aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonHardwareLoops.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/Hexagon/HexagonHardwareLoops.cpp')
-rw-r--r--lib/Target/Hexagon/HexagonHardwareLoops.cpp644
1 files changed, 644 insertions, 0 deletions
diff --git a/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/lib/Target/Hexagon/HexagonHardwareLoops.cpp
new file mode 100644
index 0000000000..c1abc4a8f7
--- /dev/null
+++ b/lib/Target/Hexagon/HexagonHardwareLoops.cpp
@@ -0,0 +1,644 @@
+//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies loops where we can generate the Hexagon hardware
+// loop instruction. The hardware loop can perform loop branches with a
+// zero-cycle overhead.
+//
+// The pattern that defines the induction variable can changed depending on
+// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
+// normalizes induction variables, and the Loop Strength Reduction pass
+// run by 'llc' may also make changes to the induction variable.
+// The pattern detected by this phase is due to running Strength Reduction.
+//
+// Criteria for hardware loops:
+// - Countable loops (w/ ind. var for a trip count)
+// - Assumes loops are normalized by IndVarSimplify
+// - Try inner-most loops first
+// - No nested hardware loops.
+// - No function calls in loops.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "hwloops"
+#include "llvm/Constants.h"
+#include "llvm/PassSupport.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include <algorithm>
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+
+using namespace llvm;
+
+STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
+
+namespace {
+ class CountValue;
+ struct HexagonHardwareLoops : public MachineFunctionPass {
+ MachineLoopInfo *MLI;
+ MachineRegisterInfo *MRI;
+ const TargetInstrInfo *TII;
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+
+ HexagonHardwareLoops() : MachineFunctionPass(ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ const char *getPassName() const { return "Hexagon Hardware Loops"; }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ /// getCanonicalInductionVariable - Check to see if the loop has a canonical
+ /// induction variable.
+ /// Should be defined in MachineLoop. Based upon version in class Loop.
+ const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const;
+
+ /// getTripCount - Return a loop-invariant LLVM register indicating the
+ /// number of times the loop will be executed. If the trip-count cannot
+ /// be determined, this return null.
+ CountValue *getTripCount(MachineLoop *L) const;
+
+ /// isInductionOperation - Return true if the instruction matches the
+ /// pattern for an opertion that defines an induction variable.
+ bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
+
+ /// isInvalidOperation - Return true if the instruction is not valid within
+ /// a hardware loop.
+ bool isInvalidLoopOperation(const MachineInstr *MI) const;
+
+ /// containsInavlidInstruction - Return true if the loop contains an
+ /// instruction that inhibits using the hardware loop.
+ bool containsInvalidInstruction(MachineLoop *L) const;
+
+ /// converToHardwareLoop - Given a loop, check if we can convert it to a
+ /// hardware loop. If so, then perform the conversion and return true.
+ bool convertToHardwareLoop(MachineLoop *L);
+
+ };
+
+ char HexagonHardwareLoops::ID = 0;
+
+
+ // CountValue class - Abstraction for a trip count of a loop. A
+ // smaller vesrsion of the MachineOperand class without the concerns
+ // of changing the operand representation.
+ class CountValue {
+ public:
+ enum CountValueType {
+ CV_Register,
+ CV_Immediate
+ };
+ private:
+ CountValueType Kind;
+ union Values {
+ unsigned RegNum;
+ int64_t ImmVal;
+ Values(unsigned r) : RegNum(r) {}
+ Values(int64_t i) : ImmVal(i) {}
+ } Contents;
+ bool isNegative;
+
+ public:
+ CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
+ isNegative(neg) {}
+ explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
+ isNegative(i < 0) {}
+ CountValueType getType() const { return Kind; }
+ bool isReg() const { return Kind == CV_Register; }
+ bool isImm() const { return Kind == CV_Immediate; }
+ bool isNeg() const { return isNegative; }
+
+ unsigned getReg() const {
+ assert(isReg() && "Wrong CountValue accessor");
+ return Contents.RegNum;
+ }
+ void setReg(unsigned Val) {
+ Contents.RegNum = Val;
+ }
+ int64_t getImm() const {
+ assert(isImm() && "Wrong CountValue accessor");
+ if (isNegative) {
+ return -Contents.ImmVal;
+ }
+ return Contents.ImmVal;
+ }
+ void setImm(int64_t Val) {
+ Contents.ImmVal = Val;
+ }
+
+ void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
+ if (isReg()) { OS << PrintReg(getReg()); }
+ if (isImm()) { OS << getImm(); }
+ }
+ };
+
+ struct HexagonFixupHwLoops : public MachineFunctionPass {
+ public:
+ static char ID; // Pass identification, replacement for typeid.
+
+ HexagonFixupHwLoops() : MachineFunctionPass(ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ /// Maximum distance between the loop instr and the basic block.
+ /// Just an estimate.
+ static const unsigned MAX_LOOP_DISTANCE = 200;
+
+ /// fixupLoopInstrs - Check the offset between each loop instruction and
+ /// the loop basic block to determine if we can use the LOOP instruction
+ /// or if we need to set the LC/SA registers explicitly.
+ bool fixupLoopInstrs(MachineFunction &MF);
+
+ /// convertLoopInstr - Add the instruction to set the LC and SA registers
+ /// explicitly.
+ void convertLoopInstr(MachineFunction &MF,
+ MachineBasicBlock::iterator &MII,
+ RegScavenger &RS);
+
+ };
+
+ char HexagonFixupHwLoops::ID = 0;
+
+} // end anonymous namespace
+
+
+/// isHardwareLoop - Returns true if the instruction is a hardware loop
+/// instruction.
+static bool isHardwareLoop(const MachineInstr *MI) {
+ return MI->getOpcode() == Hexagon::LOOP0_r ||
+ MI->getOpcode() == Hexagon::LOOP0_i;
+}
+
+/// isCompareEquals - Returns true if the instruction is a compare equals
+/// instruction with an immediate operand.
+static bool isCompareEqualsImm(const MachineInstr *MI) {
+ return MI->getOpcode() == Hexagon::CMPEQri;
+}
+
+
+/// createHexagonHardwareLoops - Factory for creating
+/// the hardware loop phase.
+FunctionPass *llvm::createHexagonHardwareLoops() {
+ return new HexagonHardwareLoops();
+}
+
+
+bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
+
+ bool Changed = false;
+
+ // get the loop information
+ MLI = &getAnalysis<MachineLoopInfo>();
+ // get the register information
+ MRI = &MF.getRegInfo();
+ // the target specific instructio info.
+ TII = MF.getTarget().getInstrInfo();
+
+ for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
+ I != E; ++I) {
+ MachineLoop *L = *I;
+ if (!L->getParentLoop()) {
+ Changed |= convertToHardwareLoop(L);
+ }
+ }
+
+ return Changed;
+}
+
+/// getCanonicalInductionVariable - Check to see if the loop has a canonical
+/// induction variable. We check for a simple recurrence pattern - an
+/// integer recurrence that decrements by one each time through the loop and
+/// ends at zero. If so, return the phi node that corresponds to it.
+///
+/// Based upon the similar code in LoopInfo except this code is specific to
+/// the machine.
+/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
+///
+const MachineInstr
+*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const {
+ MachineBasicBlock *TopMBB = L->getTopBlock();
+ MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
+ assert(PI != TopMBB->pred_end() &&
+ "Loop must have more than one incoming edge!");
+ MachineBasicBlock *Backedge = *PI++;
+ if (PI == TopMBB->pred_end()) return 0; // dead loop
+ MachineBasicBlock *Incoming = *PI++;
+ if (PI != TopMBB->pred_end()) return 0; // multiple backedges?
+
+ // make sure there is one incoming and one backedge and determine which
+ // is which.
+ if (L->contains(Incoming)) {
+ if (L->contains(Backedge))
+ return 0;
+ std::swap(Incoming, Backedge);
+ } else if (!L->contains(Backedge))
+ return 0;
+
+ // Loop over all of the PHI nodes, looking for a canonical induction variable:
+ // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
+ // - The recurrence comes from the backedge.
+ // - the definition is an induction operatio.n
+ for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
+ I != E && I->isPHI(); ++I) {
+ const MachineInstr *MPhi = &*I;
+ unsigned DefReg = MPhi->getOperand(0).getReg();
+ for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
+ // Check each operand for the value from the backedge.
+ MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
+ if (L->contains(MBB)) { // operands comes from the backedge
+ // Check if the definition is an induction operation.
+ const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
+ if (isInductionOperation(DI, DefReg)) {
+ return MPhi;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/// getTripCount - Return a loop-invariant LLVM value indicating the
+/// number of times the loop will be executed. The trip count can
+/// be either a register or a constant value. If the trip-count
+/// cannot be determined, this returns null.
+///
+/// We find the trip count from the phi instruction that defines the
+/// induction variable. We follow the links to the CMP instruction
+/// to get the trip count.
+///
+/// Based upon getTripCount in LoopInfo.
+///
+CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const {
+ // Check that the loop has a induction variable.
+ const MachineInstr *IV_Inst = getCanonicalInductionVariable(L);
+ if (IV_Inst == 0) return 0;
+
+ // Canonical loops will end with a 'cmpeq_ri IV, Imm',
+ // if Imm is 0, get the count from the PHI opnd
+ // if Imm is -M, than M is the count
+ // Otherwise, Imm is the count
+ const MachineOperand *IV_Opnd;
+ const MachineOperand *InitialValue;
+ if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
+ InitialValue = &IV_Inst->getOperand(1);
+ IV_Opnd = &IV_Inst->getOperand(3);
+ } else {
+ InitialValue = &IV_Inst->getOperand(3);
+ IV_Opnd = &IV_Inst->getOperand(1);
+ }
+
+ // Look for the cmp instruction to determine if we
+ // can get a useful trip count. The trip count can
+ // be either a register or an immediate. The location
+ // of the value depends upon the type (reg or imm).
+ while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) {
+ const MachineInstr *MI = IV_Opnd->getParent();
+ if (L->contains(MI) && isCompareEqualsImm(MI)) {
+ const MachineOperand &MO = MI->getOperand(2);
+ assert(MO.isImm() && "IV Cmp Operand should be 0");
+ int64_t ImmVal = MO.getImm();
+
+ const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
+ assert(L->contains(IV_DefInstr->getParent()) &&
+ "IV definition should occurs in loop");
+ int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
+
+ if (ImmVal == 0) {
+ // Make sure the induction variable changes by one on each iteration.
+ if (iv_value != 1 && iv_value != -1) {
+ return 0;
+ }
+ return new CountValue(InitialValue->getReg(), iv_value > 0);
+ } else {
+ assert(InitialValue->isReg() && "Expecting register for init value");
+ const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
+ if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) {
+ int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
+ if ((count % iv_value) != 0) {
+ return 0;
+ }
+ return new CountValue(count/iv_value);
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/// isInductionOperation - return true if the operation is matches the
+/// pattern that defines an induction variable:
+/// add iv, c
+///
+bool
+HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI,
+ unsigned IVReg) const {
+ return (MI->getOpcode() ==
+ Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg);
+}
+
+/// isInvalidOperation - Return true if the operation is invalid within
+/// hardware loop.
+bool
+HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
+
+ // call is not allowed because the callee may use a hardware loop
+ if (MI->getDesc().isCall()) {
+ return true;
+ }
+ // do not allow nested hardware loops
+ if (isHardwareLoop(MI)) {
+ return true;
+ }
+ // check if the instruction defines a hardware loop register
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() &&
+ (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 ||
+ MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// containsInvalidInstruction - Return true if the loop contains
+/// an instruction that inhibits the use of the hardware loop function.
+///
+bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
+ const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = Blocks[i];
+ for (MachineBasicBlock::iterator
+ MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
+ const MachineInstr *MI = &*MII;
+ if (isInvalidLoopOperation(MI)) {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+/// converToHardwareLoop - check if the loop is a candidate for
+/// converting to a hardware loop. If so, then perform the
+/// transformation.
+///
+/// This function works on innermost loops first. A loop can
+/// be converted if it is a counting loop; either a register
+/// value or an immediate.
+///
+/// The code makes several assumptions about the representation
+/// of the loop in llvm.
+bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
+ bool Changed = false;
+ // Process nested loops first.
+ for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
+ Changed |= convertToHardwareLoop(*I);
+ }
+ // If a nested loop has been converted, then we can't convert this loop.
+ if (Changed) {
+ return Changed;
+ }
+ // Are we able to determine the trip count for the loop?
+ CountValue *TripCount = getTripCount(L);
+ if (TripCount == 0) {
+ return false;
+ }
+ // Does the loop contain any invalid instructions?
+ if (containsInvalidInstruction(L)) {
+ return false;
+ }
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+ // No preheader means there's not place for the loop instr.
+ if (Preheader == 0) {
+ return false;
+ }
+ MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
+
+ MachineBasicBlock *LastMBB = L->getExitingBlock();
+ // Don't generate hw loop if the loop has more than one exit.
+ if (LastMBB == 0) {
+ return false;
+ }
+ MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
+
+ // Determine the loop start.
+ MachineBasicBlock *LoopStart = L->getTopBlock();
+ if (L->getLoopLatch() != LastMBB) {
+ // When the exit and latch are not the same, use the latch block as the
+ // start.
+ // The loop start address is used only after the 1st iteration, and the loop
+ // latch may contains instrs. that need to be executed after the 1st iter.
+ LoopStart = L->getLoopLatch();
+ // Make sure the latch is a successor of the exit, otherwise it won't work.
+ if (!LastMBB->isSuccessor(LoopStart)) {
+ return false;
+ }
+ }
+
+ // Convert the loop to a hardware loop
+ DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
+
+ if (TripCount->isReg()) {
+ // Create a copy of the loop count register.
+ MachineFunction *MF = LastMBB->getParent();
+ const TargetRegisterClass *RC =
+ MF->getRegInfo().getRegClass(TripCount->getReg());
+ unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC);
+ BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
+ if (TripCount->isNeg()) {
+ unsigned CountReg1 = CountReg;
+ CountReg = MF->getRegInfo().createVirtualRegister(RC);
+ BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+ TII->get(Hexagon::NEG), CountReg).addReg(CountReg1);
+ }
+
+ // Add the Loop instruction to the begining of the loop.
+ BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+ TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg);
+ } else {
+ assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
+ // Add the Loop immediate instruction to the beginning of the loop.
+ int64_t CountImm = TripCount->getImm();
+ BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
+ TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm);
+ }
+
+ // Make sure the loop start always has a reference in the CFG. We need to
+ // create a BlockAddress operand to get this mechanism to work both the
+ // MachineBasicBlock and BasicBlock objects need the flag set.
+ LoopStart->setHasAddressTaken();
+ // This line is needed to set the hasAddressTaken flag on the BasicBlock
+ // object
+ BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
+
+ // Replace the loop branch with an endloop instruction.
+ DebugLoc dl = LastI->getDebugLoc();
+ BuildMI(*LastMBB, LastI, dl, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
+
+ // The loop ends with either:
+ // - a conditional branch followed by an unconditional branch, or
+ // - a conditional branch to the loop start.
+ if (LastI->getOpcode() == Hexagon::JMP_Pred ||
+ LastI->getOpcode() == Hexagon::JMP_PredNot) {
+ // delete one and change/add an uncond. branch to out of the loop
+ MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
+ LastI = LastMBB->erase(LastI);
+ if (!L->contains(BranchTarget)) {
+ if (LastI != LastMBB->end()) {
+ TII->RemoveBranch(*LastMBB);
+ }
+ SmallVector<MachineOperand, 0> Cond;
+ TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, dl);
+ }
+ } else {
+ // Conditional branch to loop start; just delete it.
+ LastMBB->erase(LastI);
+ }
+ delete TripCount;
+
+ ++NumHWLoops;
+ return true;
+}
+
+/// createHexagonFixupHwLoops - Factory for creating the hardware loop
+/// phase.
+FunctionPass *llvm::createHexagonFixupHwLoops() {
+ return new HexagonFixupHwLoops();
+}
+
+bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n");
+
+ bool Changed = fixupLoopInstrs(MF);
+ return Changed;
+}
+
+/// fixupLoopInsts - For Hexagon, if the loop label is to far from the
+/// loop instruction then we need to set the LC0 and SA0 registers
+/// explicitly instead of using LOOP(start,count). This function
+/// checks the distance, and generates register assignments if needed.
+///
+/// This function makes two passes over the basic blocks. The first
+/// pass computes the offset of the basic block from the start.
+/// The second pass checks all the loop instructions.
+bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
+
+ // Offset of the current instruction from the start.
+ unsigned InstOffset = 0;
+ // Map for each basic block to it's first instruction.
+ DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
+
+ // First pass - compute the offset of each basic block.
+ for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+ MBB != MBBe; ++MBB) {
+ BlockToInstOffset[MBB] = InstOffset;
+ InstOffset += (MBB->size() * 4);
+ }
+
+ // Second pass - check each loop instruction to see if it needs to
+ // be converted.
+ InstOffset = 0;
+ bool Changed = false;
+ RegScavenger RS;
+
+ // Loop over all the basic blocks.
+ for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+ MBB != MBBe; ++MBB) {
+ InstOffset = BlockToInstOffset[MBB];
+ RS.enterBasicBlock(MBB);
+
+ // Loop over all the instructions.
+ MachineBasicBlock::iterator MIE = MBB->end();
+ MachineBasicBlock::iterator MII = MBB->begin();
+ while (MII != MIE) {
+ if (isHardwareLoop(MII)) {
+ RS.forward(MII);
+ assert(MII->getOperand(0).isMBB() &&
+ "Expect a basic block as loop operand");
+ int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
+ diff = (diff > 0 ? diff : -diff);
+ if ((unsigned)diff > MAX_LOOP_DISTANCE) {
+ // Convert to explicity setting LC0 and SA0.
+ convertLoopInstr(MF, MII, RS);
+ MII = MBB->erase(MII);
+ Changed = true;
+ } else {
+ ++MII;
+ }
+ } else {
+ ++MII;
+ }
+ InstOffset += 4;
+ }
+ }
+
+ return Changed;
+
+}
+
+/// convertLoopInstr - convert a loop instruction to a sequence of instructions
+/// that set the lc and sa register explicitly.
+void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
+ MachineBasicBlock::iterator &MII,
+ RegScavenger &RS) {
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ MachineBasicBlock *MBB = MII->getParent();
+ DebugLoc DL = MII->getDebugLoc();
+ unsigned Scratch = RS.scavengeRegister(Hexagon::IntRegsRegisterClass, MII, 0);
+
+ // First, set the LC0 with the trip count.
+ if (MII->getOperand(1).isReg()) {
+ // Trip count is a register
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ .addReg(MII->getOperand(1).getReg());
+ } else {
+ // Trip count is an immediate.
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
+ .addImm(MII->getOperand(1).getImm());
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ .addReg(Scratch);
+ }
+ // Then, set the SA0 with the loop start address.
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
+ .addMBB(MII->getOperand(0).getMBB());
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch);
+}