aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPC64AsmPrinter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/PowerPC/PPC64AsmPrinter.cpp')
-rw-r--r--lib/Target/PowerPC/PPC64AsmPrinter.cpp686
1 files changed, 686 insertions, 0 deletions
diff --git a/lib/Target/PowerPC/PPC64AsmPrinter.cpp b/lib/Target/PowerPC/PPC64AsmPrinter.cpp
new file mode 100644
index 0000000000..8c5659dbfc
--- /dev/null
+++ b/lib/Target/PowerPC/PPC64AsmPrinter.cpp
@@ -0,0 +1,686 @@
+//===-- PPC64AsmPrinter.cpp - Print machine instrs to PowerPC assembly ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to PowerPC assembly language. This printer is
+// the output mechanism used by `llc'.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asmprinter"
+#include "PowerPC.h"
+#include "PowerPCInstrInfo.h"
+#include "PPC64TargetMachine.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Mangler.h"
+#include "Support/CommandLine.h"
+#include "Support/Debug.h"
+#include "Support/MathExtras.h"
+#include "Support/Statistic.h"
+#include "Support/StringExtras.h"
+#include <set>
+
+namespace llvm {
+
+namespace {
+ Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
+
+ struct Printer : public MachineFunctionPass {
+ /// Output stream on which we're printing assembly code.
+ ///
+ std::ostream &O;
+
+ /// Target machine description which we query for reg. names, data
+ /// layout, etc.
+ ///
+ PPC64TargetMachine &TM;
+
+ /// Name-mangler for global names.
+ ///
+ Mangler *Mang;
+
+ /// Map for labels corresponding to global variables
+ ///
+ std::map<const GlobalVariable*,std::string> GVToLabelMap;
+
+ Printer(std::ostream &o, TargetMachine &tm) : O(o),
+ TM(reinterpret_cast<PPC64TargetMachine&>(tm)), LabelNumber(0) {}
+
+ /// Cache of mangled name for current function. This is
+ /// recalculated at the beginning of each call to
+ /// runOnMachineFunction().
+ ///
+ std::string CurrentFnName;
+
+ /// Unique incrementer for label values for referencing Global values.
+ ///
+ unsigned LabelNumber;
+
+ virtual const char *getPassName() const {
+ return "PPC64 Assembly Printer";
+ }
+
+ void printMachineInstruction(const MachineInstr *MI);
+ void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
+ void printImmOp(const MachineOperand &MO, unsigned ArgType);
+ void printConstantPool(MachineConstantPool *MCP);
+ bool runOnMachineFunction(MachineFunction &F);
+ bool doInitialization(Module &M);
+ bool doFinalization(Module &M);
+ void emitGlobalConstant(const Constant* CV);
+ void emitConstantValueOnly(const Constant *CV);
+ };
+} // end of anonymous namespace
+
+/// createPPC64AsmPrinterPass - Returns a pass that prints the PPC
+/// assembly code for a MachineFunction to the given output stream,
+/// using the given target machine description. This should work
+/// regardless of whether the function is in SSA form or not.
+///
+FunctionPass *createPPC64AsmPrinter(std::ostream &o,TargetMachine &tm) {
+ return new Printer(o, tm);
+}
+
+/// isStringCompatible - Can we treat the specified array as a string?
+/// Only if it is an array of ubytes or non-negative sbytes.
+///
+static bool isStringCompatible(const ConstantArray *CVA) {
+ const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
+ if (ETy == Type::UByteTy) return true;
+ if (ETy != Type::SByteTy) return false;
+
+ for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
+ if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
+ return false;
+
+ return true;
+}
+
+/// toOctal - Convert the low order bits of X into an octal digit.
+///
+static inline char toOctal(int X) {
+ return (X&7)+'0';
+}
+
+/// getAsCString - Return the specified array as a C compatible
+/// string, only if the predicate isStringCompatible is true.
+///
+static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
+ assert(isStringCompatible(CVA) && "Array is not string compatible!");
+
+ O << "\"";
+ for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
+ unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
+
+ if (C == '"') {
+ O << "\\\"";
+ } else if (C == '\\') {
+ O << "\\\\";
+ } else if (isprint(C)) {
+ O << C;
+ } else {
+ switch (C) {
+ case '\b': O << "\\b"; break;
+ case '\f': O << "\\f"; break;
+ case '\n': O << "\\n"; break;
+ case '\r': O << "\\r"; break;
+ case '\t': O << "\\t"; break;
+ default:
+ O << '\\';
+ O << toOctal(C >> 6);
+ O << toOctal(C >> 3);
+ O << toOctal(C >> 0);
+ break;
+ }
+ }
+ }
+ O << "\"";
+}
+
+// Print out the specified constant, without a storage class. Only the
+// constants valid in constant expressions can occur here.
+void Printer::emitConstantValueOnly(const Constant *CV) {
+ if (CV->isNullValue())
+ O << "0";
+ else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+ assert(CB == ConstantBool::True);
+ O << "1";
+ } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
+ O << CI->getValue();
+ else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
+ O << CI->getValue();
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
+ // This is a constant address for a global variable or function. Use the
+ // name of the variable or function as the address value.
+ O << Mang->getValueName(GV);
+ else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ const TargetData &TD = TM.getTargetData();
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ // generate a symbolic expression for the byte address
+ const Constant *ptrVal = CE->getOperand(0);
+ std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
+ if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
+ O << "(";
+ emitConstantValueOnly(ptrVal);
+ O << ") + " << Offset;
+ } else {
+ emitConstantValueOnly(ptrVal);
+ }
+ break;
+ }
+ case Instruction::Cast: {
+ // Support only non-converting or widening casts for now, that is, ones
+ // that do not involve a change in value. This assertion is really gross,
+ // and may not even be a complete check.
+ Constant *Op = CE->getOperand(0);
+ const Type *OpTy = Op->getType(), *Ty = CE->getType();
+
+ // Remember, kids, pointers on x86 can be losslessly converted back and
+ // forth into 32-bit or wider integers, regardless of signedness. :-P
+ assert(((isa<PointerType>(OpTy)
+ && (Ty == Type::LongTy || Ty == Type::ULongTy
+ || Ty == Type::IntTy || Ty == Type::UIntTy))
+ || (isa<PointerType>(Ty)
+ && (OpTy == Type::LongTy || OpTy == Type::ULongTy
+ || OpTy == Type::IntTy || OpTy == Type::UIntTy))
+ || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
+ && OpTy->isLosslesslyConvertibleTo(Ty))))
+ && "FIXME: Don't yet support this kind of constant cast expr");
+ O << "(";
+ emitConstantValueOnly(Op);
+ O << ")";
+ break;
+ }
+ case Instruction::Add:
+ O << "(";
+ emitConstantValueOnly(CE->getOperand(0));
+ O << ") + (";
+ emitConstantValueOnly(CE->getOperand(1));
+ O << ")";
+ break;
+ default:
+ assert(0 && "Unsupported operator!");
+ }
+ } else {
+ assert(0 && "Unknown constant value!");
+ }
+}
+
+// Print a constant value or values, with the appropriate storage class as a
+// prefix.
+void Printer::emitGlobalConstant(const Constant *CV) {
+ const TargetData &TD = TM.getTargetData();
+
+ if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+ if (isStringCompatible(CVA)) {
+ O << "\t.byte ";
+ printAsCString(O, CVA);
+ O << "\n";
+ } else { // Not a string. Print the values in successive locations
+ for (unsigned i=0, e = CVA->getNumOperands(); i != e; i++)
+ emitGlobalConstant(CVA->getOperand(i));
+ }
+ return;
+ } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+ // Print the fields in successive locations. Pad to align if needed!
+ const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
+ unsigned sizeSoFar = 0;
+ for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) {
+ const Constant* field = CVS->getOperand(i);
+
+ // Check if padding is needed and insert one or more 0s.
+ unsigned fieldSize = TD.getTypeSize(field->getType());
+ unsigned padSize = ((i == e-1? cvsLayout->StructSize
+ : cvsLayout->MemberOffsets[i+1])
+ - cvsLayout->MemberOffsets[i]) - fieldSize;
+ sizeSoFar += fieldSize + padSize;
+
+ // Now print the actual field value
+ emitGlobalConstant(field);
+
+ // Insert the field padding unless it's zero bytes...
+ if (padSize)
+ O << "\t.space\t " << padSize << "\n";
+ }
+ assert(sizeSoFar == cvsLayout->StructSize &&
+ "Layout of constant struct may be incorrect!");
+ return;
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ // FP Constants are printed as integer constants to avoid losing
+ // precision...
+ double Val = CFP->getValue();
+ switch (CFP->getType()->getTypeID()) {
+ default: assert(0 && "Unknown floating point type!");
+ case Type::FloatTyID: {
+ union FU { // Abide by C TBAA rules
+ float FVal;
+ unsigned UVal;
+ } U;
+ U.FVal = Val;
+ O << "\t.long " << U.UVal << "\t# float " << Val << "\n";
+ return;
+ }
+ case Type::DoubleTyID: {
+ union DU { // Abide by C TBAA rules
+ double FVal;
+ uint64_t UVal;
+ struct {
+ uint32_t MSWord;
+ uint32_t LSWord;
+ } T;
+ } U;
+ U.FVal = Val;
+
+ O << ".long " << U.T.MSWord << "\t# double most significant word "
+ << Val << "\n";
+ O << ".long " << U.T.LSWord << "\t# double least significant word "
+ << Val << "\n";
+ return;
+ }
+ }
+ } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ union DU { // Abide by C TBAA rules
+ int64_t UVal;
+ struct {
+ uint32_t MSWord;
+ uint32_t LSWord;
+ } T;
+ } U;
+ U.UVal = CI->getRawValue();
+
+ O << ".long " << U.T.MSWord << "\t# Double-word most significant word "
+ << U.UVal << "\n";
+ O << ".long " << U.T.LSWord << "\t# Double-word least significant word "
+ << U.UVal << "\n";
+ return;
+ }
+ }
+
+ const Type *type = CV->getType();
+ O << "\t";
+ switch (type->getTypeID()) {
+ case Type::UByteTyID: case Type::SByteTyID:
+ O << "\t.byte";
+ break;
+ case Type::UShortTyID: case Type::ShortTyID:
+ O << "\t.short";
+ break;
+ case Type::BoolTyID:
+ case Type::PointerTyID:
+ case Type::UIntTyID: case Type::IntTyID:
+ O << "\t.long";
+ break;
+ case Type::ULongTyID: case Type::LongTyID:
+ assert (0 && "Should have already output double-word constant.");
+ case Type::FloatTyID: case Type::DoubleTyID:
+ assert (0 && "Should have already output floating point constant.");
+ default:
+ if (CV == Constant::getNullValue(type)) { // Zero initializer?
+ O << "\t.space " << TD.getTypeSize(type) << "\n";
+ return;
+ }
+ std::cerr << "Can't handle printing: " << *CV;
+ abort();
+ break;
+ }
+ O << ' ';
+ emitConstantValueOnly(CV);
+ O << '\n';
+}
+
+/// printConstantPool - Print to the current output stream assembly
+/// representations of the constants in the constant pool MCP. This is
+/// used to print out constants which have been "spilled to memory" by
+/// the code generator.
+///
+void Printer::printConstantPool(MachineConstantPool *MCP) {
+ const std::vector<Constant*> &CP = MCP->getConstants();
+ const TargetData &TD = TM.getTargetData();
+
+ if (CP.empty()) return;
+
+ for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+ O << "\t.const\n";
+ O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
+ << "\n";
+ O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
+ << *CP[i] << "\n";
+ emitGlobalConstant(CP[i]);
+ }
+}
+
+/// runOnMachineFunction - This uses the printMachineInstruction()
+/// method to print assembly for each instruction.
+///
+bool Printer::runOnMachineFunction(MachineFunction &MF) {
+ CurrentFnName = MF.getFunction()->getName();
+
+ // Print out constants referenced by the function
+ printConstantPool(MF.getConstantPool());
+
+ // Print out header for the function.
+ O << "\t.csect .text[PR]\n"
+ << "\t.align 2\n"
+ << "\t.globl " << CurrentFnName << '\n'
+ << "\t.globl ." << CurrentFnName << '\n'
+ << "\t.csect " << CurrentFnName << "[DS],3\n"
+ << CurrentFnName << ":\n"
+ << "\t.llong ." << CurrentFnName << ", TOC[tc0], 0\n"
+ << "\t.csect .text[PR]\n"
+ << '.' << CurrentFnName << ":\n";
+
+ // Print out code for the function.
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+ // Print a label for the basic block.
+ O << "LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
+ << I->getBasicBlock()->getName() << "\n";
+ for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+ II != E; ++II) {
+ // Print the assembly for the instruction.
+ O << "\t";
+ printMachineInstruction(II);
+ }
+ }
+ ++LabelNumber;
+
+ O << "LT.." << CurrentFnName << ":\n"
+ << "\t.long 0\n"
+ << "\t.byte 0,0,32,65,128,0,0,0\n"
+ << "\t.long LT.." << CurrentFnName << "-." << CurrentFnName << '\n'
+ << "\t.short 3\n"
+ << "\t.byte \"" << CurrentFnName << "\"\n"
+ << "\t.align 2\n";
+
+ // We didn't modify anything.
+ return false;
+}
+
+void Printer::printOp(const MachineOperand &MO,
+ bool elideOffsetKeyword /* = false */) {
+ const MRegisterInfo &RI = *TM.getRegisterInfo();
+ int new_symbol;
+
+ switch (MO.getType()) {
+ case MachineOperand::MO_VirtualRegister:
+ if (Value *V = MO.getVRegValueOrNull()) {
+ O << "<" << V->getName() << ">";
+ return;
+ }
+ // FALLTHROUGH
+ case MachineOperand::MO_MachineRegister:
+ case MachineOperand::MO_CCRegister: {
+ // On AIX, do not print out the 'r' in register names
+ const char *regName = RI.get(MO.getReg()).Name;
+ O << &regName[1];
+ return;
+ }
+
+ case MachineOperand::MO_SignExtendedImmed:
+ case MachineOperand::MO_UnextendedImmed:
+ std::cerr << "printOp() does not handle immediate values\n";
+ abort();
+ return;
+
+ case MachineOperand::MO_PCRelativeDisp:
+ std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
+ abort();
+ return;
+
+ case MachineOperand::MO_MachineBasicBlock: {
+ MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
+ O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
+ << "_" << MBBOp->getNumber() << "\t# "
+ << MBBOp->getBasicBlock()->getName();
+ return;
+ }
+
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
+ return;
+
+ case MachineOperand::MO_ExternalSymbol:
+ O << MO.getSymbolName();
+ return;
+
+ case MachineOperand::MO_GlobalAddress:
+ if (!elideOffsetKeyword) {
+ GlobalValue *GV = MO.getGlobal();
+
+ if (Function *F = dyn_cast<Function>(GV)) {
+ O << "." << F->getName();
+ } else if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
+ // output the label name
+ O << GVToLabelMap[GVar];
+ }
+ }
+ return;
+
+ default:
+ O << "<unknown operand type: " << MO.getType() << ">";
+ return;
+ }
+}
+
+void Printer::printImmOp(const MachineOperand &MO, unsigned ArgType) {
+ int Imm = MO.getImmedValue();
+ if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
+ O << (short)Imm;
+ } else if (ArgType == PPCII::Zimm16) {
+ O << (unsigned short)Imm;
+ } else {
+ O << Imm;
+ }
+}
+
+/// printMachineInstruction -- Print out a single PPC LLVM instruction
+/// MI in Darwin syntax to the current output stream.
+///
+void Printer::printMachineInstruction(const MachineInstr *MI) {
+ unsigned Opcode = MI->getOpcode();
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetInstrDescriptor &Desc = TII.get(Opcode);
+ unsigned i;
+
+ unsigned ArgCount = MI->getNumOperands();
+ unsigned ArgType[] = {
+ (Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
+ (Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
+ };
+ assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
+ "Instruction requires VMX support");
+ ++EmittedInsts;
+
+ // CALLpcrel and CALLindirect are handled specially here to print only the
+ // appropriate number of args that the assembler expects. This is because
+ // may have many arguments appended to record the uses of registers that are
+ // holding arguments to the called function.
+ if (Opcode == PPC::COND_BRANCH) {
+ std::cerr << "Error: untranslated conditional branch psuedo instruction!\n";
+ abort();
+ } else if (Opcode == PPC::IMPLICIT_DEF) {
+ O << "# IMPLICIT DEF ";
+ printOp(MI->getOperand(0));
+ O << "\n";
+ return;
+ } else if (Opcode == PPC::CALLpcrel) {
+ O << TII.getName(Opcode) << " ";
+ printOp(MI->getOperand(0));
+ O << "\n";
+ return;
+ } else if (Opcode == PPC::CALLindirect) {
+ O << TII.getName(Opcode) << " ";
+ printImmOp(MI->getOperand(0), ArgType[0]);
+ O << ", ";
+ printImmOp(MI->getOperand(1), ArgType[0]);
+ O << "\n";
+ return;
+ } else if (Opcode == PPC::MovePCtoLR) {
+ // FIXME: should probably be converted to cout.width and cout.fill
+ O << "bl \"L0000" << LabelNumber << "$pb\"\n";
+ O << "\"L0000" << LabelNumber << "$pb\":\n";
+ O << "\tmflr ";
+ printOp(MI->getOperand(0));
+ O << "\n";
+ return;
+ }
+
+ O << TII.getName(Opcode) << " ";
+ if (Opcode == PPC::LD || Opcode == PPC::LWA ||
+ Opcode == PPC::STDU || Opcode == PPC::STDUX) {
+ printOp(MI->getOperand(0));
+ O << ", ";
+ MachineOperand MO = MI->getOperand(1);
+ if (MO.isImmediate())
+ printImmOp(MO, ArgType[1]);
+ else
+ printOp(MO);
+ O << "(";
+ printOp(MI->getOperand(2));
+ O << ")\n";
+ } else if (Opcode == PPC::BLR || Opcode == PPC::NOP) {
+ // FIXME: BuildMI() should handle 0 params
+ O << "\n";
+ } else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) {
+ printOp(MI->getOperand(0));
+ O << ", ";
+ printImmOp(MI->getOperand(1), ArgType[1]);
+ O << "(";
+ if (MI->getOperand(2).hasAllocatedReg() &&
+ MI->getOperand(2).getReg() == PPC::R0)
+ O << "0";
+ else
+ printOp(MI->getOperand(2));
+ O << ")\n";
+ } else {
+ for (i = 0; i < ArgCount; ++i) {
+ // addi and friends
+ if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
+ MI->getOperand(1).hasAllocatedReg() &&
+ MI->getOperand(1).getReg() == PPC::R0) {
+ O << "0";
+ // for long branch support, bc $+8
+ } else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
+ TII.isBranch(MI->getOpcode())) {
+ O << "$+8";
+ assert(8 == MI->getOperand(i).getImmedValue()
+ && "branch off PC not to pc+8?");
+ //printOp(MI->getOperand(i));
+ } else if (MI->getOperand(i).isImmediate()) {
+ printImmOp(MI->getOperand(i), ArgType[i]);
+ } else {
+ printOp(MI->getOperand(i));
+ }
+ if (ArgCount - 1 == i)
+ O << "\n";
+ else
+ O << ", ";
+ }
+ }
+}
+
+// SwitchSection - Switch to the specified section of the executable if we are
+// not already in it!
+//
+static void SwitchSection(std::ostream &OS, std::string &CurSection,
+ const char *NewSection) {
+ if (CurSection != NewSection) {
+ CurSection = NewSection;
+ if (!CurSection.empty())
+ OS << "\t" << NewSection << "\n";
+ }
+}
+
+bool Printer::doInitialization(Module &M) {
+ const TargetData &TD = TM.getTargetData();
+ std::string CurSection;
+
+ O << "\t.machine \"ppc64\"\n"
+ << "\t.toc\n"
+ << "\t.csect .text[PR]\n";
+
+ // Print out module-level global variables
+ for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+ if (!I->hasInitializer())
+ continue;
+
+ std::string Name = I->getName();
+ Constant *C = I->getInitializer();
+ // N.B.: We are defaulting to writable strings
+ if (I->hasExternalLinkage()) {
+ O << "\t.globl " << Name << '\n'
+ << "\t.csect .data[RW],3\n";
+ } else {
+ O << "\t.csect _global.rw_c[RW],3\n";
+ }
+ O << Name << ":\n";
+ emitGlobalConstant(C);
+ }
+
+ // Output labels for globals
+ if (M.gbegin() != M.gend()) O << "\t.toc\n";
+ for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+ const GlobalVariable *GV = I;
+ // Do not output labels for unused variables
+ if (GV->isExternal() && GV->use_begin() == GV->use_end())
+ continue;
+
+ std::string Name = GV->getName();
+ std::string Label = "LC.." + utostr(LabelNumber++);
+ GVToLabelMap[GV] = Label;
+ O << Label << ":\n"
+ << "\t.tc " << Name << "[TC]," << Name;
+ if (GV->isExternal()) O << "[RW]";
+ O << '\n';
+ }
+
+ Mang = new Mangler(M, true);
+ return false; // success
+}
+
+bool Printer::doFinalization(Module &M) {
+ const TargetData &TD = TM.getTargetData();
+ // Print out module-level global variables
+ for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
+ if (I->hasInitializer() || I->hasExternalLinkage())
+ continue;
+
+ std::string Name = I->getName();
+ if (I->hasInternalLinkage()) {
+ O << "\t.lcomm " << Name << ",16,_global.bss_c";
+ } else {
+ O << "\t.comm " << Name << "," << TD.getTypeSize(I->getType())
+ << "," << log2((unsigned)TD.getTypeAlignment(I->getType()));
+ }
+ O << "\t\t# ";
+ WriteAsOperand(O, I, true, true, &M);
+ O << "\n";
+ }
+
+ O << "_section_.text:\n"
+ << "\t.csect .data[RW],3\n"
+ << "\t.llong _section_.text\n";
+
+ delete Mang;
+ return false; // success
+}
+
+} // End llvm namespace