diff options
Diffstat (limited to 'lib/Target/Hexagon/HexagonHardwareLoops.cpp')
-rw-r--r-- | lib/Target/Hexagon/HexagonHardwareLoops.cpp | 644 |
1 files changed, 644 insertions, 0 deletions
diff --git a/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/lib/Target/Hexagon/HexagonHardwareLoops.cpp new file mode 100644 index 0000000000..c1abc4a8f7 --- /dev/null +++ b/lib/Target/Hexagon/HexagonHardwareLoops.cpp @@ -0,0 +1,644 @@ +//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass identifies loops where we can generate the Hexagon hardware +// loop instruction. The hardware loop can perform loop branches with a +// zero-cycle overhead. +// +// The pattern that defines the induction variable can changed depending on +// prior optimizations. For example, the IndVarSimplify phase run by 'opt' +// normalizes induction variables, and the Loop Strength Reduction pass +// run by 'llc' may also make changes to the induction variable. +// The pattern detected by this phase is due to running Strength Reduction. +// +// Criteria for hardware loops: +// - Countable loops (w/ ind. var for a trip count) +// - Assumes loops are normalized by IndVarSimplify +// - Try inner-most loops first +// - No nested hardware loops. +// - No function calls in loops. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "hwloops" +#include "llvm/Constants.h" +#include "llvm/PassSupport.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include <algorithm> +#include "Hexagon.h" +#include "HexagonTargetMachine.h" + +using namespace llvm; + +STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); + +namespace { + class CountValue; + struct HexagonHardwareLoops : public MachineFunctionPass { + MachineLoopInfo *MLI; + MachineRegisterInfo *MRI; + const TargetInstrInfo *TII; + + public: + static char ID; // Pass identification, replacement for typeid + + HexagonHardwareLoops() : MachineFunctionPass(ID) {} + + virtual bool runOnMachineFunction(MachineFunction &MF); + + const char *getPassName() const { return "Hexagon Hardware Loops"; } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + /// getCanonicalInductionVariable - Check to see if the loop has a canonical + /// induction variable. + /// Should be defined in MachineLoop. Based upon version in class Loop. + const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const; + + /// getTripCount - Return a loop-invariant LLVM register indicating the + /// number of times the loop will be executed. If the trip-count cannot + /// be determined, this return null. + CountValue *getTripCount(MachineLoop *L) const; + + /// isInductionOperation - Return true if the instruction matches the + /// pattern for an opertion that defines an induction variable. + bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const; + + /// isInvalidOperation - Return true if the instruction is not valid within + /// a hardware loop. + bool isInvalidLoopOperation(const MachineInstr *MI) const; + + /// containsInavlidInstruction - Return true if the loop contains an + /// instruction that inhibits using the hardware loop. + bool containsInvalidInstruction(MachineLoop *L) const; + + /// converToHardwareLoop - Given a loop, check if we can convert it to a + /// hardware loop. If so, then perform the conversion and return true. + bool convertToHardwareLoop(MachineLoop *L); + + }; + + char HexagonHardwareLoops::ID = 0; + + + // CountValue class - Abstraction for a trip count of a loop. A + // smaller vesrsion of the MachineOperand class without the concerns + // of changing the operand representation. + class CountValue { + public: + enum CountValueType { + CV_Register, + CV_Immediate + }; + private: + CountValueType Kind; + union Values { + unsigned RegNum; + int64_t ImmVal; + Values(unsigned r) : RegNum(r) {} + Values(int64_t i) : ImmVal(i) {} + } Contents; + bool isNegative; + + public: + CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r), + isNegative(neg) {} + explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i), + isNegative(i < 0) {} + CountValueType getType() const { return Kind; } + bool isReg() const { return Kind == CV_Register; } + bool isImm() const { return Kind == CV_Immediate; } + bool isNeg() const { return isNegative; } + + unsigned getReg() const { + assert(isReg() && "Wrong CountValue accessor"); + return Contents.RegNum; + } + void setReg(unsigned Val) { + Contents.RegNum = Val; + } + int64_t getImm() const { + assert(isImm() && "Wrong CountValue accessor"); + if (isNegative) { + return -Contents.ImmVal; + } + return Contents.ImmVal; + } + void setImm(int64_t Val) { + Contents.ImmVal = Val; + } + + void print(raw_ostream &OS, const TargetMachine *TM = 0) const { + if (isReg()) { OS << PrintReg(getReg()); } + if (isImm()) { OS << getImm(); } + } + }; + + struct HexagonFixupHwLoops : public MachineFunctionPass { + public: + static char ID; // Pass identification, replacement for typeid. + + HexagonFixupHwLoops() : MachineFunctionPass(ID) {} + + virtual bool runOnMachineFunction(MachineFunction &MF); + + const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + /// Maximum distance between the loop instr and the basic block. + /// Just an estimate. + static const unsigned MAX_LOOP_DISTANCE = 200; + + /// fixupLoopInstrs - Check the offset between each loop instruction and + /// the loop basic block to determine if we can use the LOOP instruction + /// or if we need to set the LC/SA registers explicitly. + bool fixupLoopInstrs(MachineFunction &MF); + + /// convertLoopInstr - Add the instruction to set the LC and SA registers + /// explicitly. + void convertLoopInstr(MachineFunction &MF, + MachineBasicBlock::iterator &MII, + RegScavenger &RS); + + }; + + char HexagonFixupHwLoops::ID = 0; + +} // end anonymous namespace + + +/// isHardwareLoop - Returns true if the instruction is a hardware loop +/// instruction. +static bool isHardwareLoop(const MachineInstr *MI) { + return MI->getOpcode() == Hexagon::LOOP0_r || + MI->getOpcode() == Hexagon::LOOP0_i; +} + +/// isCompareEquals - Returns true if the instruction is a compare equals +/// instruction with an immediate operand. +static bool isCompareEqualsImm(const MachineInstr *MI) { + return MI->getOpcode() == Hexagon::CMPEQri; +} + + +/// createHexagonHardwareLoops - Factory for creating +/// the hardware loop phase. +FunctionPass *llvm::createHexagonHardwareLoops() { + return new HexagonHardwareLoops(); +} + + +bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { + DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); + + bool Changed = false; + + // get the loop information + MLI = &getAnalysis<MachineLoopInfo>(); + // get the register information + MRI = &MF.getRegInfo(); + // the target specific instructio info. + TII = MF.getTarget().getInstrInfo(); + + for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); + I != E; ++I) { + MachineLoop *L = *I; + if (!L->getParentLoop()) { + Changed |= convertToHardwareLoop(L); + } + } + + return Changed; +} + +/// getCanonicalInductionVariable - Check to see if the loop has a canonical +/// induction variable. We check for a simple recurrence pattern - an +/// integer recurrence that decrements by one each time through the loop and +/// ends at zero. If so, return the phi node that corresponds to it. +/// +/// Based upon the similar code in LoopInfo except this code is specific to +/// the machine. +/// This method assumes that the IndVarSimplify pass has been run by 'opt'. +/// +const MachineInstr +*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const { + MachineBasicBlock *TopMBB = L->getTopBlock(); + MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); + assert(PI != TopMBB->pred_end() && + "Loop must have more than one incoming edge!"); + MachineBasicBlock *Backedge = *PI++; + if (PI == TopMBB->pred_end()) return 0; // dead loop + MachineBasicBlock *Incoming = *PI++; + if (PI != TopMBB->pred_end()) return 0; // multiple backedges? + + // make sure there is one incoming and one backedge and determine which + // is which. + if (L->contains(Incoming)) { + if (L->contains(Backedge)) + return 0; + std::swap(Incoming, Backedge); + } else if (!L->contains(Backedge)) + return 0; + + // Loop over all of the PHI nodes, looking for a canonical induction variable: + // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2". + // - The recurrence comes from the backedge. + // - the definition is an induction operatio.n + for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end(); + I != E && I->isPHI(); ++I) { + const MachineInstr *MPhi = &*I; + unsigned DefReg = MPhi->getOperand(0).getReg(); + for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { + // Check each operand for the value from the backedge. + MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB(); + if (L->contains(MBB)) { // operands comes from the backedge + // Check if the definition is an induction operation. + const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg()); + if (isInductionOperation(DI, DefReg)) { + return MPhi; + } + } + } + } + return 0; +} + +/// getTripCount - Return a loop-invariant LLVM value indicating the +/// number of times the loop will be executed. The trip count can +/// be either a register or a constant value. If the trip-count +/// cannot be determined, this returns null. +/// +/// We find the trip count from the phi instruction that defines the +/// induction variable. We follow the links to the CMP instruction +/// to get the trip count. +/// +/// Based upon getTripCount in LoopInfo. +/// +CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const { + // Check that the loop has a induction variable. + const MachineInstr *IV_Inst = getCanonicalInductionVariable(L); + if (IV_Inst == 0) return 0; + + // Canonical loops will end with a 'cmpeq_ri IV, Imm', + // if Imm is 0, get the count from the PHI opnd + // if Imm is -M, than M is the count + // Otherwise, Imm is the count + const MachineOperand *IV_Opnd; + const MachineOperand *InitialValue; + if (!L->contains(IV_Inst->getOperand(2).getMBB())) { + InitialValue = &IV_Inst->getOperand(1); + IV_Opnd = &IV_Inst->getOperand(3); + } else { + InitialValue = &IV_Inst->getOperand(3); + IV_Opnd = &IV_Inst->getOperand(1); + } + + // Look for the cmp instruction to determine if we + // can get a useful trip count. The trip count can + // be either a register or an immediate. The location + // of the value depends upon the type (reg or imm). + while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) { + const MachineInstr *MI = IV_Opnd->getParent(); + if (L->contains(MI) && isCompareEqualsImm(MI)) { + const MachineOperand &MO = MI->getOperand(2); + assert(MO.isImm() && "IV Cmp Operand should be 0"); + int64_t ImmVal = MO.getImm(); + + const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg()); + assert(L->contains(IV_DefInstr->getParent()) && + "IV definition should occurs in loop"); + int64_t iv_value = IV_DefInstr->getOperand(2).getImm(); + + if (ImmVal == 0) { + // Make sure the induction variable changes by one on each iteration. + if (iv_value != 1 && iv_value != -1) { + return 0; + } + return new CountValue(InitialValue->getReg(), iv_value > 0); + } else { + assert(InitialValue->isReg() && "Expecting register for init value"); + const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg()); + if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) { + int64_t count = ImmVal - DefInstr->getOperand(1).getImm(); + if ((count % iv_value) != 0) { + return 0; + } + return new CountValue(count/iv_value); + } + } + } + } + return 0; +} + +/// isInductionOperation - return true if the operation is matches the +/// pattern that defines an induction variable: +/// add iv, c +/// +bool +HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI, + unsigned IVReg) const { + return (MI->getOpcode() == + Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg); +} + +/// isInvalidOperation - Return true if the operation is invalid within +/// hardware loop. +bool +HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const { + + // call is not allowed because the callee may use a hardware loop + if (MI->getDesc().isCall()) { + return true; + } + // do not allow nested hardware loops + if (isHardwareLoop(MI)) { + return true; + } + // check if the instruction defines a hardware loop register + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && + (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 || + MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) { + return true; + } + } + return false; +} + +/// containsInvalidInstruction - Return true if the loop contains +/// an instruction that inhibits the use of the hardware loop function. +/// +bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { + const std::vector<MachineBasicBlock*> Blocks = L->getBlocks(); + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + MachineBasicBlock *MBB = Blocks[i]; + for (MachineBasicBlock::iterator + MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { + const MachineInstr *MI = &*MII; + if (isInvalidLoopOperation(MI)) { + return true; + } + } + } + return false; +} + +/// converToHardwareLoop - check if the loop is a candidate for +/// converting to a hardware loop. If so, then perform the +/// transformation. +/// +/// This function works on innermost loops first. A loop can +/// be converted if it is a counting loop; either a register +/// value or an immediate. +/// +/// The code makes several assumptions about the representation +/// of the loop in llvm. +bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { + bool Changed = false; + // Process nested loops first. + for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { + Changed |= convertToHardwareLoop(*I); + } + // If a nested loop has been converted, then we can't convert this loop. + if (Changed) { + return Changed; + } + // Are we able to determine the trip count for the loop? + CountValue *TripCount = getTripCount(L); + if (TripCount == 0) { + return false; + } + // Does the loop contain any invalid instructions? + if (containsInvalidInstruction(L)) { + return false; + } + MachineBasicBlock *Preheader = L->getLoopPreheader(); + // No preheader means there's not place for the loop instr. + if (Preheader == 0) { + return false; + } + MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); + + MachineBasicBlock *LastMBB = L->getExitingBlock(); + // Don't generate hw loop if the loop has more than one exit. + if (LastMBB == 0) { + return false; + } + MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); + + // Determine the loop start. + MachineBasicBlock *LoopStart = L->getTopBlock(); + if (L->getLoopLatch() != LastMBB) { + // When the exit and latch are not the same, use the latch block as the + // start. + // The loop start address is used only after the 1st iteration, and the loop + // latch may contains instrs. that need to be executed after the 1st iter. + LoopStart = L->getLoopLatch(); + // Make sure the latch is a successor of the exit, otherwise it won't work. + if (!LastMBB->isSuccessor(LoopStart)) { + return false; + } + } + + // Convert the loop to a hardware loop + DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); + + if (TripCount->isReg()) { + // Create a copy of the loop count register. + MachineFunction *MF = LastMBB->getParent(); + const TargetRegisterClass *RC = + MF->getRegInfo().getRegClass(TripCount->getReg()); + unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC); + BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), + TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg()); + if (TripCount->isNeg()) { + unsigned CountReg1 = CountReg; + CountReg = MF->getRegInfo().createVirtualRegister(RC); + BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), + TII->get(Hexagon::NEG), CountReg).addReg(CountReg1); + } + + // Add the Loop instruction to the begining of the loop. + BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), + TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg); + } else { + assert(TripCount->isImm() && "Expecting immedate vaule for trip count"); + // Add the Loop immediate instruction to the beginning of the loop. + int64_t CountImm = TripCount->getImm(); + BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(), + TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm); + } + + // Make sure the loop start always has a reference in the CFG. We need to + // create a BlockAddress operand to get this mechanism to work both the + // MachineBasicBlock and BasicBlock objects need the flag set. + LoopStart->setHasAddressTaken(); + // This line is needed to set the hasAddressTaken flag on the BasicBlock + // object + BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); + + // Replace the loop branch with an endloop instruction. + DebugLoc dl = LastI->getDebugLoc(); + BuildMI(*LastMBB, LastI, dl, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); + + // The loop ends with either: + // - a conditional branch followed by an unconditional branch, or + // - a conditional branch to the loop start. + if (LastI->getOpcode() == Hexagon::JMP_Pred || + LastI->getOpcode() == Hexagon::JMP_PredNot) { + // delete one and change/add an uncond. branch to out of the loop + MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); + LastI = LastMBB->erase(LastI); + if (!L->contains(BranchTarget)) { + if (LastI != LastMBB->end()) { + TII->RemoveBranch(*LastMBB); + } + SmallVector<MachineOperand, 0> Cond; + TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, dl); + } + } else { + // Conditional branch to loop start; just delete it. + LastMBB->erase(LastI); + } + delete TripCount; + + ++NumHWLoops; + return true; +} + +/// createHexagonFixupHwLoops - Factory for creating the hardware loop +/// phase. +FunctionPass *llvm::createHexagonFixupHwLoops() { + return new HexagonFixupHwLoops(); +} + +bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) { + DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n"); + + bool Changed = fixupLoopInstrs(MF); + return Changed; +} + +/// fixupLoopInsts - For Hexagon, if the loop label is to far from the +/// loop instruction then we need to set the LC0 and SA0 registers +/// explicitly instead of using LOOP(start,count). This function +/// checks the distance, and generates register assignments if needed. +/// +/// This function makes two passes over the basic blocks. The first +/// pass computes the offset of the basic block from the start. +/// The second pass checks all the loop instructions. +bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) { + + // Offset of the current instruction from the start. + unsigned InstOffset = 0; + // Map for each basic block to it's first instruction. + DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset; + + // First pass - compute the offset of each basic block. + for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end(); + MBB != MBBe; ++MBB) { + BlockToInstOffset[MBB] = InstOffset; + InstOffset += (MBB->size() * 4); + } + + // Second pass - check each loop instruction to see if it needs to + // be converted. + InstOffset = 0; + bool Changed = false; + RegScavenger RS; + + // Loop over all the basic blocks. + for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end(); + MBB != MBBe; ++MBB) { + InstOffset = BlockToInstOffset[MBB]; + RS.enterBasicBlock(MBB); + + // Loop over all the instructions. + MachineBasicBlock::iterator MIE = MBB->end(); + MachineBasicBlock::iterator MII = MBB->begin(); + while (MII != MIE) { + if (isHardwareLoop(MII)) { + RS.forward(MII); + assert(MII->getOperand(0).isMBB() && + "Expect a basic block as loop operand"); + int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()]; + diff = (diff > 0 ? diff : -diff); + if ((unsigned)diff > MAX_LOOP_DISTANCE) { + // Convert to explicity setting LC0 and SA0. + convertLoopInstr(MF, MII, RS); + MII = MBB->erase(MII); + Changed = true; + } else { + ++MII; + } + } else { + ++MII; + } + InstOffset += 4; + } + } + + return Changed; + +} + +/// convertLoopInstr - convert a loop instruction to a sequence of instructions +/// that set the lc and sa register explicitly. +void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF, + MachineBasicBlock::iterator &MII, + RegScavenger &RS) { + const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); + MachineBasicBlock *MBB = MII->getParent(); + DebugLoc DL = MII->getDebugLoc(); + unsigned Scratch = RS.scavengeRegister(Hexagon::IntRegsRegisterClass, MII, 0); + + // First, set the LC0 with the trip count. + if (MII->getOperand(1).isReg()) { + // Trip count is a register + BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0) + .addReg(MII->getOperand(1).getReg()); + } else { + // Trip count is an immediate. + BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch) + .addImm(MII->getOperand(1).getImm()); + BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0) + .addReg(Scratch); + } + // Then, set the SA0 with the loop start address. + BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch) + .addMBB(MII->getOperand(0).getMBB()); + BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch); +} |