+ if(epilogues.size() > 0) {
+ TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
+ llvm_epilogues[0],
+ branchVal->getCondition(),
+ llvmKernelBB);
+ }
+ else {
+ BasicBlock *origBBExit = dyn_cast<BasicBlock>(origBranchExit);
+ assert(origBBExit !=0 && "Original exit basic block must be set");
+ TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
+ origBBExit,
+ branchVal->getCondition(),
+ llvmKernelBB);
+ }
+
+ if(schedule.getMaxStage() != 0) {
+ //Lastly add unconditional branches for the epilogues
+ for(unsigned I = 0; I < epilogues.size(); ++I) {
+
+ //Now since we don't have fall throughs, add a unconditional branch to the next prologue
+ if(I != epilogues.size()-1) {
+ BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]);
+ //Add unconditional branch to end of epilogue
+ TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1],
+ llvm_epilogues[I]);
+
+ }
+ else {
+ BuildMI(epilogues[I], V9::BA, 1).addPCDisp(origBranchExit);
+
+
+ //Update last epilogue exit branch
+ BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
+ //Find where we are supposed to branch to
+ BasicBlock *nextBlock = 0;
+ for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) {
+ if(branchVal->getSuccessor(j) != BB->getBasicBlock())
+ nextBlock = branchVal->getSuccessor(j);
+ }
+
+ assert((nextBlock != 0) && "Next block should not be null!");
+ TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]);
+ }
+ //Add one more nop!
+ BuildMI(epilogues[I], V9::NOP, 0);
+
+ }
+ }
+
+ //FIX UP Machine BB entry!!
+ //We are looking at the predecesor of our loop basic block and we want to change its ba instruction
+
+
+ //Find all llvm basic blocks that branch to the loop entry and change to our first prologue.
+ const BasicBlock *llvmBB = BB->getBasicBlock();
+
+ std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB));
+
+ //for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) {
+ for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), PE = Preds.end(); P != PE; ++P) {
+ if(*P == llvmBB)
+ continue;
+ else {
+ DEBUG(std::cerr << "Found our entry BB\n");
+ //Get the Terminator instruction for this basic block and print it out
+ DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
+ //Update the terminator
+ TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
+ for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
+ if(term->getSuccessor(i) == llvmBB) {
+ DEBUG(std::cerr << "Replacing successor bb\n");
+ if(llvm_prologues.size() > 0) {
+ term->setSuccessor(i, llvm_prologues[0]);
+ //Also update its corresponding machine instruction
+ MachineCodeForInstruction & tempMvec =
+ MachineCodeForInstruction::get(term);
+ for (unsigned j = 0; j < tempMvec.size(); j++) {
+ MachineInstr *temp = tempMvec[j];
+ MachineOpCode opc = temp->getOpcode();
+ if(TMI->isBranch(opc)) {
+ DEBUG(std::cerr << *temp << "\n");
+ //Update branch
+ for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = temp->getOperand(opNum);
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ if(mOp.getVRegValue() == llvmBB)
+ mOp.setValueReg(llvm_prologues[0]);
+ }
+ }
+ }
+ }
+ }
+ else {
+ term->setSuccessor(i, llvmKernelBB);
+ //Also update its corresponding machine instruction
+ MachineCodeForInstruction & tempMvec =
+ MachineCodeForInstruction::get(term);
+ for (unsigned j = 0; j < tempMvec.size(); j++) {
+ MachineInstr *temp = tempMvec[j];
+ MachineOpCode opc = temp->getOpcode();
+ if(TMI->isBranch(opc)) {
+ DEBUG(std::cerr << *temp << "\n");
+ //Update branch
+ for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = temp->getOperand(opNum);
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ if(mOp.getVRegValue() == llvmBB)
+ mOp.setValueReg(llvmKernelBB);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ break;
+ }
+ }
+
+
+ //BB->getParent()->getBasicBlockList().erase(BB);
+
+}
+