diff options
Diffstat (limited to 'lib/Target/CBackend/Writer.cpp')
-rw-r--r-- | lib/Target/CBackend/Writer.cpp | 1737 |
1 files changed, 1737 insertions, 0 deletions
diff --git a/lib/Target/CBackend/Writer.cpp b/lib/Target/CBackend/Writer.cpp new file mode 100644 index 0000000000..8ff23b7008 --- /dev/null +++ b/lib/Target/CBackend/Writer.cpp @@ -0,0 +1,1737 @@ +//===-- Writer.cpp - Library for converting LLVM code to C ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This library converts LLVM code to C code, compilable by GCC and other C +// compilers. +// +//===----------------------------------------------------------------------===// + +#include "CTargetMachine.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Instructions.h" +#include "llvm/Pass.h" +#include "llvm/PassManager.h" +#include "llvm/SymbolTable.h" +#include "llvm/Intrinsics.h" +#include "llvm/Analysis/ConstantsScanner.h" +#include "llvm/Analysis/FindUsedTypes.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Target/TargetMachineRegistry.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/Mangler.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Config/config.h" +#include <algorithm> +#include <iostream> +#include <sstream> +using namespace llvm; + +namespace { + // Register the target. + RegisterTarget<CTargetMachine> X("c", " C backend"); + + /// NameAllUsedStructs - This pass inserts names for any unnamed structure + /// types that are used by the program. + /// + class CBackendNameAllUsedStructs : public ModulePass { + void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<FindUsedTypes>(); + } + + virtual const char *getPassName() const { + return "C backend type canonicalizer"; + } + + virtual bool runOnModule(Module &M); + }; + + /// CWriter - This class is the main chunk of code that converts an LLVM + /// module to a C translation unit. + class CWriter : public FunctionPass, public InstVisitor<CWriter> { + std::ostream &Out; + IntrinsicLowering &IL; + Mangler *Mang; + LoopInfo *LI; + const Module *TheModule; + std::map<const Type *, std::string> TypeNames; + + std::map<const ConstantFP *, unsigned> FPConstantMap; + public: + CWriter(std::ostream &o, IntrinsicLowering &il) : Out(o), IL(il) {} + + virtual const char *getPassName() const { return "C backend"; } + + void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<LoopInfo>(); + AU.setPreservesAll(); + } + + virtual bool doInitialization(Module &M); + + bool runOnFunction(Function &F) { + LI = &getAnalysis<LoopInfo>(); + + // Get rid of intrinsics we can't handle. + lowerIntrinsics(F); + + // Output all floating point constants that cannot be printed accurately. + printFloatingPointConstants(F); + + // Ensure that no local symbols conflict with global symbols. + F.renameLocalSymbols(); + + printFunction(F); + FPConstantMap.clear(); + return false; + } + + virtual bool doFinalization(Module &M) { + // Free memory... + delete Mang; + TypeNames.clear(); + return false; + } + + std::ostream &printType(std::ostream &Out, const Type *Ty, + const std::string &VariableName = "", + bool IgnoreName = false); + + void writeOperand(Value *Operand); + void writeOperandInternal(Value *Operand); + + private : + void lowerIntrinsics(Function &F); + + bool nameAllUsedStructureTypes(Module &M); + void printModule(Module *M); + void printModuleTypes(const SymbolTable &ST); + void printContainedStructs(const Type *Ty, std::set<const StructType *> &); + void printFloatingPointConstants(Function &F); + void printFunctionSignature(const Function *F, bool Prototype); + + void printFunction(Function &); + void printBasicBlock(BasicBlock *BB); + void printLoop(Loop *L); + + void printConstant(Constant *CPV); + void printConstantArray(ConstantArray *CPA); + + // isInlinableInst - Attempt to inline instructions into their uses to build + // trees as much as possible. To do this, we have to consistently decide + // what is acceptable to inline, so that variable declarations don't get + // printed and an extra copy of the expr is not emitted. + // + static bool isInlinableInst(const Instruction &I) { + // Always inline setcc instructions, even if they are shared by multiple + // expressions. GCC generates horrible code if we don't. + if (isa<SetCondInst>(I)) return true; + + // Must be an expression, must be used exactly once. If it is dead, we + // emit it inline where it would go. + if (I.getType() == Type::VoidTy || !I.hasOneUse() || + isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || + isa<LoadInst>(I) || isa<VAArgInst>(I)) + // Don't inline a load across a store or other bad things! + return false; + + // Only inline instruction it it's use is in the same BB as the inst. + return I.getParent() == cast<Instruction>(I.use_back())->getParent(); + } + + // isDirectAlloca - Define fixed sized allocas in the entry block as direct + // variables which are accessed with the & operator. This causes GCC to + // generate significantly better code than to emit alloca calls directly. + // + static const AllocaInst *isDirectAlloca(const Value *V) { + const AllocaInst *AI = dyn_cast<AllocaInst>(V); + if (!AI) return false; + if (AI->isArrayAllocation()) + return 0; // FIXME: we can also inline fixed size array allocas! + if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) + return 0; + return AI; + } + + // Instruction visitation functions + friend class InstVisitor<CWriter>; + + void visitReturnInst(ReturnInst &I); + void visitBranchInst(BranchInst &I); + void visitSwitchInst(SwitchInst &I); + void visitInvokeInst(InvokeInst &I) { + assert(0 && "Lowerinvoke pass didn't work!"); + } + + void visitUnwindInst(UnwindInst &I) { + assert(0 && "Lowerinvoke pass didn't work!"); + } + void visitUnreachableInst(UnreachableInst &I); + + void visitPHINode(PHINode &I); + void visitBinaryOperator(Instruction &I); + + void visitCastInst (CastInst &I); + void visitSelectInst(SelectInst &I); + void visitCallInst (CallInst &I); + void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } + + void visitMallocInst(MallocInst &I); + void visitAllocaInst(AllocaInst &I); + void visitFreeInst (FreeInst &I); + void visitLoadInst (LoadInst &I); + void visitStoreInst (StoreInst &I); + void visitGetElementPtrInst(GetElementPtrInst &I); + void visitVAArgInst (VAArgInst &I); + + void visitInstruction(Instruction &I) { + std::cerr << "C Writer does not know about " << I; + abort(); + } + + void outputLValue(Instruction *I) { + Out << " " << Mang->getValueName(I) << " = "; + } + + bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); + void printPHICopiesForSuccessor(BasicBlock *CurBlock, + BasicBlock *Successor, unsigned Indent); + void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, + unsigned Indent); + void printIndexingExpression(Value *Ptr, gep_type_iterator I, + gep_type_iterator E); + }; +} + +/// This method inserts names for any unnamed structure types that are used by +/// the program, and removes names from structure types that are not used by the +/// program. +/// +bool CBackendNameAllUsedStructs::runOnModule(Module &M) { + // Get a set of types that are used by the program... + std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes(); + + // Loop over the module symbol table, removing types from UT that are + // already named, and removing names for types that are not used. + // + SymbolTable &MST = M.getSymbolTable(); + for (SymbolTable::type_iterator TI = MST.type_begin(), TE = MST.type_end(); + TI != TE; ) { + SymbolTable::type_iterator I = TI++; + + // If this is not used, remove it from the symbol table. + std::set<const Type *>::iterator UTI = UT.find(I->second); + if (UTI == UT.end()) + MST.remove(I); + else + UT.erase(UTI); // Only keep one name for this type. + } + + // UT now contains types that are not named. Loop over it, naming + // structure types. + // + bool Changed = false; + unsigned RenameCounter = 0; + for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end(); + I != E; ++I) + if (const StructType *ST = dyn_cast<StructType>(*I)) { + while (M.addTypeName("unnamed"+utostr(RenameCounter), ST)) + ++RenameCounter; + Changed = true; + } + return Changed; +} + + +// Pass the Type* and the variable name and this prints out the variable +// declaration. +// +std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, + const std::string &NameSoFar, + bool IgnoreName) { + if (Ty->isPrimitiveType()) + switch (Ty->getTypeID()) { + case Type::VoidTyID: return Out << "void " << NameSoFar; + case Type::BoolTyID: return Out << "bool " << NameSoFar; + case Type::UByteTyID: return Out << "unsigned char " << NameSoFar; + case Type::SByteTyID: return Out << "signed char " << NameSoFar; + case Type::UShortTyID: return Out << "unsigned short " << NameSoFar; + case Type::ShortTyID: return Out << "short " << NameSoFar; + case Type::UIntTyID: return Out << "unsigned " << NameSoFar; + case Type::IntTyID: return Out << "int " << NameSoFar; + case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar; + case Type::LongTyID: return Out << "signed long long " << NameSoFar; + case Type::FloatTyID: return Out << "float " << NameSoFar; + case Type::DoubleTyID: return Out << "double " << NameSoFar; + default : + std::cerr << "Unknown primitive type: " << *Ty << "\n"; + abort(); + } + + // Check to see if the type is named. + if (!IgnoreName || isa<OpaqueType>(Ty)) { + std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty); + if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar; + } + + switch (Ty->getTypeID()) { + case Type::FunctionTyID: { + const FunctionType *MTy = cast<FunctionType>(Ty); + std::stringstream FunctionInnards; + FunctionInnards << " (" << NameSoFar << ") ("; + for (FunctionType::param_iterator I = MTy->param_begin(), + E = MTy->param_end(); I != E; ++I) { + if (I != MTy->param_begin()) + FunctionInnards << ", "; + printType(FunctionInnards, *I, ""); + } + if (MTy->isVarArg()) { + if (MTy->getNumParams()) + FunctionInnards << ", ..."; + } else if (!MTy->getNumParams()) { + FunctionInnards << "void"; + } + FunctionInnards << ')'; + std::string tstr = FunctionInnards.str(); + printType(Out, MTy->getReturnType(), tstr); + return Out; + } + case Type::StructTyID: { + const StructType *STy = cast<StructType>(Ty); + Out << NameSoFar + " {\n"; + unsigned Idx = 0; + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + Out << " "; + printType(Out, *I, "field" + utostr(Idx++)); + Out << ";\n"; + } + return Out << '}'; + } + + case Type::PointerTyID: { + const PointerType *PTy = cast<PointerType>(Ty); + std::string ptrName = "*" + NameSoFar; + + if (isa<ArrayType>(PTy->getElementType())) + ptrName = "(" + ptrName + ")"; + + return printType(Out, PTy->getElementType(), ptrName); + } + + case Type::ArrayTyID: { + const ArrayType *ATy = cast<ArrayType>(Ty); + unsigned NumElements = ATy->getNumElements(); + if (NumElements == 0) NumElements = 1; + return printType(Out, ATy->getElementType(), + NameSoFar + "[" + utostr(NumElements) + "]"); + } + + case Type::OpaqueTyID: { + static int Count = 0; + std::string TyName = "struct opaque_" + itostr(Count++); + assert(TypeNames.find(Ty) == TypeNames.end()); + TypeNames[Ty] = TyName; + return Out << TyName << ' ' << NameSoFar; + } + default: + assert(0 && "Unhandled case in getTypeProps!"); + abort(); + } + + return Out; +} + +void CWriter::printConstantArray(ConstantArray *CPA) { + + // As a special case, print the array as a string if it is an array of + // ubytes or an array of sbytes with positive values. + // + const Type *ETy = CPA->getType()->getElementType(); + bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); + + // Make sure the last character is a null char, as automatically added by C + if (isString && (CPA->getNumOperands() == 0 || + !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) + isString = false; + + if (isString) { + Out << '\"'; + // Keep track of whether the last number was a hexadecimal escape + bool LastWasHex = false; + + // Do not include the last character, which we know is null + for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { + unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue(); + + // Print it out literally if it is a printable character. The only thing + // to be careful about is when the last letter output was a hex escape + // code, in which case we have to be careful not to print out hex digits + // explicitly (the C compiler thinks it is a continuation of the previous + // character, sheesh...) + // + if (isprint(C) && (!LastWasHex || !isxdigit(C))) { + LastWasHex = false; + if (C == '"' || C == '\\') + Out << "\\" << C; + else + Out << C; + } else { + LastWasHex = false; + switch (C) { + case '\n': Out << "\\n"; break; + case '\t': Out << "\\t"; break; + case '\r': Out << "\\r"; break; + case '\v': Out << "\\v"; break; + case '\a': Out << "\\a"; break; + case '\"': Out << "\\\""; break; + case '\'': Out << "\\\'"; break; + default: + Out << "\\x"; + Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); + Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); + LastWasHex = true; + break; + } + } + } + Out << '\"'; + } else { + Out << '{'; + if (CPA->getNumOperands()) { + Out << ' '; + printConstant(cast<Constant>(CPA->getOperand(0))); + for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { + Out << ", "; + printConstant(cast<Constant>(CPA->getOperand(i))); + } + } + Out << " }"; + } +} + +// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out +// textually as a double (rather than as a reference to a stack-allocated +// variable). We decide this by converting CFP to a string and back into a +// double, and then checking whether the conversion results in a bit-equal +// double to the original value of CFP. This depends on us and the target C +// compiler agreeing on the conversion process (which is pretty likely since we +// only deal in IEEE FP). +// +static bool isFPCSafeToPrint(const ConstantFP *CFP) { +#if HAVE_PRINTF_A + char Buffer[100]; + sprintf(Buffer, "%a", CFP->getValue()); + + if (!strncmp(Buffer, "0x", 2) || + !strncmp(Buffer, "-0x", 3) || + !strncmp(Buffer, "+0x", 3)) + return atof(Buffer) == CFP->getValue(); + return false; +#else + std::string StrVal = ftostr(CFP->getValue()); + + while (StrVal[0] == ' ') + StrVal.erase(StrVal.begin()); + + // Check to make sure that the stringized number is not some string like "Inf" + // or NaN. Check that the string matches the "[-+]?[0-9]" regex. + if ((StrVal[0] >= '0' && StrVal[0] <= '9') || + ((StrVal[0] == '-' || StrVal[0] == '+') && + (StrVal[1] >= '0' && StrVal[1] <= '9'))) + // Reparse stringized version! + return atof(StrVal.c_str()) == CFP->getValue(); + return false; +#endif +} + +// printConstant - The LLVM Constant to C Constant converter. +void CWriter::printConstant(Constant *CPV) { + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { + switch (CE->getOpcode()) { + case Instruction::Cast: + Out << "(("; + printType(Out, CPV->getType()); + Out << ')'; + printConstant(CE->getOperand(0)); + Out << ')'; + return; + + case Instruction::GetElementPtr: + Out << "(&("; + printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), + gep_type_end(CPV)); + Out << "))"; + return; + case Instruction::Select: + Out << '('; + printConstant(CE->getOperand(0)); + Out << '?'; + printConstant(CE->getOperand(1)); + Out << ':'; + printConstant(CE->getOperand(2)); + Out << ')'; + return; + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::Div: + case Instruction::Rem: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::SetEQ: + case Instruction::SetNE: + case Instruction::SetLT: + case Instruction::SetLE: + case Instruction::SetGT: + case Instruction::SetGE: + case Instruction::Shl: + case Instruction::Shr: + Out << '('; + printConstant(CE->getOperand(0)); + switch (CE->getOpcode()) { + case Instruction::Add: Out << " + "; break; + case Instruction::Sub: Out << " - "; break; + case Instruction::Mul: Out << " * "; break; + case Instruction::Div: Out << " / "; break; + case Instruction::Rem: Out << " % "; break; + case Instruction::And: Out << " & "; break; + case Instruction::Or: Out << " | "; break; + case Instruction::Xor: Out << " ^ "; break; + case Instruction::SetEQ: Out << " == "; break; + case Instruction::SetNE: Out << " != "; break; + case Instruction::SetLT: Out << " < "; break; + case Instruction::SetLE: Out << " <= "; break; + case Instruction::SetGT: Out << " > "; break; + case Instruction::SetGE: Out << " >= "; break; + case Instruction::Shl: Out << " << "; break; + case Instruction::Shr: Out << " >> "; break; + default: assert(0 && "Illegal opcode here!"); + } + printConstant(CE->getOperand(1)); + Out << ')'; + return; + + default: + std::cerr << "CWriter Error: Unhandled constant expression: " + << *CE << "\n"; + abort(); + } + } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) { + Out << "(("; + printType(Out, CPV->getType()); + Out << ")/*UNDEF*/0)"; + return; + } + + switch (CPV->getType()->getTypeID()) { + case Type::BoolTyID: + Out << (CPV == ConstantBool::False ? '0' : '1'); break; + case Type::SByteTyID: + case Type::ShortTyID: + Out << cast<ConstantSInt>(CPV)->getValue(); break; + case Type::IntTyID: + if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000) + Out << "((int)0x80000000U)"; // Handle MININT specially to avoid warning + else + Out << cast<ConstantSInt>(CPV)->getValue(); + break; + + case Type::LongTyID: + if (cast<ConstantSInt>(CPV)->isMinValue()) + Out << "(/*INT64_MIN*/(-9223372036854775807LL)-1)"; + else + Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break; + + case Type::UByteTyID: + case Type::UShortTyID: + Out << cast<ConstantUInt>(CPV)->getValue(); break; + case Type::UIntTyID: + Out << cast<ConstantUInt>(CPV)->getValue() << 'u'; break; + case Type::ULongTyID: + Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break; + + case Type::FloatTyID: + case Type::DoubleTyID: { + ConstantFP *FPC = cast<ConstantFP>(CPV); + std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); + if (I != FPConstantMap.end()) { + // Because of FP precision problems we must load from a stack allocated + // value that holds the value in hex. + Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") + << "*)&FPConstant" << I->second << ')'; + } else { + if (IsNAN(FPC->getValue())) { + // The value is NaN + + // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, + // it's 0x7ff4. + const unsigned long QuietNaN = 0x7ff8UL; + const unsigned long SignalNaN = 0x7ff4UL; + + // We need to grab the first part of the FP # + char Buffer[100]; + + uint64_t ll = DoubleToBits(FPC->getValue()); + sprintf(Buffer, "0x%llx", (unsigned long long)ll); + + std::string Num(&Buffer[0], &Buffer[6]); + unsigned long Val = strtoul(Num.c_str(), 0, 16); + + if (FPC->getType() == Type::FloatTy) + Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" + << Buffer << "\") /*nan*/ "; + else + Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" + << Buffer << "\") /*nan*/ "; + } else if (IsInf(FPC->getValue())) { + // The value is Inf + if (FPC->getValue() < 0) Out << '-'; + Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "") + << " /*inf*/ "; + } else { + std::string Num; +#if HAVE_PRINTF_A + // Print out the constant as a floating point number. + char Buffer[100]; + sprintf(Buffer, "%a", FPC->getValue()); + Num = Buffer; +#else + Num = ftostr(FPC->getValue()); +#endif + Out << Num; + } + } + break; + } + + case Type::ArrayTyID: + if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { + const ArrayType *AT = cast<ArrayType>(CPV->getType()); + Out << '{'; + if (AT->getNumElements()) { + Out << ' '; + Constant *CZ = Constant::getNullValue(AT->getElementType()); + printConstant(CZ); + for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { + Out << ", "; + printConstant(CZ); + } + } + Out << " }"; + } else { + printConstantArray(cast<ConstantArray>(CPV)); + } + break; + + case Type::StructTyID: + if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { + const StructType *ST = cast<StructType>(CPV->getType()); + Out << '{'; + if (ST->getNumElements()) { + Out << ' '; + printConstant(Constant::getNullValue(ST->getElementType(0))); + for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { + Out << ", "; + printConstant(Constant::getNullValue(ST->getElementType(i))); + } + } + Out << " }"; + } else { + Out << '{'; + if (CPV->getNumOperands()) { + Out << ' '; + printConstant(cast<Constant>(CPV->getOperand(0))); + for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { + Out << ", "; + printConstant(cast<Constant>(CPV->getOperand(i))); + } + } + Out << " }"; + } + break; + + case Type::PointerTyID: + if (isa<ConstantPointerNull>(CPV)) { + Out << "(("; + printType(Out, CPV->getType()); + Out << ")/*NULL*/0)"; + break; + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { + writeOperand(GV); + break; + } + // FALL THROUGH + default: + std::cerr << "Unknown constant type: " << *CPV << "\n"; + abort(); + } +} + +void CWriter::writeOperandInternal(Value *Operand) { + if (Instruction *I = dyn_cast<Instruction>(Operand)) + if (isInlinableInst(*I) && !isDirectAlloca(I)) { + // Should we inline this instruction to build a tree? + Out << '('; + visit(*I); + Out << ')'; + return; + } + + Constant* CPV = dyn_cast<Constant>(Operand); + if (CPV && !isa<GlobalValue>(CPV)) { + printConstant(CPV); + } else { + Out << Mang->getValueName(Operand); + } +} + +void CWriter::writeOperand(Value *Operand) { + if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) + Out << "(&"; // Global variables are references as their addresses by llvm + + writeOperandInternal(Operand); + + if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) + Out << ')'; +} + +// generateCompilerSpecificCode - This is where we add conditional compilation +// directives to cater to specific compilers as need be. +// +static void generateCompilerSpecificCode(std::ostream& Out) { + // Alloca is hard to get, and we don't want to include stdlib.h here... + Out << "/* get a declaration for alloca */\n" + << "#if defined(__CYGWIN__)\n" + << "extern void *_alloca(unsigned long);\n" + << "#define alloca(x) _alloca(x)\n" + << "#elif defined(__APPLE__)\n" + << "extern void *__builtin_alloca(unsigned long);\n" + << "#define alloca(x) __builtin_alloca(x)\n" + << "#elif defined(__sun__)\n" + << "#if defined(__sparcv9)\n" + << "extern void *__builtin_alloca(unsigned long);\n" + << "#else\n" + << "extern void *__builtin_alloca(unsigned int);\n" + << "#endif\n" + << "#define alloca(x) __builtin_alloca(x)\n" + << "#elif defined(__FreeBSD__)\n" + << "#define alloca(x) __builtin_alloca(x)\n" + << "#elif !defined(_MSC_VER)\n" + << "#include <alloca.h>\n" + << "#endif\n\n"; + + // We output GCC specific attributes to preserve 'linkonce'ness on globals. + // If we aren't being compiled with GCC, just drop these attributes. + Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" + << "#define __attribute__(X)\n" + << "#endif\n\n"; + +#if 0 + // At some point, we should support "external weak" vs. "weak" linkages. + // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". + Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" + << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" + << "#elif defined(__GNUC__)\n" + << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" + << "#else\n" + << "#define __EXTERNAL_WEAK__\n" + << "#endif\n\n"; +#endif + + // For now, turn off the weak linkage attribute on Mac OS X. (See above.) + Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" + << "#define __ATTRIBUTE_WEAK__\n" + << "#elif defined(__GNUC__)\n" + << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" + << "#else\n" + << "#define __ATTRIBUTE_WEAK__\n" + << "#endif\n\n"; + + // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise + // From the GCC documentation: + // + // double __builtin_nan (const char *str) + // + // This is an implementation of the ISO C99 function nan. + // + // Since ISO C99 defines this function in terms of strtod, which we do + // not implement, a description of the parsing is in order. The string is + // parsed as by strtol; that is, the base is recognized by leading 0 or + // 0x prefixes. The number parsed is placed in the significand such that + // the least significant bit of the number is at the least significant + // bit of the significand. The number is truncated to fit the significand + // field provided. The significand is forced to be a quiet NaN. + // + // This function, if given a string literal, is evaluated early enough + // that it is considered a compile-time constant. + // + // float __builtin_nanf (const char *str) + // + // Similar to __builtin_nan, except the return type is float. + // + // double __builtin_inf (void) + // + // Similar to __builtin_huge_val, except a warning is generated if the + // target floating-point format does not support infinities. This + // function is suitable for implementing the ISO C99 macro INFINITY. + // + // float __builtin_inff (void) + // + // Similar to __builtin_inf, except the return type is float. + Out << "#ifdef __GNUC__\n" + << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" + << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" + << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" + << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" + << "#define LLVM_INF __builtin_inf() /* Double */\n" + << "#define LLVM_INFF __builtin_inff() /* Float */\n" + << "#define LLVM_PREFETCH(addr,rw,locality) __builtin_prefetch(addr,rw,locality)\n" + << "#else\n" + << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" + << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" + << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" + << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" + << "#define LLVM_INF ((double)0.0) /* Double */\n" + << "#define LLVM_INFF 0.0F /* Float */\n" + << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" + << "#endif\n\n"; + + // Output target-specific code that should be inserted into main. + Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; + // On X86, set the FP control word to 64-bits of precision instead of 80 bits. + Out << "#if defined(__GNUC__) && !defined(__llvm__)\n" + << "#if defined(i386) || defined(__i386__) || defined(__i386)\n" + << "#undef CODE_FOR_MAIN\n" + << "#define CODE_FOR_MAIN() \\\n" + << " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n" + << " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n" + << "#endif\n#endif\n"; + +} + +bool CWriter::doInitialization(Module &M) { + // Initialize + TheModule = &M; + + IL.AddPrototypes(M); + + // Ensure that all structure types have names... + Mang = new Mangler(M); + + // get declaration for alloca + Out << "/* Provide Declarations */\n"; + Out << "#include <stdarg.h>\n"; // Varargs support + Out << "#include <setjmp.h>\n"; // Unwind support + generateCompilerSpecificCode(Out); + + // Provide a definition for `bool' if not compiling with a C++ compiler. + Out << "\n" + << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" + + << "\n\n/* Support for floating point constants */\n" + << "typedef unsigned long long ConstantDoubleTy;\n" + << "typedef unsigned int ConstantFloatTy;\n" + + << "\n\n/* Global Declarations */\n"; + + // First output all the declarations for the program, because C requires + // Functions & globals to be declared before they are used. + // + + // Loop over the symbol table, emitting all named constants... + printModuleTypes(M.getSymbolTable()); + + // Global variable declarations... + if (!M.global_empty()) { + Out << "\n/* External Global Variable Declarations */\n"; + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { + if (I->hasExternalLinkage()) { + Out << "extern "; + printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); + Out << ";\n"; + } + } + } + + // Function declarations + Out << "double fmod(double, double);\n"; // Support for FP rem + Out << "float fmodf(float, float);\n"; + + if (!M.empty()) { + Out << "\n/* Function Declarations */\n"; + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { + // Don't print declarations for intrinsic functions. + if (!I->getIntrinsicID() && + I->getName() != "setjmp" && I->getName() != "longjmp") { + printFunctionSignature(I, true); + if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; + if (I->hasLinkOnceLinkage()) Out << " __ATTRIBUTE_WEAK__"; + Out << ";\n"; + } + } + } + + // Output the global variable declarations + if (!M.global_empty()) { + Out << "\n\n/* Global Variable Declarations */\n"; + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) + if (!I->isExternal()) { + if (I->hasInternalLinkage()) + Out << "static "; + else + Out << "extern "; + printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); + + if (I->hasLinkOnceLinkage()) + Out << " __attribute__((common))"; + else if (I->hasWeakLinkage()) + Out << " __ATTRIBUTE_WEAK__"; + Out << ";\n"; + } + } + + // Output the global variable definitions and contents... + if (!M.global_empty()) { + Out << "\n\n/* Global Variable Definitions and Initialization */\n"; + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) + if (!I->isExternal()) { + if (I->hasInternalLinkage()) + Out << "static "; + printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); + if (I->hasLinkOnceLinkage()) + Out << " __attribute__((common))"; + else if (I->hasWeakLinkage()) + Out << " __ATTRIBUTE_WEAK__"; + + // If the initializer is not null, emit the initializer. If it is null, + // we try to avoid emitting large amounts of zeros. The problem with + // this, however, occurs when the variable has weak linkage. In this + // case, the assembler will complain about the variable being both weak + // and common, so we disable this optimization. + if (!I->getInitializer()->isNullValue()) { + Out << " = " ; + writeOperand(I->getInitializer()); + } else if (I->hasWeakLinkage()) { + // We have to specify an initializer, but it doesn't have to be + // complete. If the value is an aggregate, print out { 0 }, and let + // the compiler figure out the rest of the zeros. + Out << " = " ; + if (isa<StructType>(I->getInitializer()->getType()) || + isa<ArrayType>(I->getInitializer()->getType())) { + Out << "{ 0 }"; + } else { + // Just print it out normally. + writeOperand(I->getInitializer()); + } + } + Out << ";\n"; + } + } + + if (!M.empty()) + Out << "\n\n/* Function Bodies */\n"; + return false; +} + + +/// Output all floating point constants that cannot be printed accurately... +void CWriter::printFloatingPointConstants(Function &F) { + // Scan the module for floating point constants. If any FP constant is used + // in the function, we want to redirect it here so that we do not depend on + // the precision of the printed form, unless the printed form preserves + // precision. + // + static unsigned FPCounter = 0; + for (constant_iterator I = constant_begin(&F), E = constant_end(&F); + I != E; ++I) + if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I)) + if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe. + !FPConstantMap.count(FPC)) { + double Val = FPC->getValue(); + + FPConstantMap[FPC] = FPCounter; // Number the FP constants + + if (FPC->getType() == Type::DoubleTy) { + Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ + << " = 0x" << std::hex << DoubleToBits(Val) << std::dec + << "ULL; /* " << Val << " */\n"; + } else if (FPC->getType() == Type::FloatTy) { + Out << "static const ConstantFloatTy FPConstant" << FPCounter++ + << " = 0x" << std::hex << FloatToBits(Val) << std::dec + << "U; /* " << Val << " */\n"; + } else + assert(0 && "Unknown float type!"); + } + + Out << '\n'; +} + + +/// printSymbolTable - Run through symbol table looking for type names. If a +/// type name is found, emit it's declaration... +/// +void CWriter::printModuleTypes(const SymbolTable &ST) { + // We are only interested in the type plane of the symbol table. + SymbolTable::type_const_iterator I = ST.type_begin(); + SymbolTable::type_const_iterator End = ST.type_end(); + + // If there are no type names, exit early. + if (I == End) return; + + // Print out forward declarations for structure types before anything else! + Out << "/* Structure forward decls */\n"; + for (; I != End; ++I) + if (const Type *STy = dyn_cast<StructType>(I->second)) { + std::string Name = "struct l_" + Mangler::makeNameProper(I->first); + Out << Name << ";\n"; + TypeNames.insert(std::make_pair(STy, Name)); + } + + Out << '\n'; + + // Now we can print out typedefs... + Out << "/* Typedefs */\n"; + for (I = ST.type_begin(); I != End; ++I) { + const Type *Ty = cast<Type>(I->second); + std::string Name = "l_" + Mangler::makeNameProper(I->first); + Out << "typedef "; + printType(Out, Ty, Name); + Out << ";\n"; + } + + Out << '\n'; + + // Keep track of which structures have been printed so far... + std::set<const StructType *> StructPrinted; + + // Loop over all structures then push them into the stack so they are + // printed in the correct order. + // + Out << "/* Structure contents */\n"; + for (I = ST.type_begin(); I != End; ++I) + if (const StructType *STy = dyn_cast<StructType>(I->second)) + // Only print out used types! + printContainedStructs(STy, StructPrinted); +} + +// Push the struct onto the stack and recursively push all structs +// this one depends on. +void CWriter::printContainedStructs(const Type *Ty, + std::set<const StructType*> &StructPrinted){ + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + //Check to see if we have already printed this struct + if (StructPrinted.count(STy) == 0) { + // Print all contained types first... + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + const Type *Ty1 = I->get(); + if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) + printContainedStructs(*I, StructPrinted); + } + + //Print structure type out.. + StructPrinted.insert(STy); + std::string Name = TypeNames[STy]; + printType(Out, STy, Name, true); + Out << ";\n\n"; + } + + // If it is an array, check contained types and continue + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){ + const Type *Ty1 = ATy->getElementType(); + if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) + printContainedStructs(Ty1, StructPrinted); + } +} + + +void CWriter::printFunctionSignature(const Function *F, bool Prototype) { + if (F->hasInternalLinkage()) Out << "static "; + + // Loop over the arguments, printing them... + const FunctionType *FT = cast<FunctionType>(F->getFunctionType()); + + std::stringstream FunctionInnards; + + // Print out the name... + FunctionInnards << Mang->getValueName(F) << '('; + + if (!F->isExternal()) { + if (!F->arg_empty()) { + std::string ArgName; + if (F->arg_begin()->hasName() || !Prototype) + ArgName = Mang->getValueName(F->arg_begin()); + printType(FunctionInnards, F->arg_begin()->getType(), ArgName); + for (Function::const_arg_iterator I = ++F->arg_begin(), E = F->arg_end(); + I != E; ++I) { + FunctionInnards << ", "; + if (I->hasName() || !Prototype) + ArgName = Mang->getValueName(I); + else + ArgName = ""; + printType(FunctionInnards, I->getType(), ArgName); + } + } + } else { + // Loop over the arguments, printing them... + for (FunctionType::param_iterator I = FT->param_begin(), + E = FT->param_end(); I != E; ++I) { + if (I != FT->param_begin()) FunctionInnards << ", "; + printType(FunctionInnards, *I); + } + } + + // Finish printing arguments... if this is a vararg function, print the ..., + // unless there are no known types, in which case, we just emit (). + // + if (FT->isVarArg() && FT->getNumParams()) { + if (FT->getNumParams()) FunctionInnards << ", "; + FunctionInnards << "..."; // Output varargs portion of signature! + } else if (!FT->isVarArg() && FT->getNumParams() == 0) { + FunctionInnards << "void"; // ret() -> ret(void) in C. + } + FunctionInnards << ')'; + // Print out the return type and the entire signature for that matter + printType(Out, F->getReturnType(), FunctionInnards.str()); +} + +void CWriter::printFunction(Function &F) { + printFunctionSignature(&F, false); + Out << " {\n"; + + // print local variable information for the function + for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) + if (const AllocaInst *AI = isDirectAlloca(&*I)) { + Out << " "; + printType(Out, AI->getAllocatedType(), Mang->getValueName(AI)); + Out << "; /* Address-exposed local */\n"; + } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) { + Out << " "; + printType(Out, I->getType(), Mang->getValueName(&*I)); + Out << ";\n"; + + if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... + Out << " "; + printType(Out, I->getType(), + Mang->getValueName(&*I)+"__PHI_TEMPORARY"); + Out << ";\n"; + } + } + + Out << '\n'; + + if (F.hasExternalLinkage() && F.getName() == "main") + Out << " CODE_FOR_MAIN();\n"; + + // print the basic blocks + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + if (Loop *L = LI->getLoopFor(BB)) { + if (L->getHeader() == BB && L->getParentLoop() == 0) + printLoop(L); + } else { + printBasicBlock(BB); + } + } + + Out << "}\n\n"; +} + +void CWriter::printLoop(Loop *L) { + Out << " do { /* Syntactic loop '" << L->getHeader()->getName() + << "' to make GCC happy */\n"; + for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { + BasicBlock *BB = L->getBlocks()[i]; + Loop *BBLoop = LI->getLoopFor(BB); + if (BBLoop == L) + printBasicBlock(BB); + else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) + printLoop(BBLoop); + } + Out << " } while (1); /* end of syntactic loop '" + << L->getHeader()->getName() << "' */\n"; +} + +void CWriter::printBasicBlock(BasicBlock *BB) { + + // Don't print the label for the basic block if there are no uses, or if + // the only terminator use is the predecessor basic block's terminator. + // We have to scan the use list because PHI nodes use basic blocks too but + // do not require a label to be generated. + // + bool NeedsLabel = false; + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) + if (isGotoCodeNecessary(*PI, BB)) { + NeedsLabel = true; + break; + } + + if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; + + // Output all of the instructions in the basic block... + for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; + ++II) { + if (!isInlinableInst(*II) && !isDirectAlloca(II)) { + if (II->getType() != Type::VoidTy) + outputLValue(II); + else + Out << " "; + visit(*II); + Out << ";\n"; + } + } + + // Don't emit prefix or suffix for the terminator... + visit(*BB->getTerminator()); +} + + +// Specific Instruction type classes... note that all of the casts are +// necessary because we use the instruction classes as opaque types... +// +void CWriter::visitReturnInst(ReturnInst &I) { + // Don't output a void return if this is the last basic block in the function + if (I.getNumOperands() == 0 && + &*--I.getParent()->getParent()->end() == I.getParent() && + !I.getParent()->size() == 1) { + return; + } + + Out << " return"; + if (I.getNumOperands()) { + Out << ' '; + writeOperand(I.getOperand(0)); + } + Out << ";\n"; +} + +void CWriter::visitSwitchInst(SwitchInst &SI) { + + Out << " switch ("; + writeOperand(SI.getOperand(0)); + Out << ") {\n default:\n"; + printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); + printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); + Out << ";\n"; + for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { + Out << " case "; + writeOperand(SI.getOperand(i)); + Out << ":\n"; + BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1)); + printPHICopiesForSuccessor (SI.getParent(), Succ, 2); + printBranchToBlock(SI.getParent(), Succ, 2); + if (Function::iterator(Succ) == next(Function::iterator(SI.getParent()))) + Out << " break;\n"; + } + Out << " }\n"; +} + +void CWriter::visitUnreachableInst(UnreachableInst &I) { + Out << " /*UNREACHABLE*/;\n"; +} + +bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { + /// FIXME: This should be reenabled, but loop reordering safe!! + return true; + + if (next(Function::iterator(From)) != Function::iterator(To)) + return true; // Not the direct successor, we need a goto. + + //isa<SwitchInst>(From->getTerminator()) + + if (LI->getLoopFor(From) != LI->getLoopFor(To)) + return true; + return false; +} + +void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, + BasicBlock *Successor, + unsigned Indent) { + for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + // Now we have to do the printing. + Value *IV = PN->getIncomingValueForBlock(CurBlock); + if (!isa<UndefValue>(IV)) { + Out << std::string(Indent, ' '); + Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; + writeOperand(IV); + Out << "; /* for PHI node */\n"; + } + } +} + +void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, + unsigned Indent) { + if (isGotoCodeNecessary(CurBB, Succ)) { + Out << std::string(Indent, ' ') << " goto "; + writeOperand(Succ); + Out << ";\n"; + } +} + +// Branch instruction printing - Avoid printing out a branch to a basic block +// that immediately succeeds the current one. +// +void CWriter::visitBranchInst(BranchInst &I) { + + if (I.isConditional()) { + if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { + Out << " if ("; + writeOperand(I.getCondition()); + Out << ") {\n"; + + printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); + printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); + + if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { + Out << " } else {\n"; + printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); + printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); + } + } else { + // First goto not necessary, assume second one is... + Out << " if (!"; + writeOperand(I.getCondition()); + Out << ") {\n"; + + printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); + printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); + } + + Out << " }\n"; + } else { + printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); + printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); + } + Out << "\n"; +} + +// PHI nodes get copied into temporary values at the end of predecessor basic +// blocks. We now need to copy these temporary values into the REAL value for +// the PHI. +void CWriter::visitPHINode(PHINode &I) { + writeOperand(&I); + Out << "__PHI_TEMPORARY"; +} + + +void CWriter::visitBinaryOperator(Instruction &I) { + // binary instructions, shift instructions, setCond instructions. + assert(!isa<PointerType>(I.getType())); + + // We must cast the results of binary operations which might be promoted. + bool needsCast = false; + if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy) + || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy) + || (I.getType() == Type::FloatTy)) { + needsCast = true; + Out << "(("; + printType(Out, I.getType()); + Out << ")("; + } + + // If this is a negation operation, print it out as such. For FP, we don't + // want to print "-0.0 - X". + if (BinaryOperator::isNeg(&I)) { + Out << "-("; + writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I))); + Out << ")"; + } else if (I.getOpcode() == Instruction::Rem && + I.getType()->isFloatingPoint()) { + // Output a call to fmod/fmodf instead of emitting a%b + if (I.getType() == Type::FloatTy) + Out << "fmodf("; + else + Out << "fmod("; + writeOperand(I.getOperand(0)); + Out << ", "; + writeOperand(I.getOperand(1)); + Out << ")"; + } else { + writeOperand(I.getOperand(0)); + + switch (I.getOpcode()) { + case Instruction::Add: Out << " + "; break; + case Instruction::Sub: Out << " - "; break; + case Instruction::Mul: Out << '*'; break; + case Instruction::Div: Out << '/'; break; + case Instruction::Rem: Out << '%'; break; + case Instruction::And: Out << " & "; break; + case Instruction::Or: Out << " | "; break; + case Instruction::Xor: Out << " ^ "; break; + case Instruction::SetEQ: Out << " == "; break; + case Instruction::SetNE: Out << " != "; break; + case Instruction::SetLE: Out << " <= "; break; + case Instruction::SetGE: Out << " >= "; break; + case Instruction::SetLT: Out << " < "; break; + case Instruction::SetGT: Out << " > "; break; + case Instruction::Shl : Out << " << "; break; + case Instruction::Shr : Out << " >> "; break; + default: std::cerr << "Invalid operator type!" << I; abort(); + } + + writeOperand(I.getOperand(1)); + } + + if (needsCast) { + Out << "))"; + } +} + +void CWriter::visitCastInst(CastInst &I) { + if (I.getType() == Type::BoolTy) { + Out << '('; + writeOperand(I.getOperand(0)); + Out << " != 0)"; + return; + } + Out << '('; + printType(Out, I.getType()); + Out << ')'; + if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() || + isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) { + // Avoid "cast to pointer from integer of different size" warnings + Out << "(long)"; + } + + writeOperand(I.getOperand(0)); +} + +void CWriter::visitSelectInst(SelectInst &I) { + Out << "(("; + writeOperand(I.getCondition()); + Out << ") ? ("; + writeOperand(I.getTrueValue()); + Out << ") : ("; + writeOperand(I.getFalseValue()); + Out << "))"; +} + + +void CWriter::lowerIntrinsics(Function &F) { + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) + if (CallInst *CI = dyn_cast<CallInst>(I++)) + if (Function *F = CI->getCalledFunction()) + switch (F->getIntrinsicID()) { + case Intrinsic::not_intrinsic: + case Intrinsic::vastart: + case Intrinsic::vacopy: + case Intrinsic::vaend: + case Intrinsic::returnaddress: + case Intrinsic::frameaddress: + case Intrinsic::setjmp: + case Intrinsic::longjmp: + case Intrinsic::prefetch: + // We directly implement these intrinsics + break; + default: + // All other intrinsic calls we must lower. + Instruction *Before = 0; + if (CI != &BB->front()) + Before = prior(BasicBlock::iterator(CI)); + + IL.LowerIntrinsicCall(CI); + if (Before) { // Move iterator to instruction after call + I = Before; ++I; + } else { + I = BB->begin(); + } + } +} + + + +void CWriter::visitCallInst(CallInst &I) { + // Handle intrinsic function calls first... + if (Function *F = I.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { + switch (ID) { + default: assert(0 && "Unknown LLVM intrinsic!"); + case Intrinsic::vastart: + Out << "0; "; + + // Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", "; + Out << "va_start(*(va_list*)"; + writeOperand(I.getOperand(1)); + Out << ", "; + // Output the last argument to the enclosing function... + if (I.getParent()->getParent()->arg_empty()) { + std::cerr << "The C backend does not currently support zero " + << "argument varargs functions, such as '" + << I.getParent()->getParent()->getName() << "'!\n"; + abort(); + } + writeOperand(--I.getParent()->getParent()->arg_end()); + Out << ')'; + return; + case Intrinsic::vaend: + if (!isa<ConstantPointerNull>(I.getOperand(1))) { + Out << "0; va_end(*(va_list*)"; + writeOperand(I.getOperand(1)); + Out << ')'; + } else { + Out << "va_end(*(va_list*)0)"; + } + return; + case Intrinsic::vacopy: + Out << "0; "; + Out << "va_copy(*(va_list*)"; + writeOperand(I.getOperand(1)); + Out << ", *(va_list*)"; + writeOperand(I.getOperand(2)); + Out << ')'; + return; + case Intrinsic::returnaddress: + Out << "__builtin_return_address("; + writeOperand(I.getOperand(1)); + Out << ')'; + return; + case Intrinsic::frameaddress: + Out << "__builtin_frame_address("; + writeOperand(I.getOperand(1)); + Out << ')'; + return; + case Intrinsic::setjmp: + Out << "setjmp(*(jmp_buf*)"; + writeOperand(I.getOperand(1)); + Out << ')'; + return; + case Intrinsic::longjmp: + Out << "longjmp(*(jmp_buf*)"; + writeOperand(I.getOperand(1)); + Out << ", "; + writeOperand(I.getOperand(2)); + Out << ')'; + return; + case Intrinsic::prefetch: + Out << "LLVM_PREFETCH((const void *)"; + writeOperand(I.getOperand(1)); + Out << ", "; + writeOperand(I.getOperand(2)); + Out << ", "; + writeOperand(I.getOperand(3)); + Out << ")"; + return; + } + } + + Value *Callee = I.getCalledValue(); + + // GCC is really a PITA. It does not permit codegening casts of functions to + // function pointers if they are in a call (it generates a trap instruction + // instead!). We work around this by inserting a cast to void* in between the + // function and the function pointer cast. Unfortunately, we can't just form + // the constant expression here, because the folder will immediately nuke it. + // + // Note finally, that this is completely unsafe. ANSI C does not guarantee + // that void* and function pointers have the same size. :( To deal with this + // in the common case, we handle casts where the number of arguments passed + // match exactly. + // + bool WroteCallee = false; + if (I.isTailCall()) Out << " /*tail*/ "; + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) + if (CE->getOpcode() == Instruction::Cast) + if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { + const FunctionType *RFTy = RF->getFunctionType(); + if (RFTy->getNumParams() == I.getNumOperands()-1) { + // If the call site expects a value, and the actual callee doesn't + // provide one, return 0. + if (I.getType() != Type::VoidTy && + RFTy->getReturnType() == Type::VoidTy) + Out << "0 /*actual callee doesn't return value*/; "; + Callee = RF; + } else { + // Ok, just cast the pointer type. + Out << "(("; + printType(Out, CE->getType()); + Out << ")(void*)"; + printConstant(RF); + Out << ')'; + WroteCallee = true; + } + } + + const PointerType *PTy = cast<PointerType>(Callee->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const Type *RetTy = FTy->getReturnType(); + + if (!WroteCallee) writeOperand(Callee); + Out << '('; + + unsigned NumDeclaredParams = FTy->getNumParams(); + + if (I.getNumOperands() != 1) { + CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end(); + if (NumDeclaredParams && (*AI)->getType() != FTy->getParamType(0)) { + Out << '('; + printType(Out, FTy->getParamType(0)); + Out << ')'; + } + + writeOperand(*AI); + + unsigned ArgNo; + for (ArgNo = 1, ++AI; AI != AE; ++AI, ++ArgNo) { + Out << ", "; + if (ArgNo < NumDeclaredParams && + (*AI)->getType() != FTy->getParamType(ArgNo)) { + Out << '('; + printType(Out, FTy->getParamType(ArgNo)); + Out << ')'; + } + writeOperand(*AI); + } + } + Out << ')'; +} + +void CWriter::visitMallocInst(MallocInst &I) { + assert(0 && "lowerallocations pass didn't work!"); +} + +void CWriter::visitAllocaInst(AllocaInst &I) { + Out << '('; + printType(Out, I.getType()); + Out << ") alloca(sizeof("; + printType(Out, I.getType()->getElementType()); + Out << ')'; + if (I.isArrayAllocation()) { + Out << " * " ; + writeOperand(I.getOperand(0)); + } + Out << ')'; +} + +void CWriter::visitFreeInst(FreeInst &I) { + assert(0 && "lowerallocations pass didn't work!"); +} + +void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I, + gep_type_iterator E) { + bool HasImplicitAddress = false; + // If accessing a global value with no indexing, avoid *(&GV) syndrome + if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) { + HasImplicitAddress = true; + } else if (isDirectAlloca(Ptr)) { + HasImplicitAddress = true; + } + + if (I == E) { + if (!HasImplicitAddress) + Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]' + + writeOperandInternal(Ptr); + return; + } + + const Constant *CI = dyn_cast<Constant>(I.getOperand()); + if (HasImplicitAddress && (!CI || !CI->isNullValue())) + Out << "(&"; + + writeOperandInternal(Ptr); + + if (HasImplicitAddress && (!CI || !CI->isNullValue())) { + Out << ')'; + HasImplicitAddress = false; // HIA is only true if we haven't addressed yet + } + + assert(!HasImplicitAddress || (CI && CI->isNullValue()) && + "Can only have implicit address with direct accessing"); + + if (HasImplicitAddress) { + ++I; + } else if (CI && CI->isNullValue()) { + gep_type_iterator TmpI = I; ++TmpI; + + // Print out the -> operator if possible... + if (TmpI != E && isa<StructType>(*TmpI)) { + Out << (HasImplicitAddress ? "." : "->"); + Out << "field" << cast<ConstantUInt>(TmpI.getOperand())->getValue(); + I = ++TmpI; + } + } + + for (; I != E; ++I) + if (isa<StructType>(*I)) { + Out << ".field" << cast<ConstantUInt>(I.getOperand())->getValue(); + } else { + Out << '['; + writeOperand(I.getOperand()); + Out << ']'; + } +} + +void CWriter::visitLoadInst(LoadInst &I) { + Out << '*'; + if (I.isVolatile()) { + Out << "(("; + printType(Out, I.getType(), "volatile*"); + Out << ")"; + } + + writeOperand(I.getOperand(0)); + + if (I.isVolatile()) + Out << ')'; +} + +void CWriter::visitStoreInst(StoreInst &I) { + Out << '*'; + if (I.isVolatile()) { + Out << "(("; + printType(Out, I.getOperand(0)->getType(), " volatile*"); + Out << ")"; + } + writeOperand(I.getPointerOperand()); + if (I.isVolatile()) Out << ')'; + Out << " = "; + writeOperand(I.getOperand(0)); +} + +void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { + Out << '&'; + printIndexingExpression(I.getPointerOperand(), gep_type_begin(I), + gep_type_end(I)); +} + +void CWriter::visitVAArgInst(VAArgInst &I) { + Out << "va_arg(*(va_list*)"; + writeOperand(I.getOperand(0)); + Out << ", "; + printType(Out, I.getType()); + Out << ");\n "; +} + +//===----------------------------------------------------------------------===// +// External Interface declaration +//===----------------------------------------------------------------------===// + +bool CTargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &o, + CodeGenFileType FileType) { + if (FileType != TargetMachine::AssemblyFile) return true; + + PM.add(createLowerGCPass()); + PM.add(createLowerAllocationsPass(true)); + PM.add(createLowerInvokePass()); + PM.add(new CBackendNameAllUsedStructs()); + PM.add(new CWriter(o, getIntrinsicLowering())); + return false; +} |