diff options
Diffstat (limited to 'lib/Target/PowerPC/PPCISelPattern.cpp')
-rw-r--r-- | lib/Target/PowerPC/PPCISelPattern.cpp | 1726 |
1 files changed, 1726 insertions, 0 deletions
diff --git a/lib/Target/PowerPC/PPCISelPattern.cpp b/lib/Target/PowerPC/PPCISelPattern.cpp new file mode 100644 index 0000000000..1a9d09c64b --- /dev/null +++ b/lib/Target/PowerPC/PPCISelPattern.cpp @@ -0,0 +1,1726 @@ +//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by Nate Begeman and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a pattern matching instruction selector for 32 bit PowerPC. +// Magic number generation for integer divide from the PowerPC Compiler Writer's +// Guide, section 3.2.3.5 +// +//===----------------------------------------------------------------------===// + +#include "PPC.h" +#include "PPCInstrBuilder.h" +#include "PPCTargetMachine.h" +#include "PPCISelLowering.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/ADT/Statistic.h" +#include <set> +#include <algorithm> +using namespace llvm; + +namespace { +Statistic<> Recorded("ppc-codegen", "Number of recording ops emitted"); +Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations"); +Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); + +//===--------------------------------------------------------------------===// +// ISel - PPC32 specific code to select PPC32 machine instructions for +// SelectionDAG operations. +//===--------------------------------------------------------------------===// + +class ISel : public SelectionDAGISel { + PPCTargetLowering PPCLowering; + SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform + // for sdiv and udiv until it is put into the future + // dag combiner. + + /// ExprMap - As shared expressions are codegen'd, we keep track of which + /// vreg the value is produced in, so we only emit one copy of each compiled + /// tree. + std::map<SDOperand, unsigned> ExprMap; + + unsigned GlobalBaseReg; + bool GlobalBaseInitialized; + bool RecordSuccess; +public: + ISel(TargetMachine &TM) : SelectionDAGISel(PPCLowering), PPCLowering(TM), + ISelDAG(0) {} + + /// runOnFunction - Override this function in order to reset our per-function + /// variables. + virtual bool runOnFunction(Function &Fn) { + // Make sure we re-emit a set of the global base reg if necessary + GlobalBaseInitialized = false; + return SelectionDAGISel::runOnFunction(Fn); + } + + /// InstructionSelectBasicBlock - This callback is invoked by + /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. + virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { + DEBUG(BB->dump()); + // Codegen the basic block. + ISelDAG = &DAG; + Select(DAG.getRoot()); + + // Clear state used for selection. + ExprMap.clear(); + ISelDAG = 0; + } + + // convenience functions for virtual register creation + inline unsigned MakeIntReg() { + return RegMap->createVirtualRegister(PPC::GPRCRegisterClass); + } + + // dag -> dag expanders for integer divide by constant + SDOperand BuildSDIVSequence(SDOperand N); + SDOperand BuildUDIVSequence(SDOperand N); + + unsigned getGlobalBaseReg(); + void MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result); + bool SelectBitfieldInsert(SDOperand OR, unsigned Result); + unsigned FoldIfWideZeroExtend(SDOperand N); + unsigned SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); + bool SelectIntImmediateExpr(SDOperand N, unsigned Result, + unsigned OCHi, unsigned OCLo, + bool IsArithmetic = false, bool Negate = false); + unsigned SelectExpr(SDOperand N, bool Recording=false); + void Select(SDOperand N); + + unsigned SelectAddr(SDOperand N, unsigned& Reg, int& offset); + void SelectBranchCC(SDOperand N); + + virtual const char *getPassName() const { + return "PowerPC Pattern Instruction Selection"; + } +}; + +// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with +// any number of 0s on either side. The 1s are allowed to wrap from LSB to +// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is +// not, since all 1s are not contiguous. +static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { + if (isShiftedMask_32(Val)) { + // look for the first non-zero bit + MB = CountLeadingZeros_32(Val); + // look for the first zero bit after the run of ones + ME = CountLeadingZeros_32((Val - 1) ^ Val); + return true; + } else if (isShiftedMask_32(Val = ~Val)) { // invert mask + // effectively look for the first zero bit + ME = CountLeadingZeros_32(Val) - 1; + // effectively look for the first one bit after the run of zeros + MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; + return true; + } + // no run present + return false; +} + +// isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate +// and mask opcode and mask operation. +static bool isRotateAndMask(unsigned Opcode, unsigned Shift, unsigned Mask, + bool IsShiftMask, + unsigned &SH, unsigned &MB, unsigned &ME) { + if (Shift > 31) return false; + unsigned Indeterminant = ~0; // bit mask marking indeterminant results + + if (Opcode == ISD::SHL) { // shift left + // apply shift to mask if it comes first + if (IsShiftMask) Mask = Mask << Shift; + // determine which bits are made indeterminant by shift + Indeterminant = ~(0xFFFFFFFFu << Shift); + } else if (Opcode == ISD::SRL) { // shift rights + // apply shift to mask if it comes first + if (IsShiftMask) Mask = Mask >> Shift; + // determine which bits are made indeterminant by shift + Indeterminant = ~(0xFFFFFFFFu >> Shift); + // adjust for the left rotate + Shift = 32 - Shift; + } + + // if the mask doesn't intersect any Indeterminant bits + if (Mask && !(Mask & Indeterminant)) { + SH = Shift; + // make sure the mask is still a mask (wrap arounds may not be) + return isRunOfOnes(Mask, MB, ME); + } + + // can't do it + return false; +} + +// isIntImmediate - This method tests to see if a constant operand. +// If so Imm will receive the 32 bit value. +static bool isIntImmediate(SDOperand N, unsigned& Imm) { + // test for constant + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { + // retrieve value + Imm = (unsigned)CN->getValue(); + // passes muster + return true; + } + // not a constant + return false; +} + +// isOpcWithIntImmediate - This method tests to see if the node is a specific +// opcode and that it has a immediate integer right operand. +// If so Imm will receive the 32 bit value. +static bool isOpcWithIntImmediate(SDOperand N, unsigned Opc, unsigned& Imm) { + return N.getOpcode() == Opc && isIntImmediate(N.getOperand(1), Imm); +} + +// isOprShiftImm - Returns true if the specified operand is a shift opcode with +// a immediate shift count less than 32. +static bool isOprShiftImm(SDOperand N, unsigned& Opc, unsigned& SH) { + Opc = N.getOpcode(); + return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) && + isIntImmediate(N.getOperand(1), SH) && SH < 32; +} + +// isOprNot - Returns true if the specified operand is an xor with immediate -1. +static bool isOprNot(SDOperand N) { + unsigned Imm; + return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1; +} + +// Immediate constant composers. +// Lo16 - grabs the lo 16 bits from a 32 bit constant. +// Hi16 - grabs the hi 16 bits from a 32 bit constant. +// HA16 - computes the hi bits required if the lo bits are add/subtracted in +// arithmethically. +static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; } +static unsigned Hi16(unsigned x) { return Lo16(x >> 16); } +static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); } + +/// NodeHasRecordingVariant - If SelectExpr can always produce code for +/// NodeOpcode that also sets CR0 as a side effect, return true. Otherwise, +/// return false. +static bool NodeHasRecordingVariant(unsigned NodeOpcode) { + switch(NodeOpcode) { + default: return false; + case ISD::AND: + case ISD::OR: + return true; + } +} + +/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding +/// to Condition. +static unsigned getBCCForSetCC(ISD::CondCode CC) { + switch (CC) { + default: assert(0 && "Unknown condition!"); abort(); + case ISD::SETEQ: return PPC::BEQ; + case ISD::SETNE: return PPC::BNE; + case ISD::SETULT: + case ISD::SETLT: return PPC::BLT; + case ISD::SETULE: + case ISD::SETLE: return PPC::BLE; + case ISD::SETUGT: + case ISD::SETGT: return PPC::BGT; + case ISD::SETUGE: + case ISD::SETGE: return PPC::BGE; + } + return 0; +} + +/// getCRIdxForSetCC - Return the index of the condition register field +/// associated with the SetCC condition, and whether or not the field is +/// treated as inverted. That is, lt = 0; ge = 0 inverted. +static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { + switch (CC) { + default: assert(0 && "Unknown condition!"); abort(); + case ISD::SETULT: + case ISD::SETLT: Inv = false; return 0; + case ISD::SETUGE: + case ISD::SETGE: Inv = true; return 0; + case ISD::SETUGT: + case ISD::SETGT: Inv = false; return 1; + case ISD::SETULE: + case ISD::SETLE: Inv = true; return 1; + case ISD::SETEQ: Inv = false; return 2; + case ISD::SETNE: Inv = true; return 2; + } + return 0; +} + +/// IndexedOpForOp - Return the indexed variant for each of the PowerPC load +/// and store immediate instructions. +static unsigned IndexedOpForOp(unsigned Opcode) { + switch(Opcode) { + default: assert(0 && "Unknown opcode!"); abort(); + case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX; + case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX; + case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX; + case PPC::LWZ: return PPC::LWZX; case PPC::STFS: return PPC::STFSX; + case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX; + case PPC::LFD: return PPC::LFDX; + } + return 0; +} +} + +/// getGlobalBaseReg - Output the instructions required to put the +/// base address to use for accessing globals into a register. +/// +unsigned ISel::getGlobalBaseReg() { + if (!GlobalBaseInitialized) { + // Insert the set of GlobalBaseReg into the first MBB of the function + MachineBasicBlock &FirstMBB = BB->getParent()->front(); + MachineBasicBlock::iterator MBBI = FirstMBB.begin(); + GlobalBaseReg = MakeIntReg(); + BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); + BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); + GlobalBaseInitialized = true; + } + return GlobalBaseReg; +} + +/// MoveCRtoGPR - Move CCReg[Idx] to the least significant bit of Result. If +/// Inv is true, then invert the result. +void ISel::MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result){ + bool Inv; + unsigned IntCR = MakeIntReg(); + unsigned Idx = getCRIdxForSetCC(CC, Inv); + BuildMI(BB, PPC::MCRF, 1, PPC::CR7).addReg(CCReg); + bool GPOpt = + TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor(); + if (GPOpt) + BuildMI(BB, PPC::MFOCRF, 1, IntCR).addReg(PPC::CR7); + else + BuildMI(BB, PPC::MFCR, 0, IntCR); + if (Inv) { + unsigned Tmp1 = MakeIntReg(); + BuildMI(BB, PPC::RLWINM, 4, Tmp1).addReg(IntCR).addImm(32-(3-Idx)) + .addImm(31).addImm(31); + BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(1); + } else { + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(IntCR).addImm(32-(3-Idx)) + .addImm(31).addImm(31); + } +} + +/// SelectBitfieldInsert - turn an or of two masked values into +/// the rotate left word immediate then mask insert (rlwimi) instruction. +/// Returns true on success, false if the caller still needs to select OR. +/// +/// Patterns matched: +/// 1. or shl, and 5. or and, and +/// 2. or and, shl 6. or shl, shr +/// 3. or shr, and 7. or shr, shl +/// 4. or and, shr +bool ISel::SelectBitfieldInsert(SDOperand OR, unsigned Result) { + bool IsRotate = false; + unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, Amount = 0; + unsigned Value; + + SDOperand Op0 = OR.getOperand(0); + SDOperand Op1 = OR.getOperand(1); + + unsigned Op0Opc = Op0.getOpcode(); + unsigned Op1Opc = Op1.getOpcode(); + + // Verify that we have the correct opcodes + if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) + return false; + if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) + return false; + + // Generate Mask value for Target + if (isIntImmediate(Op0.getOperand(1), Value)) { + switch(Op0Opc) { + case ISD::SHL: TgtMask <<= Value; break; + case ISD::SRL: TgtMask >>= Value; break; + case ISD::AND: TgtMask &= Value; break; + } + } else { + return false; + } + + // Generate Mask value for Insert + if (isIntImmediate(Op1.getOperand(1), Value)) { + switch(Op1Opc) { + case ISD::SHL: + Amount = Value; + InsMask <<= Amount; + if (Op0Opc == ISD::SRL) IsRotate = true; + break; + case ISD::SRL: + Amount = Value; + InsMask >>= Amount; + Amount = 32-Amount; + if (Op0Opc == ISD::SHL) IsRotate = true; + break; + case ISD::AND: + InsMask &= Value; + break; + } + } else { + return false; + } + + unsigned Tmp3 = 0; + + // If both of the inputs are ANDs and one of them has a logical shift by + // constant as its input, make that the inserted value so that we can combine + // the shift into the rotate part of the rlwimi instruction + if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { + if (Op1.getOperand(0).getOpcode() == ISD::SHL || + Op1.getOperand(0).getOpcode() == ISD::SRL) { + if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) { + Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? + Value : 32 - Value; + Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0)); + } + } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || + Op0.getOperand(0).getOpcode() == ISD::SRL) { + if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) { + std::swap(Op0, Op1); + std::swap(TgtMask, InsMask); + Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? + Value : 32 - Value; + Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0)); + } + } + } + + // Verify that the Target mask and Insert mask together form a full word mask + // and that the Insert mask is a run of set bits (which implies both are runs + // of set bits). Given that, Select the arguments and generate the rlwimi + // instruction. + unsigned MB, ME; + if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) { + unsigned Tmp1, Tmp2; + bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; + // Check for rotlwi / rotrwi here, a special case of bitfield insert + // where both bitfield halves are sourced from the same value. + if (IsRotate && fullMask && + OR.getOperand(0).getOperand(0) == OR.getOperand(1).getOperand(0)) { + Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0)); + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Amount) + .addImm(0).addImm(31); + return true; + } + if (Op0Opc == ISD::AND && fullMask) + Tmp1 = SelectExpr(Op0.getOperand(0)); + else + Tmp1 = SelectExpr(Op0); + Tmp2 = Tmp3 ? Tmp3 : SelectExpr(Op1.getOperand(0)); + BuildMI(BB, PPC::RLWIMI, 5, Result).addReg(Tmp1).addReg(Tmp2) + .addImm(Amount).addImm(MB).addImm(ME); + return true; + } + return false; +} + +/// FoldIfWideZeroExtend - 32 bit PowerPC implicit masks shift amounts to the +/// low six bits. If the shift amount is an ISD::AND node with a mask that is +/// wider than the implicit mask, then we can get rid of the AND and let the +/// shift do the mask. +unsigned ISel::FoldIfWideZeroExtend(SDOperand N) { + unsigned C; + if (isOpcWithIntImmediate(N, ISD::AND, C) && isMask_32(C) && C > 63) + return SelectExpr(N.getOperand(0)); + else + return SelectExpr(N); +} + +unsigned ISel::SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC) { + unsigned Result, Tmp1, Tmp2; + bool AlreadySelected = false; + + // Allocate a condition register for this expression + Result = RegMap->createVirtualRegister(PPC::CRRCRegisterClass); + + // Use U to determine whether the SETCC immediate range is signed or not. + bool U = ISD::isUnsignedIntSetCC(CC); + if (isIntImmediate(RHS, Tmp2) && + ((U && isUInt16(Tmp2)) || (!U && isInt16(Tmp2)))) { + Tmp2 = Lo16(Tmp2); + // For comparisons against zero, we can implicity set CR0 if a recording + // variant (e.g. 'or.' instead of 'or') of the instruction that defines + // operand zero of the SetCC node is available. + if (Tmp2 == 0 && + NodeHasRecordingVariant(LHS.getOpcode()) && LHS.Val->hasOneUse()) { + RecordSuccess = false; + Tmp1 = SelectExpr(LHS, true); + if (RecordSuccess) { + ++Recorded; + BuildMI(BB, PPC::MCRF, 1, Result).addReg(PPC::CR0); + return Result; + } + AlreadySelected = true; + } + // If we could not implicitly set CR0, then emit a compare immediate + // instead. + if (!AlreadySelected) Tmp1 = SelectExpr(LHS); + if (U) + BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(Tmp2); + else + BuildMI(BB, PPC::CMPWI, 2, Result).addReg(Tmp1).addSImm(Tmp2); + } else { + unsigned CompareOpc; + if (MVT::isInteger(LHS.getValueType())) + CompareOpc = U ? PPC::CMPLW : PPC::CMPW; + else if (LHS.getValueType() == MVT::f32) + CompareOpc = PPC::FCMPUS; + else + CompareOpc = PPC::FCMPUD; + Tmp1 = SelectExpr(LHS); + Tmp2 = SelectExpr(RHS); + BuildMI(BB, CompareOpc, 2, Result).addReg(Tmp1).addReg(Tmp2); + } + return Result; +} + +/// Check to see if the load is a constant offset from a base register. +unsigned ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset) +{ + unsigned imm = 0, opcode = N.getOpcode(); + if (N.getOpcode() == ISD::ADD) { + bool isFrame = N.getOperand(0).getOpcode() == ISD::FrameIndex; + if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) { + offset = Lo16(imm); + if (isFrame) { + ++FrameOff; + Reg = cast<FrameIndexSDNode>(N.getOperand(0))->getIndex(); + return 1; + } else { + Reg = SelectExpr(N.getOperand(0)); + return 0; + } + } else { + Reg = SelectExpr(N.getOperand(0)); + offset = SelectExpr(N.getOperand(1)); + return 2; + } + } + // Now check if we're dealing with a global, and whether or not we should emit + // an optimized load or store for statics. + if(GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(N)) { + GlobalValue *GV = GN->getGlobal(); + if (!GV->hasWeakLinkage() && !GV->isExternal()) { + unsigned GlobalHi = MakeIntReg(); + if (PICEnabled) + BuildMI(BB, PPC::ADDIS, 2, GlobalHi).addReg(getGlobalBaseReg()) + .addGlobalAddress(GV); + else + BuildMI(BB, PPC::LIS, 1, GlobalHi).addGlobalAddress(GV); + Reg = GlobalHi; + offset = 0; + return 3; + } + } + Reg = SelectExpr(N); + offset = 0; + return 0; +} + +void ISel::SelectBranchCC(SDOperand N) +{ + MachineBasicBlock *Dest = + cast<BasicBlockSDNode>(N.getOperand(4))->getBasicBlock(); + + Select(N.getOperand(0)); //chain + ISD::CondCode CC = cast<CondCodeSDNode>(N.getOperand(1))->get(); + unsigned CCReg = SelectCC(N.getOperand(2), N.getOperand(3), CC); + unsigned Opc = getBCCForSetCC(CC); + + // If this is a two way branch, then grab the fallthrough basic block argument + // and build a PowerPC branch pseudo-op, suitable for long branch conversion + // if necessary by the branch selection pass. Otherwise, emit a standard + // conditional branch. + if (N.getOpcode() == ISD::BRTWOWAY_CC) { + MachineBasicBlock *Fallthrough = + cast<BasicBlockSDNode>(N.getOperand(5))->getBasicBlock(); + BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) + .addMBB(Dest).addMBB(Fallthrough); + BuildMI(BB, PPC::B, 1).addMBB(Fallthrough); + } else { + // Iterate to the next basic block + ilist<MachineBasicBlock>::iterator It = BB; + ++It; + + // If the fallthrough path is off the end of the function, which would be + // undefined behavior, set it to be the same as the current block because + // we have nothing better to set it to, and leaving it alone will cause the + // PowerPC Branch Selection pass to crash. + if (It == BB->getParent()->end()) It = Dest; + BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) + .addMBB(Dest).addMBB(It); + } + return; +} + +// SelectIntImmediateExpr - Choose code for opcodes with immediate value. +bool ISel::SelectIntImmediateExpr(SDOperand N, unsigned Result, + unsigned OCHi, unsigned OCLo, + bool IsArithmetic, bool Negate) { + // check constant + ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)); + // exit if not a constant + if (!CN) return false; + // extract immediate + unsigned C = (unsigned)CN->getValue(); + // negate if required (ISD::SUB) + if (Negate) C = -C; + // get the hi and lo portions of constant + unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C); + unsigned Lo = Lo16(C); + // assume no intermediate result from lo instruction (same as final result) + unsigned Tmp = Result; + // check if two instructions are needed + if (Hi && Lo) { + // exit if usage indicates it would be better to load immediate into a + // register + if (CN->use_size() > 2) return false; + // need intermediate result for two instructions + Tmp = MakeIntReg(); + } + // get first operand + unsigned Opr0 = SelectExpr(N.getOperand(0)); + // is a lo instruction needed + if (Lo) { + // generate instruction for lo portion + BuildMI(BB, OCLo, 2, Tmp).addReg(Opr0).addImm(Lo); + // need to switch out first operand for hi instruction + Opr0 = Tmp; + } + // is a hi instruction needed + if (Hi) { + // generate instruction for hi portion + BuildMI(BB, OCHi, 2, Result).addReg(Opr0).addImm(Hi); + } + return true; +} + +unsigned ISel::SelectExpr(SDOperand N, bool Recording) { + unsigned Result; + unsigned Tmp1, Tmp2, Tmp3; + unsigned Opc = 0; + unsigned opcode = N.getOpcode(); + + SDNode *Node = N.Val; + MVT::ValueType DestType = N.getValueType(); + + if (Node->getOpcode() == ISD::CopyFromReg) { + unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); + // Just use the specified register as our input. + if (MRegisterInfo::isVirtualRegister(Reg) || Reg == PPC::R1) + return Reg; + } + + unsigned &Reg = ExprMap[N]; + if (Reg) return Reg; + + switch (N.getOpcode()) { + default: + Reg = Result = (N.getValueType() != MVT::Other) ? + MakeReg(N.getValueType()) : 1; + break; + case ISD::AssertSext: + case ISD::AssertZext: + // Don't allocate a vreg for these nodes. + return Reg = SelectExpr(N.getOperand(0)); + case ISD::TAILCALL: + case ISD::CALL: + // If this is a call instruction, make sure to prepare ALL of the result + // values as well as the chain. + if (Node->getNumValues() == 1) + Reg = Result = 1; // Void call, just a chain. + else { + Result = MakeReg(Node->getValueType(0)); + ExprMap[N.getValue(0)] = Result; + for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) + ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); + ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; + } + break; + case ISD::ADD_PARTS: + case ISD::SUB_PARTS: + Result = MakeReg(Node->getValueType(0)); + ExprMap[N.getValue(0)] = Result; + for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) + ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); + break; + } + + switch (opcode) { + default: + Node->dump(); std::cerr << '\n'; + assert(0 && "Node not handled!\n"); + case PPCISD::FSEL: + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + Tmp3 = SelectExpr(N.getOperand(2)); + + // Extend the comparison to 64-bits if needed. + if (N.getOperand(0).getValueType() == MVT::f32) { + unsigned Tmp1New = MakeReg(MVT::f64); + BuildMI(BB, PPC::FMRSD, 1, Tmp1New).addReg(Tmp1); + Tmp1 = Tmp1New; + } + + Opc = N.Val->getValueType(0) == MVT::f32 ? PPC::FSELS : PPC::FSELD; + BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); + return Result; + case PPCISD::FCFID: + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::FCFID, 1, Result).addReg(Tmp1); + return Result; + case PPCISD::FCTIDZ: + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::FCTIDZ, 1, Result).addReg(Tmp1); + return Result; + case PPCISD::FCTIWZ: + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::FCTIWZ, 1, Result).addReg(Tmp1); + return Result; + case ISD::UNDEF: + if (Node->getValueType(0) == MVT::i32) + BuildMI(BB, PPC::IMPLICIT_DEF_GPR, 0, Result); + else if (Node->getValueType(0) == MVT::f32) + BuildMI(BB, PPC::IMPLICIT_DEF_F4, 0, Result); + else + BuildMI(BB, PPC::IMPLICIT_DEF_F8, 0, Result); + return Result; + case ISD::DYNAMIC_STACKALLOC: + // Generate both result values. FIXME: Need a better commment here? + if (Result != 1) + ExprMap[N.getValue(1)] = 1; + else + Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); + + // FIXME: We are currently ignoring the requested alignment for handling + // greater than the stack alignment. This will need to be revisited at some + // point. Align = N.getOperand(2); + if (!isa<ConstantSDNode>(N.getOperand(2)) || + cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { + std::cerr << "Cannot allocate stack object with greater alignment than" + << " the stack alignment yet!"; + abort(); + } + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + // Subtract size from stack pointer, thereby allocating some space. + BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1); + // Put a pointer to the space into the result register by copying the SP + BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R1).addReg(PPC::R1); + return Result; + + case ISD::ConstantPool: + Tmp1 = BB->getParent()->getConstantPool()-> + getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get()); + Tmp2 = MakeIntReg(); + if (PICEnabled) + BuildMI(BB, PPC::ADDIS, 2, Tmp2).addReg(getGlobalBaseReg()) + .addConstantPoolIndex(Tmp1); + else + BuildMI(BB, PPC::LIS, 1, Tmp2).addConstantPoolIndex(Tmp1); + BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1); + return Result; + + case ISD::FrameIndex: + Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); + addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false); + return Result; + + case ISD::GlobalAddress: { + GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); + Tmp1 = MakeIntReg(); + if (PICEnabled) + BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg()) + .addGlobalAddress(GV); + else + BuildMI(BB, PPC::LIS, 1, Tmp1).addGlobalAddress(GV); + if (GV->hasWeakLinkage() || GV->isExternal()) { + BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1); + } else { + BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV); + } + return Result; + } + + case ISD::LOAD: + case ISD::EXTLOAD: + case ISD::ZEXTLOAD: + case ISD::SEXTLOAD: { + MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ? + Node->getValueType(0) : cast<VTSDNode>(Node->getOperand(3))->getVT(); + bool sext = (ISD::SEXTLOAD == opcode); + + // Make sure we generate both values. + if (Result != 1) + ExprMap[N.getValue(1)] = 1; // Generate the token + else + Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); + + SDOperand Chain = N.getOperand(0); + SDOperand Address = N.getOperand(1); + Select(Chain); + + switch (TypeBeingLoaded) { + default: Node->dump(); assert(0 && "Cannot load this type!"); + case MVT::i1: Opc = PPC::LBZ; break; + case MVT::i8: Opc = PPC::LBZ; break; + case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break; + case MVT::i32: Opc = PPC::LWZ; break; + case MVT::f32: Opc = PPC::LFS; break; + case MVT::f64: Opc = PPC::LFD; break; + } + + if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) { + Tmp1 = MakeIntReg(); + unsigned CPI = BB->getParent()->getConstantPool()-> + getConstantPoolIndex(CP->get()); + if (PICEnabled) + BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg()) + .addConstantPoolIndex(CPI); + else + BuildMI(BB, PPC::LIS, 1, Tmp1).addConstantPoolIndex(CPI); + BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1); + } else if (Address.getOpcode() == ISD::FrameIndex) { + Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex(); + addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1); + } else { + int offset; + switch(SelectAddr(Address, Tmp1, offset)) { + default: assert(0 && "Unhandled return value from SelectAddr"); + case 0: // imm offset, no frame, no index + BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1); + break; + case 1: // imm offset + frame index + addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1, offset); + break; + case 2: // base+index addressing + Opc = IndexedOpForOp(Opc); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset); + break; + case 3: { + GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Address); + GlobalValue *GV = GN->getGlobal(); + BuildMI(BB, Opc, 2, Result).addGlobalAddress(GV).addReg(Tmp1); + } + } + } + return Result; + } + + case ISD::TAILCALL: + case ISD::CALL: { + unsigned GPR_idx = 0, FPR_idx = 0; + static const unsigned GPR[] = { + PPC::R3, PPC::R4, PPC::R5, PPC::R6, + PPC::R7, PPC::R8, PPC::R9, PPC::R10, + }; + static const unsigned FPR[] = { + PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, + PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 + }; + + // Lower the chain for this call. + Select(N.getOperand(0)); + ExprMap[N.getValue(Node->getNumValues()-1)] = 1; + + MachineInstr *CallMI; + // Emit the correct call instruction based on the type of symbol called. + if (GlobalAddressSDNode *GASD = + dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { + CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(), + true); + } else if (ExternalSymbolSDNode *ESSDN = + dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) { + CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(), + true); + } else { + Tmp1 = SelectExpr(N.getOperand(1)); + BuildMI(BB, PPC::MTCTR, 1).addReg(Tmp1); + BuildMI(BB, PPC::OR4, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1); + CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0) + .addReg(PPC::R12); + } + + // Load the register args to virtual regs + std::vector<unsigned> ArgVR; + for(int i = 2, e = Node->getNumOperands(); i < e; ++i) + ArgVR.push_back(SelectExpr(N.getOperand(i))); + + // Copy the virtual registers into the appropriate argument register + for(int i = 0, e = ArgVR.size(); i < e; ++i) { + switch(N.getOperand(i+2).getValueType()) { + default: Node->dump(); assert(0 && "Unknown value type for call"); + case MVT::i32: + assert(GPR_idx < 8 && "Too many int args"); + if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) { + BuildMI(BB, PPC::OR4,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]); + CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); + } + ++GPR_idx; + break; + case MVT::f64: + case MVT::f32: + assert(FPR_idx < 13 && "Too many fp args"); + BuildMI(BB, N.getOperand(i+2).getValueType() == MVT::f32 ? PPC::FMRS : + PPC::FMRD, 1, FPR[FPR_idx]).addReg(ArgVR[i]); + CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); + ++FPR_idx; + break; + } + } + + // Put the call instruction in the correct place in the MachineBasicBlock + BB->push_back(CallMI); + + switch (Node->getValueType(0)) { + default: assert(0 && "Unknown value type for call result!"); + case MVT::Other: return 1; + case MVT::i32: + if (Node->getValueType(1) == MVT::i32) { + BuildMI(BB, PPC::OR4, 2, Result+1).addReg(PPC::R3).addReg(PPC::R3); + BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R4).addReg(PPC::R4); + } else { + BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R3).addReg(PPC::R3); + } + break; + case MVT::f32: + BuildMI(BB, PPC::FMRS, 1, Result).addReg(PPC::F1); + break; + case MVT::f64: + BuildMI(BB, PPC::FMRD, 1, Result).addReg(PPC::F1); + break; + } + return Result+N.ResNo; + } + + case ISD::SIGN_EXTEND_INREG: + Tmp1 = SelectExpr(N.getOperand(0)); + switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) { + default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break; + case MVT::i16: + BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1); + break; + case MVT::i8: + BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1); + break; + } + return Result; + + case ISD::CopyFromReg: + DestType = N.getValue(0).getValueType(); + if (Result == 1) + Result = ExprMap[N.getValue(0)] = MakeReg(DestType); + else + ExprMap[N.getValue(1)] = 1; + Tmp1 = dyn_cast<RegisterSDNode>(Node->getOperand(1))->getReg(); + if (MVT::isInteger(DestType)) + BuildMI(BB, PPC::OR4, 2, Result).addReg(Tmp1).addReg(Tmp1); + else if (DestType == MVT::f32) + BuildMI(BB, PPC::FMRS, 1, Result).addReg(Tmp1); + else + BuildMI(BB, PPC::FMRD, 1, Result).addReg(Tmp1); + return Result; + + case ISD::SHL: + if (isIntImmediate(N.getOperand(1), Tmp2)) { + unsigned SH, MB, ME; + if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) && + isRotateAndMask(ISD::SHL, Tmp2, Tmp3, true, SH, MB, ME)) { + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH) + .addImm(MB).addImm(ME); + return Result; + } + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 &= 0x1F; + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0) + .addImm(31-Tmp2); + } else { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); + BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2); + } + return Result; + + case ISD::SRL: + if (isIntImmediate(N.getOperand(1), Tmp2)) { + unsigned SH, MB, ME; + if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) && + isRotateAndMask(ISD::SRL, Tmp2, Tmp3, true, SH, MB, ME)) { + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH & 0x1F) + .addImm(MB).addImm(ME); + return Result; + } + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 &= 0x1F; + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm((32-Tmp2) & 0x1F) + .addImm(Tmp2).addImm(31); + } else { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); + BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2); + } + return Result; + + case ISD::SRA: + if (isIntImmediate(N.getOperand(1), Tmp2)) { + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2 & 0x1F); + } else { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); + BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2); + } + return Result; + + case ISD::CTLZ: + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::CNTLZW, 1, Result).addReg(Tmp1); + return Result; + + case ISD::ADD: + if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true)) + return Result; + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, PPC::ADD4, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::FADD: + if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::FMUL && + N.getOperand(0).Val->hasOneUse()) { + ++FusedFP; // Statistic + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); + Tmp3 = SelectExpr(N.getOperand(1)); + Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; + BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); + return Result; + } + if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::FMUL && + N.getOperand(1).Val->hasOneUse()) { + ++FusedFP; // Statistic + Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); + Tmp3 = SelectExpr(N.getOperand(0)); + Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; + BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); + return Result; + } + Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::AND: + if (isIntImmediate(N.getOperand(1), Tmp2)) { + if (isShiftedMask_32(Tmp2) || isShiftedMask_32(~Tmp2)) { + unsigned SH, MB, ME; + Opc = Recording ? PPC::RLWINMo : PPC::RLWINM; + unsigned OprOpc; + if (isOprShiftImm(N.getOperand(0), OprOpc, Tmp3) && + isRotateAndMask(OprOpc, Tmp3, Tmp2, false, SH, MB, ME)) { + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + } else { + Tmp1 = SelectExpr(N.getOperand(0)); + isRunOfOnes(Tmp2, MB, ME); + SH = 0; + } + BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(SH) + .addImm(MB).addImm(ME); + RecordSuccess = true; + return Result; + } else if (isUInt16(Tmp2)) { + Tmp2 = Lo16(Tmp2); + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::ANDIo, 2, Result).addReg(Tmp1).addImm(Tmp2); + RecordSuccess = true; + return Result; + } else if (isUInt16(Tmp2)) { + Tmp2 = Hi16(Tmp2); + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::ANDISo, 2, Result).addReg(Tmp1).addImm(Tmp2); + RecordSuccess = true; + return Result; + } + } + if (isOprNot(N.getOperand(1))) { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1).getOperand(0)); + BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2); + RecordSuccess = false; + return Result; + } + if (isOprNot(N.getOperand(0))) { + Tmp1 = SelectExpr(N.getOperand(1)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(0)); + BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2); + RecordSuccess = false; + return Result; + } + // emit a regular and + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + Opc = Recording ? PPC::ANDo : PPC::AND; + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + RecordSuccess = true; + return Result; + + case ISD::OR: + if (SelectBitfieldInsert(N, Result)) + return Result; + if (SelectIntImmediateExpr(N, Result, PPC::ORIS, PPC::ORI)) + return Result; + if (isOprNot(N.getOperand(1))) { + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1).getOperand(0)); + BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2); + RecordSuccess = false; + return Result; + } + if (isOprNot(N.getOperand(0))) { + Tmp1 = SelectExpr(N.getOperand(1)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(0)); + BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2); + RecordSuccess = false; + return Result; + } + // emit regular or + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + Opc = Recording ? PPC::ORo : PPC::OR4; + RecordSuccess = true; + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::XOR: { + // Check for EQV: xor, (xor a, -1), b + if (isOprNot(N.getOperand(0))) { + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + } + // Check for NOT, NOR, EQV, and NAND: xor (copy, or, xor, and), -1 + if (isOprNot(N)) { + switch(N.getOperand(0).getOpcode()) { + case ISD::OR: + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); + BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2); + break; + case ISD::AND: + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); + BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2); + break; + case ISD::XOR: + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); + BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2); + break; + default: + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1); + break; + } + return Result; + } + if (SelectIntImmediateExpr(N, Result, PPC::XORIS, PPC::XORI)) + return Result; + // emit regular xor + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + } + + case ISD::FSUB: + if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::FMUL && + N.getOperand(0).Val->hasOneUse()) { + ++FusedFP; // Statistic + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); + Tmp3 = SelectExpr(N.getOperand(1)); + Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS; + BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); + return Result; + } + if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::FMUL && + N.getOperand(1).Val->hasOneUse()) { + ++FusedFP; // Statistic + Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); + Tmp3 = SelectExpr(N.getOperand(0)); + Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS; + BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); + return Result; + } + Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + case ISD::SUB: + if (isIntImmediate(N.getOperand(0), Tmp1) && isInt16(Tmp1)) { + Tmp1 = Lo16(Tmp1); + Tmp2 = SelectExpr(N.getOperand(1)); + if (0 == Tmp1) + BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp2); + else + BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1); + return Result; + } + if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true, true)) + return Result; + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1); + return Result; + + case ISD::FMUL: + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, DestType == MVT::f32 ? PPC::FMULS : PPC::FMUL, 2, + Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::MUL: + Tmp1 = SelectExpr(N.getOperand(0)); + if (isIntImmediate(N.getOperand(1), Tmp2) && isInt16(Tmp2)) { + Tmp2 = Lo16(Tmp2); + BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2); + } else { + Tmp2 = SelectExpr(N.getOperand(1)); + BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2); + } + return Result; + + case ISD::MULHS: + case ISD::MULHU: + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + Opc = (ISD::MULHU == opcode) ? PPC::MULHWU : PPC::MULHW; + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::FDIV: + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + switch (DestType) { + default: assert(0 && "Unknown type to ISD::FDIV"); break; + case MVT::f32: Opc = PPC::FDIVS; break; + case MVT::f64: Opc = PPC::FDIV; break; + } + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::SDIV: + if (isIntImmediate(N.getOperand(1), Tmp3)) { + if ((signed)Tmp3 > 0 && isPowerOf2_32(Tmp3)) { + Tmp3 = Log2_32(Tmp3); + Tmp1 = MakeIntReg(); + Tmp2 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3); + BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1); + return Result; + } else if ((signed)Tmp3 < 0 && isPowerOf2_32(-Tmp3)) { + Tmp3 = Log2_32(-Tmp3); + Tmp2 = SelectExpr(N.getOperand(0)); + Tmp1 = MakeIntReg(); + unsigned Tmp4 = MakeIntReg(); + BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3); + BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1); + BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4); + return Result; + } + } + // fall thru + case ISD::UDIV: + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; break; + BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); + return Result; + + case ISD::ADD_PARTS: + case ISD::SUB_PARTS: { + assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && + "Not an i64 add/sub!"); + unsigned Tmp4 = 0; + Tmp1 = SelectExpr(N.getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(1)); + + if (N.getOpcode() == ISD::ADD_PARTS) { + bool ME = false, ZE = false; + if (isIntImmediate(N.getOperand(3), Tmp3)) { + ME = (signed)Tmp3 == -1; + ZE = Tmp3 == 0; + } + + if (!ZE && !ME) + Tmp4 = SelectExpr(N.getOperand(3)); + + if (isIntImmediate(N.getOperand(2), Tmp3) && + ((signed)Tmp3 >= -32768 || (signed)Tmp3 < 32768)) { + // Codegen the low 32 bits of the add. Interestingly, there is no + // shifted form of add immediate carrying. + BuildMI(BB, PPC::ADDIC, 2, Result).addReg(Tmp1).addSImm(Tmp3); + } else { + Tmp3 = SelectExpr(N.getOperand(2)); + BuildMI(BB, PPC::ADDC, 2, Result).addReg(Tmp1).addReg(Tmp3); + } + + // Codegen the high 32 bits, adding zero, minus one, or the full value + // along with the carry flag produced by addc/addic to tmp2. + if (ZE) { + BuildMI(BB, PPC::ADDZE, 1, Result+1).addReg(Tmp2); + } else if (ME) { + BuildMI(BB, PPC::ADDME, 1, Result+1).addReg(Tmp2); + } else { + BuildMI(BB, PPC::ADDE, 2, Result+1).addReg(Tmp2).addReg(Tmp4); + } + } else { + Tmp3 = SelectExpr(N.getOperand(2)); + Tmp4 = SelectExpr(N.getOperand(3)); + BuildMI(BB, PPC::SUBFC, 2, Result).addReg(Tmp3).addReg(Tmp1); + BuildMI(BB, PPC::SUBFE, 2, Result+1).addReg(Tmp4).addReg(Tmp2); + } + return Result+N.ResNo; + } + + case ISD::SETCC: { + ISD::CondCode CC = cast<CondCodeSDNode>(Node->getOperand(2))->get(); + if (isIntImmediate(Node->getOperand(1), Tmp3)) { + // We can codegen setcc op, imm very efficiently compared to a brcond. + // Check for those cases here. + // setcc op, 0 + if (Tmp3 == 0) { + Tmp1 = SelectExpr(Node->getOperand(0)); + switch (CC) { + default: Node->dump(); assert(0 && "Unhandled SetCC condition");abort(); + case ISD::SETEQ: + Tmp2 = MakeIntReg(); + BuildMI(BB, PPC::CNTLZW, 1, Tmp2).addReg(Tmp1); + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp2).addImm(27) + .addImm(5).addImm(31); + break; + case ISD::SETNE: + Tmp2 = MakeIntReg(); + BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1); + BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1); + break; + case ISD::SETLT: + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(1) + .addImm(31).addImm(31); + break; + case ISD::SETGT: + Tmp2 = MakeIntReg(); + Tmp3 = MakeIntReg(); + BuildMI(BB, PPC::NEG, 2, Tmp2).addReg(Tmp1); + BuildMI(BB, PPC::ANDC, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) + .addImm(31).addImm(31); + break; + } + return Result; + } else if (Tmp3 == ~0U) { // setcc op, -1 + Tmp1 = SelectExpr(Node->getOperand(0)); + switch (CC) { + default: assert(0 && "Unhandled SetCC condition"); abort(); + case ISD::SETEQ: + Tmp2 = MakeIntReg(); + Tmp3 = MakeIntReg(); + BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(1); + BuildMI(BB, PPC::LI, 1, Tmp3).addSImm(0); + BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp3); + break; + case ISD::SETNE: + Tmp2 = MakeIntReg(); + Tmp3 = MakeIntReg(); + BuildMI(BB, PPC::NOR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); + BuildMI(BB, PPC::ADDIC, 2, Tmp3).addReg(Tmp2).addSImm(-1); + BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp3).addReg(Tmp2); + break; + case ISD::SETLT: + Tmp2 = MakeIntReg(); + Tmp3 = MakeIntReg(); + BuildMI(BB, PPC::ADDI, 2, Tmp2).addReg(Tmp1).addSImm(1); + BuildMI(BB, PPC::AND, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); + BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) + .addImm(31).addImm(31); + break; + case ISD::SETGT: + Tmp2 = MakeIntReg(); + BuildMI(BB, PPC::RLWINM, 4, Tmp2).addReg(Tmp1).addImm(1) + .addImm(31).addImm(31); + BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp2).addImm(1); + break; + } + return Result; + } + } + + unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC); + MoveCRtoGPR(CCReg, CC, Result); + return Result; + } + + case ISD::SELECT_CC: { + ISD::CondCode CC = cast<CondCodeSDNode>(N.getOperand(4))->get(); + + // handle the setcc cases here. select_cc lhs, 0, 1, 0, cc + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N.getOperand(2)); + ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N.getOperand(3)); + if (N1C && N2C && N3C && N1C->isNullValue() && N3C->isNullValue() && + N2C->getValue() == 1ULL && CC == ISD::SETNE) { + Tmp1 = SelectExpr(Node->getOperand(0)); + Tmp2 = MakeIntReg(); + BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1); + BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1); + return Result; + } + + // If the False value only has one use, we can generate better code by + // selecting it in the fallthrough basic block rather than here, which + // increases register pressure. + unsigned TrueValue = SelectExpr(N.getOperand(2)); + unsigned FalseValue; + + // If the false value is simple enough, evaluate it inline in the false + // block. + if (N.getOperand(3).Val->hasOneUse() && + (isa<ConstantSDNode>(N.getOperand(3)) || + isa<GlobalAddressSDNode>(N.getOperand(3)))) + FalseValue = 0; + else + FalseValue = SelectExpr(N.getOperand(3)); + unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC); + Opc = getBCCForSetCC(CC); + + // Create an iterator with which to insert the MBB for copying the false + // value and the MBB to hold the PHI instruction for this SetCC. + MachineBasicBlock *thisMBB = BB; + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + ilist<MachineBasicBlock>::iterator It = BB; + ++It; + + // thisMBB: + // ... + // TrueVal = ... + // cmpTY ccX, r1, r2 + // bCC copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); + BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB); + MachineFunction *F = BB->getParent(); + F->getBasicBlockList().insert(It, copy0MBB); + F->getBasicBlockList().insert(It, sinkMBB); + // Update machine-CFG edges + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // If the false value is simple enough, evaluate it here, to avoid it being + // evaluated on the true edge. + if (FalseValue == 0) + FalseValue = SelectExpr(N.getOperand(3)); + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + BB = sinkMBB; + BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue) + .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); + return Result; + } + + case ISD::Constant: { + assert(N.getValueType() == MVT::i32 && + "Only i32 constants are legal on this target!"); + unsigned v = (unsigned)cast<ConstantSDNode>(N)->getValue(); + if (isInt16(v)) { + BuildMI(BB, PPC::LI, 1, Result).addSImm(Lo16(v)); + } else { + unsigned Hi = Hi16(v); + unsigned Lo = Lo16(v); + if (Lo) { + Tmp1 = MakeIntReg(); + BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(Hi); + BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(Lo); + } else { + BuildMI(BB, PPC::LIS, 1, Result).addSImm(Hi); + } + } + return Result; + } + + case ISD::FNEG: + if (!NoExcessFPPrecision && + ISD::FADD == N.getOperand(0).getOpcode() && + N.getOperand(0).Val->hasOneUse() && + ISD::FMUL == N.getOperand(0).getOperand(0).getOpcode() && + N.getOperand(0).getOperand(0).Val->hasOneUse()) { + ++FusedFP; // Statistic + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1)); + Tmp3 = SelectExpr(N.getOperand(0).getOperand(1)); + Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; + BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); + } else if (!NoExcessFPPrecision && + ISD::FADD == N.getOperand(0).getOpcode() && + N.getOperand(0).Val->hasOneUse() && + ISD::FMUL == N.getOperand(0).getOperand(1).getOpcode() && + N.getOperand(0).getOperand(1).Val->hasOneUse()) { + ++FusedFP; // Statistic + Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0)); + Tmp2 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(1)); + Tmp3 = SelectExpr(N.getOperand(0).getOperand(0)); + Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; + BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); + } else if (ISD::FABS == N.getOperand(0).getOpcode()) { + Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); + if (N.getOperand(0).getValueType() == MVT::f32) + BuildMI(BB, PPC::FNABSS, 1, Result).addReg(Tmp1); + else + BuildMI(BB, PPC::FNABSD, 1, Result).addReg(Tmp1); + + } else { + Tmp1 = SelectExpr(N.getOperand(0)); + if (N.getOperand(0).getValueType() == MVT::f32) + BuildMI(BB, PPC::FNEGS, 1, Result).addReg(Tmp1); + else + BuildMI(BB, PPC::FNEGD, 1, Result).addReg(Tmp1); + } + return Result; + + case ISD::FABS: + Tmp1 = SelectExpr(N.getOperand(0)); + if (N.getOperand(0).getValueType() == MVT::f32) + BuildMI(BB, PPC::FABSS, 1, Result).addReg(Tmp1); + else + BuildMI(BB, PPC::FABSD, 1, Result).addReg(Tmp1); + return Result; + + case ISD::FSQRT: + Tmp1 = SelectExpr(N.getOperand(0)); + Opc = DestType == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS; + BuildMI(BB, Opc, 1, Result).addReg(Tmp1); + return Result; + + case ISD::FP_ROUND: + assert (DestType == MVT::f32 && + N.getOperand(0).getValueType() == MVT::f64 && + "only f64 to f32 conversion supported here"); + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1); + return Result; + + case ISD::FP_EXTEND: + assert (DestType == MVT::f64 && + N.getOperand(0).getValueType() == MVT::f32 && + "only f32 to f64 conversion supported here"); + Tmp1 = SelectExpr(N.getOperand(0)); + BuildMI(BB, PPC::FMRSD, 1, Result).addReg(Tmp1); + return Result; + } + return 0; +} + +void ISel::Select(SDOperand N) { + unsigned Tmp1, Tmp2, Tmp3, Opc; + unsigned opcode = N.getOpcode(); + + if (!ExprMap.insert(std::make_pair(N, 1)).second) + return; // Already selected. + + SDNode *Node = N.Val; + + switch (Node->getOpcode()) { + default: + Node->dump(); std::cerr << "\n"; + assert(0 && "Node not handled yet!"); + case ISD::EntryToken: return; // Noop + case ISD::TokenFactor: + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) + Select(Node->getOperand(i)); + return; + case ISD::CALLSEQ_START: + case ISD::CALLSEQ_END: + Select(N.getOperand(0)); + Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); + Opc = N.getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN : + PPC::ADJCALLSTACKUP; + BuildMI(BB, Opc, 1).addImm(Tmp1); + return; + case ISD::BR: { + MachineBasicBlock *Dest = + cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); + Select(N.getOperand(0)); + BuildMI(BB, PPC::B, 1).addMBB(Dest); + return; + } + case ISD::BR_CC: + case ISD::BRTWOWAY_CC: + SelectBranchCC(N); + return; + case ISD::CopyToReg: + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(2)); + Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg(); + + if (Tmp1 != Tmp2) { + if (N.getOperand(2).getValueType() == MVT::f64) + BuildMI(BB, PPC::FMRD, 1, Tmp2).addReg(Tmp1); + else if (N.getOperand(2).getValueType() == MVT::f32) + BuildMI(BB, PPC::FMRS, 1, Tmp2).addReg(Tmp1); + else + BuildMI(BB, PPC::OR4, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); + } + return; + case ISD::ImplicitDef: + Select(N.getOperand(0)); + Tmp1 = cast<RegisterSDNode>(N.getOperand(1))->getReg(); + if (N.getOperand(1).getValueType() == MVT::i32) + BuildMI(BB, PPC::IMPLICIT_DEF_GPR, 0, Tmp1); + else if (N.getOperand(1).getValueType() == MVT::f32) + BuildMI(BB, PPC::IMPLICIT_DEF_F4, 0, Tmp1); + else + BuildMI(BB, PPC::IMPLICIT_DEF_F8, 0, Tmp1); + return; + case ISD::RET: + switch (N.getNumOperands()) { + default: + assert(0 && "Unknown return instruction!"); + case 3: + assert(N.getOperand(1).getValueType() == MVT::i32 && + N.getOperand(2).getValueType() == MVT::i32 && + "Unknown two-register value!"); + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + Tmp2 = SelectExpr(N.getOperand(2)); + BuildMI(BB, PPC::OR4, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2); + BuildMI(BB, PPC::OR4, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1); + break; + case 2: + Select(N.getOperand(0)); + Tmp1 = SelectExpr(N.getOperand(1)); + switch (N.getOperand(1).getValueType()) { + default: + assert(0 && "Unknown return type!"); + case MVT::f64: + BuildMI(BB, PPC::FMRD, 1, PPC::F1).addReg(Tmp1); + break; + case MVT::f32: + BuildMI(BB, PPC::FMRS, 1, PPC::F1).addReg(Tmp1); + break; + case MVT::i32: + BuildMI(BB, PPC::OR4, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); + break; + } + case 1: + Select(N.getOperand(0)); + break; + } + BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction + return; + case ISD::TRUNCSTORE: + case ISD::STORE: { + SDOperand Chain = N.getOperand(0); + SDOperand Value = N.getOperand(1); + SDOperand Address = N.getOperand(2); + Select(Chain); + + Tmp1 = SelectExpr(Value); //value + + if (opcode == ISD::STORE) { + switch(Value.getValueType()) { + default: assert(0 && "unknown Type in store"); + case MVT::i32: Opc = PPC::STW; break; + case MVT::f64: Opc = PPC::STFD; break; + case MVT::f32: Opc = PPC::STFS; break; + } + } else { //ISD::TRUNCSTORE + switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) { + default: assert(0 && "unknown Type in store"); + case MVT::i8: Opc = PPC::STB; break; + case MVT::i16: Opc = PPC::STH; break; + } + } + + if(Address.getOpcode() == ISD::FrameIndex) { + Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex(); + addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2); + } else { + int offset; + switch(SelectAddr(Address, Tmp2, offset)) { + default: assert(0 && "Unhandled return value from SelectAddr"); + case 0: // imm offset, no frame, no index + BuildMI(BB, Opc, 3).addReg(Tmp1).addSImm(offset).addReg(Tmp2); + break; + case 1: // imm offset + frame index + addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2, offset); + break; + case 2: // base+index addressing + Opc = IndexedOpForOp(Opc); + BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset); + break; + case 3: { + GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Address); + GlobalValue *GV = GN->getGlobal(); + BuildMI(BB, Opc, 3).addReg(Tmp1).addGlobalAddress(GV).addReg(Tmp2); + } + } + } + return; + } + case ISD::EXTLOAD: + case ISD::SEXTLOAD: + case ISD::ZEXTLOAD: + case ISD::LOAD: + case ISD::CopyFromReg: + case ISD::TAILCALL: + case ISD::CALL: + case ISD::DYNAMIC_STACKALLOC: + ExprMap.erase(N); + SelectExpr(N); + return; + } + assert(0 && "Should not be reached!"); +} + + +/// createPPCPatternInstructionSelector - This pass converts an LLVM function +/// into a machine code representation using pattern matching and a machine +/// description file. +/// +FunctionPass *llvm::createPPCISelPattern(TargetMachine &TM) { + return new ISel(TM); +} + |