diff options
Diffstat (limited to 'lib/IR/Instructions.cpp')
-rw-r--r-- | lib/IR/Instructions.cpp | 3553 |
1 files changed, 3553 insertions, 0 deletions
diff --git a/lib/IR/Instructions.cpp b/lib/IR/Instructions.cpp new file mode 100644 index 0000000000..2e3a525826 --- /dev/null +++ b/lib/IR/Instructions.cpp @@ -0,0 +1,3553 @@ +//===-- Instructions.cpp - Implement the LLVM instructions ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements all of the non-inline methods for the LLVM instruction +// classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Instructions.h" +#include "LLVMContextImpl.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/ConstantRange.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// CallSite Class +//===----------------------------------------------------------------------===// + +User::op_iterator CallSite::getCallee() const { + Instruction *II(getInstruction()); + return isCall() + ? cast<CallInst>(II)->op_end() - 1 // Skip Callee + : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee +} + +//===----------------------------------------------------------------------===// +// TerminatorInst Class +//===----------------------------------------------------------------------===// + +// Out of line virtual method, so the vtable, etc has a home. +TerminatorInst::~TerminatorInst() { +} + +//===----------------------------------------------------------------------===// +// UnaryInstruction Class +//===----------------------------------------------------------------------===// + +// Out of line virtual method, so the vtable, etc has a home. +UnaryInstruction::~UnaryInstruction() { +} + +//===----------------------------------------------------------------------===// +// SelectInst Class +//===----------------------------------------------------------------------===// + +/// areInvalidOperands - Return a string if the specified operands are invalid +/// for a select operation, otherwise return null. +const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { + if (Op1->getType() != Op2->getType()) + return "both values to select must have same type"; + + if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { + // Vector select. + if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) + return "vector select condition element type must be i1"; + VectorType *ET = dyn_cast<VectorType>(Op1->getType()); + if (ET == 0) + return "selected values for vector select must be vectors"; + if (ET->getNumElements() != VT->getNumElements()) + return "vector select requires selected vectors to have " + "the same vector length as select condition"; + } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { + return "select condition must be i1 or <n x i1>"; + } + return 0; +} + + +//===----------------------------------------------------------------------===// +// PHINode Class +//===----------------------------------------------------------------------===// + +PHINode::PHINode(const PHINode &PN) + : Instruction(PN.getType(), Instruction::PHI, + allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), + ReservedSpace(PN.getNumOperands()) { + std::copy(PN.op_begin(), PN.op_end(), op_begin()); + std::copy(PN.block_begin(), PN.block_end(), block_begin()); + SubclassOptionalData = PN.SubclassOptionalData; +} + +PHINode::~PHINode() { + dropHungoffUses(); +} + +Use *PHINode::allocHungoffUses(unsigned N) const { + // Allocate the array of Uses of the incoming values, followed by a pointer + // (with bottom bit set) to the User, followed by the array of pointers to + // the incoming basic blocks. + size_t size = N * sizeof(Use) + sizeof(Use::UserRef) + + N * sizeof(BasicBlock*); + Use *Begin = static_cast<Use*>(::operator new(size)); + Use *End = Begin + N; + (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1); + return Use::initTags(Begin, End); +} + +// removeIncomingValue - Remove an incoming value. This is useful if a +// predecessor basic block is deleted. +Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { + Value *Removed = getIncomingValue(Idx); + + // Move everything after this operand down. + // + // FIXME: we could just swap with the end of the list, then erase. However, + // clients might not expect this to happen. The code as it is thrashes the + // use/def lists, which is kinda lame. + std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); + std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); + + // Nuke the last value. + Op<-1>().set(0); + --NumOperands; + + // If the PHI node is dead, because it has zero entries, nuke it now. + if (getNumOperands() == 0 && DeletePHIIfEmpty) { + // If anyone is using this PHI, make them use a dummy value instead... + replaceAllUsesWith(UndefValue::get(getType())); + eraseFromParent(); + } + return Removed; +} + +/// growOperands - grow operands - This grows the operand list in response +/// to a push_back style of operation. This grows the number of ops by 1.5 +/// times. +/// +void PHINode::growOperands() { + unsigned e = getNumOperands(); + unsigned NumOps = e + e / 2; + if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. + + Use *OldOps = op_begin(); + BasicBlock **OldBlocks = block_begin(); + + ReservedSpace = NumOps; + OperandList = allocHungoffUses(ReservedSpace); + + std::copy(OldOps, OldOps + e, op_begin()); + std::copy(OldBlocks, OldBlocks + e, block_begin()); + + Use::zap(OldOps, OldOps + e, true); +} + +/// hasConstantValue - If the specified PHI node always merges together the same +/// value, return the value, otherwise return null. +Value *PHINode::hasConstantValue() const { + // Exploit the fact that phi nodes always have at least one entry. + Value *ConstantValue = getIncomingValue(0); + for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) + if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { + if (ConstantValue != this) + return 0; // Incoming values not all the same. + // The case where the first value is this PHI. + ConstantValue = getIncomingValue(i); + } + if (ConstantValue == this) + return UndefValue::get(getType()); + return ConstantValue; +} + +//===----------------------------------------------------------------------===// +// LandingPadInst Implementation +//===----------------------------------------------------------------------===// + +LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, + unsigned NumReservedValues, const Twine &NameStr, + Instruction *InsertBefore) + : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) { + init(PersonalityFn, 1 + NumReservedValues, NameStr); +} + +LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, + unsigned NumReservedValues, const Twine &NameStr, + BasicBlock *InsertAtEnd) + : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) { + init(PersonalityFn, 1 + NumReservedValues, NameStr); +} + +LandingPadInst::LandingPadInst(const LandingPadInst &LP) + : Instruction(LP.getType(), Instruction::LandingPad, + allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()), + ReservedSpace(LP.getNumOperands()) { + Use *OL = OperandList, *InOL = LP.OperandList; + for (unsigned I = 0, E = ReservedSpace; I != E; ++I) + OL[I] = InOL[I]; + + setCleanup(LP.isCleanup()); +} + +LandingPadInst::~LandingPadInst() { + dropHungoffUses(); +} + +LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, + unsigned NumReservedClauses, + const Twine &NameStr, + Instruction *InsertBefore) { + return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, + InsertBefore); +} + +LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, + unsigned NumReservedClauses, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, + InsertAtEnd); +} + +void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues, + const Twine &NameStr) { + ReservedSpace = NumReservedValues; + NumOperands = 1; + OperandList = allocHungoffUses(ReservedSpace); + OperandList[0] = PersFn; + setName(NameStr); + setCleanup(false); +} + +/// growOperands - grow operands - This grows the operand list in response to a +/// push_back style of operation. This grows the number of ops by 2 times. +void LandingPadInst::growOperands(unsigned Size) { + unsigned e = getNumOperands(); + if (ReservedSpace >= e + Size) return; + ReservedSpace = (e + Size / 2) * 2; + + Use *NewOps = allocHungoffUses(ReservedSpace); + Use *OldOps = OperandList; + for (unsigned i = 0; i != e; ++i) + NewOps[i] = OldOps[i]; + + OperandList = NewOps; + Use::zap(OldOps, OldOps + e, true); +} + +void LandingPadInst::addClause(Value *Val) { + unsigned OpNo = getNumOperands(); + growOperands(1); + assert(OpNo < ReservedSpace && "Growing didn't work!"); + ++NumOperands; + OperandList[OpNo] = Val; +} + +//===----------------------------------------------------------------------===// +// CallInst Implementation +//===----------------------------------------------------------------------===// + +CallInst::~CallInst() { +} + +void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) { + assert(NumOperands == Args.size() + 1 && "NumOperands not set up?"); + Op<-1>() = Func; + +#ifndef NDEBUG + FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); + + assert((Args.size() == FTy->getNumParams() || + (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && + "Calling a function with bad signature!"); + + for (unsigned i = 0; i != Args.size(); ++i) + assert((i >= FTy->getNumParams() || + FTy->getParamType(i) == Args[i]->getType()) && + "Calling a function with a bad signature!"); +#endif + + std::copy(Args.begin(), Args.end(), op_begin()); + setName(NameStr); +} + +void CallInst::init(Value *Func, const Twine &NameStr) { + assert(NumOperands == 1 && "NumOperands not set up?"); + Op<-1>() = Func; + +#ifndef NDEBUG + FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); + + assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); +#endif + + setName(NameStr); +} + +CallInst::CallInst(Value *Func, const Twine &Name, + Instruction *InsertBefore) + : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) + ->getElementType())->getReturnType(), + Instruction::Call, + OperandTraits<CallInst>::op_end(this) - 1, + 1, InsertBefore) { + init(Func, Name); +} + +CallInst::CallInst(Value *Func, const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) + ->getElementType())->getReturnType(), + Instruction::Call, + OperandTraits<CallInst>::op_end(this) - 1, + 1, InsertAtEnd) { + init(Func, Name); +} + +CallInst::CallInst(const CallInst &CI) + : Instruction(CI.getType(), Instruction::Call, + OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), + CI.getNumOperands()) { + setAttributes(CI.getAttributes()); + setTailCall(CI.isTailCall()); + setCallingConv(CI.getCallingConv()); + + std::copy(CI.op_begin(), CI.op_end(), op_begin()); + SubclassOptionalData = CI.SubclassOptionalData; +} + +void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) { + AttributeSet PAL = getAttributes(); + PAL = PAL.addAttribute(getContext(), i, attr); + setAttributes(PAL); +} + +void CallInst::removeAttribute(unsigned i, Attribute attr) { + AttributeSet PAL = getAttributes(); + AttrBuilder B(attr); + LLVMContext &Context = getContext(); + PAL = PAL.removeAttributes(Context, i, + AttributeSet::get(Context, i, B)); + setAttributes(PAL); +} + +bool CallInst::hasFnAttr(Attribute::AttrKind A) const { + if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) + return true; + if (const Function *F = getCalledFunction()) + return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); + return false; +} + +bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { + if (AttributeList.hasAttribute(i, A)) + return true; + if (const Function *F = getCalledFunction()) + return F->getAttributes().hasAttribute(i, A); + return false; +} + +/// IsConstantOne - Return true only if val is constant int 1 +static bool IsConstantOne(Value *val) { + assert(val && "IsConstantOne does not work with NULL val"); + return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); +} + +static Instruction *createMalloc(Instruction *InsertBefore, + BasicBlock *InsertAtEnd, Type *IntPtrTy, + Type *AllocTy, Value *AllocSize, + Value *ArraySize, Function *MallocF, + const Twine &Name) { + assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && + "createMalloc needs either InsertBefore or InsertAtEnd"); + + // malloc(type) becomes: + // bitcast (i8* malloc(typeSize)) to type* + // malloc(type, arraySize) becomes: + // bitcast (i8 *malloc(typeSize*arraySize)) to type* + if (!ArraySize) + ArraySize = ConstantInt::get(IntPtrTy, 1); + else if (ArraySize->getType() != IntPtrTy) { + if (InsertBefore) + ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, + "", InsertBefore); + else + ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, + "", InsertAtEnd); + } + + if (!IsConstantOne(ArraySize)) { + if (IsConstantOne(AllocSize)) { + AllocSize = ArraySize; // Operand * 1 = Operand + } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { + Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, + false /*ZExt*/); + // Malloc arg is constant product of type size and array size + AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); + } else { + // Multiply type size by the array size... + if (InsertBefore) + AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, + "mallocsize", InsertBefore); + else + AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, + "mallocsize", InsertAtEnd); + } + } + + assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); + // Create the call to Malloc. + BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; + Module* M = BB->getParent()->getParent(); + Type *BPTy = Type::getInt8PtrTy(BB->getContext()); + Value *MallocFunc = MallocF; + if (!MallocFunc) + // prototype malloc as "void *malloc(size_t)" + MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); + PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); + CallInst *MCall = NULL; + Instruction *Result = NULL; + if (InsertBefore) { + MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); + Result = MCall; + if (Result->getType() != AllocPtrType) + // Create a cast instruction to convert to the right type... + Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); + } else { + MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); + Result = MCall; + if (Result->getType() != AllocPtrType) { + InsertAtEnd->getInstList().push_back(MCall); + // Create a cast instruction to convert to the right type... + Result = new BitCastInst(MCall, AllocPtrType, Name); + } + } + MCall->setTailCall(); + if (Function *F = dyn_cast<Function>(MallocFunc)) { + MCall->setCallingConv(F->getCallingConv()); + if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); + } + assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); + + return Result; +} + +/// CreateMalloc - Generate the IR for a call to malloc: +/// 1. Compute the malloc call's argument as the specified type's size, +/// possibly multiplied by the array size if the array size is not +/// constant 1. +/// 2. Call malloc with that argument. +/// 3. Bitcast the result of the malloc call to the specified type. +Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, + Type *IntPtrTy, Type *AllocTy, + Value *AllocSize, Value *ArraySize, + Function * MallocF, + const Twine &Name) { + return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize, + ArraySize, MallocF, Name); +} + +/// CreateMalloc - Generate the IR for a call to malloc: +/// 1. Compute the malloc call's argument as the specified type's size, +/// possibly multiplied by the array size if the array size is not +/// constant 1. +/// 2. Call malloc with that argument. +/// 3. Bitcast the result of the malloc call to the specified type. +/// Note: This function does not add the bitcast to the basic block, that is the +/// responsibility of the caller. +Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, + Type *IntPtrTy, Type *AllocTy, + Value *AllocSize, Value *ArraySize, + Function *MallocF, const Twine &Name) { + return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, + ArraySize, MallocF, Name); +} + +static Instruction* createFree(Value* Source, Instruction *InsertBefore, + BasicBlock *InsertAtEnd) { + assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && + "createFree needs either InsertBefore or InsertAtEnd"); + assert(Source->getType()->isPointerTy() && + "Can not free something of nonpointer type!"); + + BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; + Module* M = BB->getParent()->getParent(); + + Type *VoidTy = Type::getVoidTy(M->getContext()); + Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); + // prototype free as "void free(void*)" + Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); + CallInst* Result = NULL; + Value *PtrCast = Source; + if (InsertBefore) { + if (Source->getType() != IntPtrTy) + PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); + Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); + } else { + if (Source->getType() != IntPtrTy) + PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); + Result = CallInst::Create(FreeFunc, PtrCast, ""); + } + Result->setTailCall(); + if (Function *F = dyn_cast<Function>(FreeFunc)) + Result->setCallingConv(F->getCallingConv()); + + return Result; +} + +/// CreateFree - Generate the IR for a call to the builtin free function. +Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { + return createFree(Source, InsertBefore, NULL); +} + +/// CreateFree - Generate the IR for a call to the builtin free function. +/// Note: This function does not add the call to the basic block, that is the +/// responsibility of the caller. +Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { + Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd); + assert(FreeCall && "CreateFree did not create a CallInst"); + return FreeCall; +} + +//===----------------------------------------------------------------------===// +// InvokeInst Implementation +//===----------------------------------------------------------------------===// + +void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, + ArrayRef<Value *> Args, const Twine &NameStr) { + assert(NumOperands == 3 + Args.size() && "NumOperands not set up?"); + Op<-3>() = Fn; + Op<-2>() = IfNormal; + Op<-1>() = IfException; + +#ifndef NDEBUG + FunctionType *FTy = + cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); + + assert(((Args.size() == FTy->getNumParams()) || + (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && + "Invoking a function with bad signature"); + + for (unsigned i = 0, e = Args.size(); i != e; i++) + assert((i >= FTy->getNumParams() || + FTy->getParamType(i) == Args[i]->getType()) && + "Invoking a function with a bad signature!"); +#endif + + std::copy(Args.begin(), Args.end(), op_begin()); + setName(NameStr); +} + +InvokeInst::InvokeInst(const InvokeInst &II) + : TerminatorInst(II.getType(), Instruction::Invoke, + OperandTraits<InvokeInst>::op_end(this) + - II.getNumOperands(), + II.getNumOperands()) { + setAttributes(II.getAttributes()); + setCallingConv(II.getCallingConv()); + std::copy(II.op_begin(), II.op_end(), op_begin()); + SubclassOptionalData = II.SubclassOptionalData; +} + +BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned InvokeInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { + return setSuccessor(idx, B); +} + +bool InvokeInst::hasFnAttr(Attribute::AttrKind A) const { + if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) + return true; + if (const Function *F = getCalledFunction()) + return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); + return false; +} + +bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { + if (AttributeList.hasAttribute(i, A)) + return true; + if (const Function *F = getCalledFunction()) + return F->getAttributes().hasAttribute(i, A); + return false; +} + +void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) { + AttributeSet PAL = getAttributes(); + PAL = PAL.addAttribute(getContext(), i, attr); + setAttributes(PAL); +} + +void InvokeInst::removeAttribute(unsigned i, Attribute attr) { + AttributeSet PAL = getAttributes(); + AttrBuilder B(attr); + PAL = PAL.removeAttributes(getContext(), i, + AttributeSet::get(getContext(), i, B)); + setAttributes(PAL); +} + +LandingPadInst *InvokeInst::getLandingPadInst() const { + return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); +} + +//===----------------------------------------------------------------------===// +// ReturnInst Implementation +//===----------------------------------------------------------------------===// + +ReturnInst::ReturnInst(const ReturnInst &RI) + : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this) - + RI.getNumOperands(), + RI.getNumOperands()) { + if (RI.getNumOperands()) + Op<0>() = RI.Op<0>(); + SubclassOptionalData = RI.SubclassOptionalData; +} + +ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, + InsertBefore) { + if (retVal) + Op<0>() = retVal; +} +ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, + InsertAtEnd) { + if (retVal) + Op<0>() = retVal; +} +ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, + OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { +} + +unsigned ReturnInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} + +/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to +/// emit the vtable for the class in this translation unit. +void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { + llvm_unreachable("ReturnInst has no successors!"); +} + +BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { + llvm_unreachable("ReturnInst has no successors!"); +} + +ReturnInst::~ReturnInst() { +} + +//===----------------------------------------------------------------------===// +// ResumeInst Implementation +//===----------------------------------------------------------------------===// + +ResumeInst::ResumeInst(const ResumeInst &RI) + : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, + OperandTraits<ResumeInst>::op_begin(this), 1) { + Op<0>() = RI.Op<0>(); +} + +ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, + OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { + Op<0>() = Exn; +} + +ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, + OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { + Op<0>() = Exn; +} + +unsigned ResumeInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} + +void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { + llvm_unreachable("ResumeInst has no successors!"); +} + +BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { + llvm_unreachable("ResumeInst has no successors!"); +} + +//===----------------------------------------------------------------------===// +// UnreachableInst Implementation +//===----------------------------------------------------------------------===// + +UnreachableInst::UnreachableInst(LLVMContext &Context, + Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, + 0, 0, InsertBefore) { +} +UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, + 0, 0, InsertAtEnd) { +} + +unsigned UnreachableInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} + +void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { + llvm_unreachable("UnreachableInst has no successors!"); +} + +BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { + llvm_unreachable("UnreachableInst has no successors!"); +} + +//===----------------------------------------------------------------------===// +// BranchInst Implementation +//===----------------------------------------------------------------------===// + +void BranchInst::AssertOK() { + if (isConditional()) + assert(getCondition()->getType()->isIntegerTy(1) && + "May only branch on boolean predicates!"); +} + +BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 1, + 1, InsertBefore) { + assert(IfTrue != 0 && "Branch destination may not be null!"); + Op<-1>() = IfTrue; +} +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, + Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 3, + 3, InsertBefore) { + Op<-1>() = IfTrue; + Op<-2>() = IfFalse; + Op<-3>() = Cond; +#ifndef NDEBUG + AssertOK(); +#endif +} + +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 1, + 1, InsertAtEnd) { + assert(IfTrue != 0 && "Branch destination may not be null!"); + Op<-1>() = IfTrue; +} + +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, + BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - 3, + 3, InsertAtEnd) { + Op<-1>() = IfTrue; + Op<-2>() = IfFalse; + Op<-3>() = Cond; +#ifndef NDEBUG + AssertOK(); +#endif +} + + +BranchInst::BranchInst(const BranchInst &BI) : + TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, + OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), + BI.getNumOperands()) { + Op<-1>() = BI.Op<-1>(); + if (BI.getNumOperands() != 1) { + assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); + Op<-3>() = BI.Op<-3>(); + Op<-2>() = BI.Op<-2>(); + } + SubclassOptionalData = BI.SubclassOptionalData; +} + +void BranchInst::swapSuccessors() { + assert(isConditional() && + "Cannot swap successors of an unconditional branch"); + Op<-1>().swap(Op<-2>()); + + // Update profile metadata if present and it matches our structural + // expectations. + MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); + if (!ProfileData || ProfileData->getNumOperands() != 3) + return; + + // The first operand is the name. Fetch them backwards and build a new one. + Value *Ops[] = { + ProfileData->getOperand(0), + ProfileData->getOperand(2), + ProfileData->getOperand(1) + }; + setMetadata(LLVMContext::MD_prof, + MDNode::get(ProfileData->getContext(), Ops)); +} + +BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned BranchInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { + setSuccessor(idx, B); +} + + +//===----------------------------------------------------------------------===// +// AllocaInst Implementation +//===----------------------------------------------------------------------===// + +static Value *getAISize(LLVMContext &Context, Value *Amt) { + if (!Amt) + Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); + else { + assert(!isa<BasicBlock>(Amt) && + "Passed basic block into allocation size parameter! Use other ctor"); + assert(Amt->getType()->isIntegerTy() && + "Allocation array size is not an integer!"); + } + return Amt; +} + +AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, + const Twine &Name, Instruction *InsertBefore) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertBefore) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, + const Twine &Name, BasicBlock *InsertAtEnd) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(Type *Ty, const Twine &Name, + Instruction *InsertBefore) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), 0), InsertBefore) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(Type *Ty, const Twine &Name, + BasicBlock *InsertAtEnd) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), 0), InsertAtEnd) { + setAlignment(0); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, + const Twine &Name, Instruction *InsertBefore) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertBefore) { + setAlignment(Align); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, + const Twine &Name, BasicBlock *InsertAtEnd) + : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, + getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { + setAlignment(Align); + assert(!Ty->isVoidTy() && "Cannot allocate void!"); + setName(Name); +} + +// Out of line virtual method, so the vtable, etc has a home. +AllocaInst::~AllocaInst() { +} + +void AllocaInst::setAlignment(unsigned Align) { + assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); + assert(Align <= MaximumAlignment && + "Alignment is greater than MaximumAlignment!"); + setInstructionSubclassData(Log2_32(Align) + 1); + assert(getAlignment() == Align && "Alignment representation error!"); +} + +bool AllocaInst::isArrayAllocation() const { + if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) + return !CI->isOne(); + return true; +} + +Type *AllocaInst::getAllocatedType() const { + return getType()->getElementType(); +} + +/// isStaticAlloca - Return true if this alloca is in the entry block of the +/// function and is a constant size. If so, the code generator will fold it +/// into the prolog/epilog code, so it is basically free. +bool AllocaInst::isStaticAlloca() const { + // Must be constant size. + if (!isa<ConstantInt>(getArraySize())) return false; + + // Must be in the entry block. + const BasicBlock *Parent = getParent(); + return Parent == &Parent->getParent()->front(); +} + +//===----------------------------------------------------------------------===// +// LoadInst Implementation +//===----------------------------------------------------------------------===// + +void LoadInst::AssertOK() { + assert(getOperand(0)->getType()->isPointerTy() && + "Ptr must have pointer type."); + assert(!(isAtomic() && getAlignment() == 0) && + "Alignment required for atomic load"); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(false); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(false); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(isVolatile); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(isVolatile); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + unsigned Align, Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(NotAtomic); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + unsigned Align, BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(NotAtomic); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + unsigned Align, AtomicOrdering Order, + SynchronizationScope SynchScope, + Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(Order, SynchScope); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, + unsigned Align, AtomicOrdering Order, + SynchronizationScope SynchScope, + BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(Order, SynchScope); + AssertOK(); + setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(false); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(false); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, + Instruction *InsertBef) +: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertBef) { + setVolatile(isVolatile); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, + BasicBlock *InsertAE) + : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), + Load, Ptr, InsertAE) { + setVolatile(isVolatile); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); + if (Name && Name[0]) setName(Name); +} + +void LoadInst::setAlignment(unsigned Align) { + assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); + assert(Align <= MaximumAlignment && + "Alignment is greater than MaximumAlignment!"); + setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | + ((Log2_32(Align)+1)<<1)); + assert(getAlignment() == Align && "Alignment representation error!"); +} + +//===----------------------------------------------------------------------===// +// StoreInst Implementation +//===----------------------------------------------------------------------===// + +void StoreInst::AssertOK() { + assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); + assert(getOperand(1)->getType()->isPointerTy() && + "Ptr must have pointer type!"); + assert(getOperand(0)->getType() == + cast<PointerType>(getOperand(1)->getType())->getElementType() + && "Ptr must be a pointer to Val type!"); + assert(!(isAtomic() && getAlignment() == 0) && + "Alignment required for atomic load"); +} + + +StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertBefore) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(false); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertAtEnd) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(false); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + Instruction *InsertBefore) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertBefore) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + unsigned Align, Instruction *InsertBefore) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertBefore) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(NotAtomic); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + unsigned Align, AtomicOrdering Order, + SynchronizationScope SynchScope, + Instruction *InsertBefore) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertBefore) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(Order, SynchScope); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertAtEnd) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(0); + setAtomic(NotAtomic); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + unsigned Align, BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertAtEnd) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(NotAtomic); + AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, + unsigned Align, AtomicOrdering Order, + SynchronizationScope SynchScope, + BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(val->getContext()), Store, + OperandTraits<StoreInst>::op_begin(this), + OperandTraits<StoreInst>::operands(this), + InsertAtEnd) { + Op<0>() = val; + Op<1>() = addr; + setVolatile(isVolatile); + setAlignment(Align); + setAtomic(Order, SynchScope); + AssertOK(); +} + +void StoreInst::setAlignment(unsigned Align) { + assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); + assert(Align <= MaximumAlignment && + "Alignment is greater than MaximumAlignment!"); + setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | + ((Log2_32(Align)+1) << 1)); + assert(getAlignment() == Align && "Alignment representation error!"); +} + +//===----------------------------------------------------------------------===// +// AtomicCmpXchgInst Implementation +//===----------------------------------------------------------------------===// + +void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, + AtomicOrdering Ordering, + SynchronizationScope SynchScope) { + Op<0>() = Ptr; + Op<1>() = Cmp; + Op<2>() = NewVal; + setOrdering(Ordering); + setSynchScope(SynchScope); + + assert(getOperand(0) && getOperand(1) && getOperand(2) && + "All operands must be non-null!"); + assert(getOperand(0)->getType()->isPointerTy() && + "Ptr must have pointer type!"); + assert(getOperand(1)->getType() == + cast<PointerType>(getOperand(0)->getType())->getElementType() + && "Ptr must be a pointer to Cmp type!"); + assert(getOperand(2)->getType() == + cast<PointerType>(getOperand(0)->getType())->getElementType() + && "Ptr must be a pointer to NewVal type!"); + assert(Ordering != NotAtomic && + "AtomicCmpXchg instructions must be atomic!"); +} + +AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, + AtomicOrdering Ordering, + SynchronizationScope SynchScope, + Instruction *InsertBefore) + : Instruction(Cmp->getType(), AtomicCmpXchg, + OperandTraits<AtomicCmpXchgInst>::op_begin(this), + OperandTraits<AtomicCmpXchgInst>::operands(this), + InsertBefore) { + Init(Ptr, Cmp, NewVal, Ordering, SynchScope); +} + +AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, + AtomicOrdering Ordering, + SynchronizationScope SynchScope, + BasicBlock *InsertAtEnd) + : Instruction(Cmp->getType(), AtomicCmpXchg, + OperandTraits<AtomicCmpXchgInst>::op_begin(this), + OperandTraits<AtomicCmpXchgInst>::operands(this), + InsertAtEnd) { + Init(Ptr, Cmp, NewVal, Ordering, SynchScope); +} + +//===----------------------------------------------------------------------===// +// AtomicRMWInst Implementation +//===----------------------------------------------------------------------===// + +void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, + AtomicOrdering Ordering, + SynchronizationScope SynchScope) { + Op<0>() = Ptr; + Op<1>() = Val; + setOperation(Operation); + setOrdering(Ordering); + setSynchScope(SynchScope); + + assert(getOperand(0) && getOperand(1) && + "All operands must be non-null!"); + assert(getOperand(0)->getType()->isPointerTy() && + "Ptr must have pointer type!"); + assert(getOperand(1)->getType() == + cast<PointerType>(getOperand(0)->getType())->getElementType() + && "Ptr must be a pointer to Val type!"); + assert(Ordering != NotAtomic && + "AtomicRMW instructions must be atomic!"); +} + +AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, + AtomicOrdering Ordering, + SynchronizationScope SynchScope, + Instruction *InsertBefore) + : Instruction(Val->getType(), AtomicRMW, + OperandTraits<AtomicRMWInst>::op_begin(this), + OperandTraits<AtomicRMWInst>::operands(this), + InsertBefore) { + Init(Operation, Ptr, Val, Ordering, SynchScope); +} + +AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, + AtomicOrdering Ordering, + SynchronizationScope SynchScope, + BasicBlock *InsertAtEnd) + : Instruction(Val->getType(), AtomicRMW, + OperandTraits<AtomicRMWInst>::op_begin(this), + OperandTraits<AtomicRMWInst>::operands(this), + InsertAtEnd) { + Init(Operation, Ptr, Val, Ordering, SynchScope); +} + +//===----------------------------------------------------------------------===// +// FenceInst Implementation +//===----------------------------------------------------------------------===// + +FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, + SynchronizationScope SynchScope, + Instruction *InsertBefore) + : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) { + setOrdering(Ordering); + setSynchScope(SynchScope); +} + +FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, + SynchronizationScope SynchScope, + BasicBlock *InsertAtEnd) + : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) { + setOrdering(Ordering); + setSynchScope(SynchScope); +} + +//===----------------------------------------------------------------------===// +// GetElementPtrInst Implementation +//===----------------------------------------------------------------------===// + +void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, + const Twine &Name) { + assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?"); + OperandList[0] = Ptr; + std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); + setName(Name); +} + +GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) + : Instruction(GEPI.getType(), GetElementPtr, + OperandTraits<GetElementPtrInst>::op_end(this) + - GEPI.getNumOperands(), + GEPI.getNumOperands()) { + std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); + SubclassOptionalData = GEPI.SubclassOptionalData; +} + +/// getIndexedType - Returns the type of the element that would be accessed with +/// a gep instruction with the specified parameters. +/// +/// The Idxs pointer should point to a continuous piece of memory containing the +/// indices, either as Value* or uint64_t. +/// +/// A null type is returned if the indices are invalid for the specified +/// pointer type. +/// +template <typename IndexTy> +static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) { + PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType()); + if (!PTy) return 0; // Type isn't a pointer type! + Type *Agg = PTy->getElementType(); + + // Handle the special case of the empty set index set, which is always valid. + if (IdxList.empty()) + return Agg; + + // If there is at least one index, the top level type must be sized, otherwise + // it cannot be 'stepped over'. + if (!Agg->isSized()) + return 0; + + unsigned CurIdx = 1; + for (; CurIdx != IdxList.size(); ++CurIdx) { + CompositeType *CT = dyn_cast<CompositeType>(Agg); + if (!CT || CT->isPointerTy()) return 0; + IndexTy Index = IdxList[CurIdx]; + if (!CT->indexValid(Index)) return 0; + Agg = CT->getTypeAtIndex(Index); + } + return CurIdx == IdxList.size() ? Agg : 0; +} + +Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) { + return getIndexedTypeInternal(Ptr, IdxList); +} + +Type *GetElementPtrInst::getIndexedType(Type *Ptr, + ArrayRef<Constant *> IdxList) { + return getIndexedTypeInternal(Ptr, IdxList); +} + +Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) { + return getIndexedTypeInternal(Ptr, IdxList); +} + +/// hasAllZeroIndices - Return true if all of the indices of this GEP are +/// zeros. If so, the result pointer and the first operand have the same +/// value, just potentially different types. +bool GetElementPtrInst::hasAllZeroIndices() const { + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { + if (!CI->isZero()) return false; + } else { + return false; + } + } + return true; +} + +/// hasAllConstantIndices - Return true if all of the indices of this GEP are +/// constant integers. If so, the result pointer and the first operand have +/// a constant offset between them. +bool GetElementPtrInst::hasAllConstantIndices() const { + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + if (!isa<ConstantInt>(getOperand(i))) + return false; + } + return true; +} + +void GetElementPtrInst::setIsInBounds(bool B) { + cast<GEPOperator>(this)->setIsInBounds(B); +} + +bool GetElementPtrInst::isInBounds() const { + return cast<GEPOperator>(this)->isInBounds(); +} + +bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, + APInt &Offset) const { + // Delegate to the generic GEPOperator implementation. + return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); +} + +//===----------------------------------------------------------------------===// +// ExtractElementInst Implementation +//===----------------------------------------------------------------------===// + +ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, + const Twine &Name, + Instruction *InsertBef) + : Instruction(cast<VectorType>(Val->getType())->getElementType(), + ExtractElement, + OperandTraits<ExtractElementInst>::op_begin(this), + 2, InsertBef) { + assert(isValidOperands(Val, Index) && + "Invalid extractelement instruction operands!"); + Op<0>() = Val; + Op<1>() = Index; + setName(Name); +} + +ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, + const Twine &Name, + BasicBlock *InsertAE) + : Instruction(cast<VectorType>(Val->getType())->getElementType(), + ExtractElement, + OperandTraits<ExtractElementInst>::op_begin(this), + 2, InsertAE) { + assert(isValidOperands(Val, Index) && + "Invalid extractelement instruction operands!"); + + Op<0>() = Val; + Op<1>() = Index; + setName(Name); +} + + +bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { + if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32)) + return false; + return true; +} + + +//===----------------------------------------------------------------------===// +// InsertElementInst Implementation +//===----------------------------------------------------------------------===// + +InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, + const Twine &Name, + Instruction *InsertBef) + : Instruction(Vec->getType(), InsertElement, + OperandTraits<InsertElementInst>::op_begin(this), + 3, InsertBef) { + assert(isValidOperands(Vec, Elt, Index) && + "Invalid insertelement instruction operands!"); + Op<0>() = Vec; + Op<1>() = Elt; + Op<2>() = Index; + setName(Name); +} + +InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, + const Twine &Name, + BasicBlock *InsertAE) + : Instruction(Vec->getType(), InsertElement, + OperandTraits<InsertElementInst>::op_begin(this), + 3, InsertAE) { + assert(isValidOperands(Vec, Elt, Index) && + "Invalid insertelement instruction operands!"); + + Op<0>() = Vec; + Op<1>() = Elt; + Op<2>() = Index; + setName(Name); +} + +bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, + const Value *Index) { + if (!Vec->getType()->isVectorTy()) + return false; // First operand of insertelement must be vector type. + + if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) + return false;// Second operand of insertelement must be vector element type. + + if (!Index->getType()->isIntegerTy(32)) + return false; // Third operand of insertelement must be i32. + return true; +} + + +//===----------------------------------------------------------------------===// +// ShuffleVectorInst Implementation +//===----------------------------------------------------------------------===// + +ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, + const Twine &Name, + Instruction *InsertBefore) +: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), + cast<VectorType>(Mask->getType())->getNumElements()), + ShuffleVector, + OperandTraits<ShuffleVectorInst>::op_begin(this), + OperandTraits<ShuffleVectorInst>::operands(this), + InsertBefore) { + assert(isValidOperands(V1, V2, Mask) && + "Invalid shuffle vector instruction operands!"); + Op<0>() = V1; + Op<1>() = V2; + Op<2>() = Mask; + setName(Name); +} + +ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, + const Twine &Name, + BasicBlock *InsertAtEnd) +: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), + cast<VectorType>(Mask->getType())->getNumElements()), + ShuffleVector, + OperandTraits<ShuffleVectorInst>::op_begin(this), + OperandTraits<ShuffleVectorInst>::operands(this), + InsertAtEnd) { + assert(isValidOperands(V1, V2, Mask) && + "Invalid shuffle vector instruction operands!"); + + Op<0>() = V1; + Op<1>() = V2; + Op<2>() = Mask; + setName(Name); +} + +bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, + const Value *Mask) { + // V1 and V2 must be vectors of the same type. + if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) + return false; + + // Mask must be vector of i32. + VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); + if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32)) + return false; + + // Check to see if Mask is valid. + if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) + return true; + + if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { + unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); + for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { + if (CI->uge(V1Size*2)) + return false; + } else if (!isa<UndefValue>(MV->getOperand(i))) { + return false; + } + } + return true; + } + + if (const ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(Mask)) { + unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); + for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) + if (CDS->getElementAsInteger(i) >= V1Size*2) + return false; + return true; + } + + // The bitcode reader can create a place holder for a forward reference + // used as the shuffle mask. When this occurs, the shuffle mask will + // fall into this case and fail. To avoid this error, do this bit of + // ugliness to allow such a mask pass. + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) + if (CE->getOpcode() == Instruction::UserOp1) + return true; + + return false; +} + +/// getMaskValue - Return the index from the shuffle mask for the specified +/// output result. This is either -1 if the element is undef or a number less +/// than 2*numelements. +int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { + assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); + if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) + return CDS->getElementAsInteger(i); + Constant *C = Mask->getAggregateElement(i); + if (isa<UndefValue>(C)) + return -1; + return cast<ConstantInt>(C)->getZExtValue(); +} + +/// getShuffleMask - Return the full mask for this instruction, where each +/// element is the element number and undef's are returned as -1. +void ShuffleVectorInst::getShuffleMask(Constant *Mask, + SmallVectorImpl<int> &Result) { + unsigned NumElts = Mask->getType()->getVectorNumElements(); + + if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { + for (unsigned i = 0; i != NumElts; ++i) + Result.push_back(CDS->getElementAsInteger(i)); + return; + } + for (unsigned i = 0; i != NumElts; ++i) { + Constant *C = Mask->getAggregateElement(i); + Result.push_back(isa<UndefValue>(C) ? -1 : + cast<ConstantInt>(C)->getZExtValue()); + } +} + + +//===----------------------------------------------------------------------===// +// InsertValueInst Class +//===----------------------------------------------------------------------===// + +void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, + const Twine &Name) { + assert(NumOperands == 2 && "NumOperands not initialized?"); + + // There's no fundamental reason why we require at least one index + // (other than weirdness with &*IdxBegin being invalid; see + // getelementptr's init routine for example). But there's no + // present need to support it. + assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); + + assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == + Val->getType() && "Inserted value must match indexed type!"); + Op<0>() = Agg; + Op<1>() = Val; + + Indices.append(Idxs.begin(), Idxs.end()); + setName(Name); +} + +InsertValueInst::InsertValueInst(const InsertValueInst &IVI) + : Instruction(IVI.getType(), InsertValue, + OperandTraits<InsertValueInst>::op_begin(this), 2), + Indices(IVI.Indices) { + Op<0>() = IVI.getOperand(0); + Op<1>() = IVI.getOperand(1); + SubclassOptionalData = IVI.SubclassOptionalData; +} + +//===----------------------------------------------------------------------===// +// ExtractValueInst Class +//===----------------------------------------------------------------------===// + +void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { + assert(NumOperands == 1 && "NumOperands not initialized?"); + + // There's no fundamental reason why we require at least one index. + // But there's no present need to support it. + assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); + + Indices.append(Idxs.begin(), Idxs.end()); + setName(Name); +} + +ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) + : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), + Indices(EVI.Indices) { + SubclassOptionalData = EVI.SubclassOptionalData; +} + +// getIndexedType - Returns the type of the element that would be extracted +// with an extractvalue instruction with the specified parameters. +// +// A null type is returned if the indices are invalid for the specified +// pointer type. +// +Type *ExtractValueInst::getIndexedType(Type *Agg, + ArrayRef<unsigned> Idxs) { + for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) { + unsigned Index = Idxs[CurIdx]; + // We can't use CompositeType::indexValid(Index) here. + // indexValid() always returns true for arrays because getelementptr allows + // out-of-bounds indices. Since we don't allow those for extractvalue and + // insertvalue we need to check array indexing manually. + // Since the only other types we can index into are struct types it's just + // as easy to check those manually as well. + if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { + if (Index >= AT->getNumElements()) + return 0; + } else if (StructType *ST = dyn_cast<StructType>(Agg)) { + if (Index >= ST->getNumElements()) + return 0; + } else { + // Not a valid type to index into. + return 0; + } + + Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); + } + return const_cast<Type*>(Agg); +} + +//===----------------------------------------------------------------------===// +// BinaryOperator Class +//===----------------------------------------------------------------------===// + +BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, + Type *Ty, const Twine &Name, + Instruction *InsertBefore) + : Instruction(Ty, iType, + OperandTraits<BinaryOperator>::op_begin(this), + OperandTraits<BinaryOperator>::operands(this), + InsertBefore) { + Op<0>() = S1; + Op<1>() = S2; + init(iType); + setName(Name); +} + +BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, + Type *Ty, const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(Ty, iType, + OperandTraits<BinaryOperator>::op_begin(this), + OperandTraits<BinaryOperator>::operands(this), + InsertAtEnd) { + Op<0>() = S1; + Op<1>() = S2; + init(iType); + setName(Name); +} + + +void BinaryOperator::init(BinaryOps iType) { + Value *LHS = getOperand(0), *RHS = getOperand(1); + (void)LHS; (void)RHS; // Silence warnings. + assert(LHS->getType() == RHS->getType() && + "Binary operator operand types must match!"); +#ifndef NDEBUG + switch (iType) { + case Add: case Sub: + case Mul: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isIntOrIntVectorTy() && + "Tried to create an integer operation on a non-integer type!"); + break; + case FAdd: case FSub: + case FMul: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isFPOrFPVectorTy() && + "Tried to create a floating-point operation on a " + "non-floating-point type!"); + break; + case UDiv: + case SDiv: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert((getType()->isIntegerTy() || (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Incorrect operand type (not integer) for S/UDIV"); + break; + case FDiv: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isFPOrFPVectorTy() && + "Incorrect operand type (not floating point) for FDIV"); + break; + case URem: + case SRem: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert((getType()->isIntegerTy() || (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Incorrect operand type (not integer) for S/UREM"); + break; + case FRem: + assert(getType() == LHS->getType() && + "Arithmetic operation should return same type as operands!"); + assert(getType()->isFPOrFPVectorTy() && + "Incorrect operand type (not floating point) for FREM"); + break; + case Shl: + case LShr: + case AShr: + assert(getType() == LHS->getType() && + "Shift operation should return same type as operands!"); + assert((getType()->isIntegerTy() || + (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Tried to create a shift operation on a non-integral type!"); + break; + case And: case Or: + case Xor: + assert(getType() == LHS->getType() && + "Logical operation should return same type as operands!"); + assert((getType()->isIntegerTy() || + (getType()->isVectorTy() && + cast<VectorType>(getType())->getElementType()->isIntegerTy())) && + "Tried to create a logical operation on a non-integral type!"); + break; + default: + break; + } +#endif +} + +BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, + const Twine &Name, + Instruction *InsertBefore) { + assert(S1->getType() == S2->getType() && + "Cannot create binary operator with two operands of differing type!"); + return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, + const Twine &Name, + BasicBlock *InsertAtEnd) { + BinaryOperator *Res = Create(Op, S1, S2, Name); + InsertAtEnd->getInstList().push_back(Res); + return Res; +} + +BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::Sub, + zero, Op, + Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::Sub, + zero, Op, + Op->getType(), Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::FSub, zero, Op, + Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); + return new BinaryOperator(Instruction::FSub, zero, Op, + Op->getType(), Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, + Instruction *InsertBefore) { + Constant *C = Constant::getAllOnesValue(Op->getType()); + return new BinaryOperator(Instruction::Xor, Op, C, + Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, + BasicBlock *InsertAtEnd) { + Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); + return new BinaryOperator(Instruction::Xor, Op, AllOnes, + Op->getType(), Name, InsertAtEnd); +} + + +// isConstantAllOnes - Helper function for several functions below +static inline bool isConstantAllOnes(const Value *V) { + if (const Constant *C = dyn_cast<Constant>(V)) + return C->isAllOnesValue(); + return false; +} + +bool BinaryOperator::isNeg(const Value *V) { + if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) + if (Bop->getOpcode() == Instruction::Sub) + if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) + return C->isNegativeZeroValue(); + return false; +} + +bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { + if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) + if (Bop->getOpcode() == Instruction::FSub) + if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) { + if (!IgnoreZeroSign) + IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); + return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); + } + return false; +} + +bool BinaryOperator::isNot(const Value *V) { + if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) + return (Bop->getOpcode() == Instruction::Xor && + (isConstantAllOnes(Bop->getOperand(1)) || + isConstantAllOnes(Bop->getOperand(0)))); + return false; +} + +Value *BinaryOperator::getNegArgument(Value *BinOp) { + return cast<BinaryOperator>(BinOp)->getOperand(1); +} + +const Value *BinaryOperator::getNegArgument(const Value *BinOp) { + return getNegArgument(const_cast<Value*>(BinOp)); +} + +Value *BinaryOperator::getFNegArgument(Value *BinOp) { + return cast<BinaryOperator>(BinOp)->getOperand(1); +} + +const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { + return getFNegArgument(const_cast<Value*>(BinOp)); +} + +Value *BinaryOperator::getNotArgument(Value *BinOp) { + assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); + BinaryOperator *BO = cast<BinaryOperator>(BinOp); + Value *Op0 = BO->getOperand(0); + Value *Op1 = BO->getOperand(1); + if (isConstantAllOnes(Op0)) return Op1; + + assert(isConstantAllOnes(Op1)); + return Op0; +} + +const Value *BinaryOperator::getNotArgument(const Value *BinOp) { + return getNotArgument(const_cast<Value*>(BinOp)); +} + + +// swapOperands - Exchange the two operands to this instruction. This +// instruction is safe to use on any binary instruction and does not +// modify the semantics of the instruction. If the instruction is +// order dependent (SetLT f.e.) the opcode is changed. +// +bool BinaryOperator::swapOperands() { + if (!isCommutative()) + return true; // Can't commute operands + Op<0>().swap(Op<1>()); + return false; +} + +void BinaryOperator::setHasNoUnsignedWrap(bool b) { + cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); +} + +void BinaryOperator::setHasNoSignedWrap(bool b) { + cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); +} + +void BinaryOperator::setIsExact(bool b) { + cast<PossiblyExactOperator>(this)->setIsExact(b); +} + +bool BinaryOperator::hasNoUnsignedWrap() const { + return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); +} + +bool BinaryOperator::hasNoSignedWrap() const { + return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); +} + +bool BinaryOperator::isExact() const { + return cast<PossiblyExactOperator>(this)->isExact(); +} + +//===----------------------------------------------------------------------===// +// FPMathOperator Class +//===----------------------------------------------------------------------===// + +/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. +/// An accuracy of 0.0 means that the operation should be performed with the +/// default precision. +float FPMathOperator::getFPAccuracy() const { + const MDNode *MD = + cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); + if (!MD) + return 0.0; + ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0)); + return Accuracy->getValueAPF().convertToFloat(); +} + + +//===----------------------------------------------------------------------===// +// CastInst Class +//===----------------------------------------------------------------------===// + +void CastInst::anchor() {} + +// Just determine if this cast only deals with integral->integral conversion. +bool CastInst::isIntegerCast() const { + switch (getOpcode()) { + default: return false; + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::Trunc: + return true; + case Instruction::BitCast: + return getOperand(0)->getType()->isIntegerTy() && + getType()->isIntegerTy(); + } +} + +bool CastInst::isLosslessCast() const { + // Only BitCast can be lossless, exit fast if we're not BitCast + if (getOpcode() != Instruction::BitCast) + return false; + + // Identity cast is always lossless + Type* SrcTy = getOperand(0)->getType(); + Type* DstTy = getType(); + if (SrcTy == DstTy) + return true; + + // Pointer to pointer is always lossless. + if (SrcTy->isPointerTy()) + return DstTy->isPointerTy(); + return false; // Other types have no identity values +} + +/// This function determines if the CastInst does not require any bits to be +/// changed in order to effect the cast. Essentially, it identifies cases where +/// no code gen is necessary for the cast, hence the name no-op cast. For +/// example, the following are all no-op casts: +/// # bitcast i32* %x to i8* +/// # bitcast <2 x i32> %x to <4 x i16> +/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only +/// @brief Determine if the described cast is a no-op. +bool CastInst::isNoopCast(Instruction::CastOps Opcode, + Type *SrcTy, + Type *DestTy, + Type *IntPtrTy) { + switch (Opcode) { + default: llvm_unreachable("Invalid CastOp"); + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + return false; // These always modify bits + case Instruction::BitCast: + return true; // BitCast never modifies bits. + case Instruction::PtrToInt: + return IntPtrTy->getScalarSizeInBits() == + DestTy->getScalarSizeInBits(); + case Instruction::IntToPtr: + return IntPtrTy->getScalarSizeInBits() == + SrcTy->getScalarSizeInBits(); + } +} + +/// @brief Determine if a cast is a no-op. +bool CastInst::isNoopCast(Type *IntPtrTy) const { + return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); +} + +/// This function determines if a pair of casts can be eliminated and what +/// opcode should be used in the elimination. This assumes that there are two +/// instructions like this: +/// * %F = firstOpcode SrcTy %x to MidTy +/// * %S = secondOpcode MidTy %F to DstTy +/// The function returns a resultOpcode so these two casts can be replaced with: +/// * %Replacement = resultOpcode %SrcTy %x to DstTy +/// If no such cast is permited, the function returns 0. +unsigned CastInst::isEliminableCastPair( + Instruction::CastOps firstOp, Instruction::CastOps secondOp, + Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, + Type *DstIntPtrTy) { + // Define the 144 possibilities for these two cast instructions. The values + // in this matrix determine what to do in a given situation and select the + // case in the switch below. The rows correspond to firstOp, the columns + // correspond to secondOp. In looking at the table below, keep in mind + // the following cast properties: + // + // Size Compare Source Destination + // Operator Src ? Size Type Sign Type Sign + // -------- ------------ ------------------- --------------------- + // TRUNC > Integer Any Integral Any + // ZEXT < Integral Unsigned Integer Any + // SEXT < Integral Signed Integer Any + // FPTOUI n/a FloatPt n/a Integral Unsigned + // FPTOSI n/a FloatPt n/a Integral Signed + // UITOFP n/a Integral Unsigned FloatPt n/a + // SITOFP n/a Integral Signed FloatPt n/a + // FPTRUNC > FloatPt n/a FloatPt n/a + // FPEXT < FloatPt n/a FloatPt n/a + // PTRTOINT n/a Pointer n/a Integral Unsigned + // INTTOPTR n/a Integral Unsigned Pointer n/a + // BITCAST = FirstClass n/a FirstClass n/a + // + // NOTE: some transforms are safe, but we consider them to be non-profitable. + // For example, we could merge "fptoui double to i32" + "zext i32 to i64", + // into "fptoui double to i64", but this loses information about the range + // of the produced value (we no longer know the top-part is all zeros). + // Further this conversion is often much more expensive for typical hardware, + // and causes issues when building libgcc. We disallow fptosi+sext for the + // same reason. + const unsigned numCastOps = + Instruction::CastOpsEnd - Instruction::CastOpsBegin; + static const uint8_t CastResults[numCastOps][numCastOps] = { + // T F F U S F F P I B -+ + // R Z S P P I I T P 2 N T | + // U E E 2 2 2 2 R E I T C +- secondOp + // N X X U S F F N X N 2 V | + // C T T I I P P C T T P T -+ + { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ + { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | + { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | + { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | + { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | + { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp + { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | + { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | + { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | + { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | + { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | + { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ + }; + + // If either of the casts are a bitcast from scalar to vector, disallow the + // merging. However, bitcast of A->B->A are allowed. + bool isFirstBitcast = (firstOp == Instruction::BitCast); + bool isSecondBitcast = (secondOp == Instruction::BitCast); + bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast); + + // Check if any of the bitcasts convert scalars<->vectors. + if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || + (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) + // Unless we are bitcasing to the original type, disallow optimizations. + if (!chainedBitcast) return 0; + + int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] + [secondOp-Instruction::CastOpsBegin]; + switch (ElimCase) { + case 0: + // categorically disallowed + return 0; + case 1: + // allowed, use first cast's opcode + return firstOp; + case 2: + // allowed, use second cast's opcode + return secondOp; + case 3: + // no-op cast in second op implies firstOp as long as the DestTy + // is integer and we are not converting between a vector and a + // non vector type. + if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) + return firstOp; + return 0; + case 4: + // no-op cast in second op implies firstOp as long as the DestTy + // is floating point. + if (DstTy->isFloatingPointTy()) + return firstOp; + return 0; + case 5: + // no-op cast in first op implies secondOp as long as the SrcTy + // is an integer. + if (SrcTy->isIntegerTy()) + return secondOp; + return 0; + case 6: + // no-op cast in first op implies secondOp as long as the SrcTy + // is a floating point. + if (SrcTy->isFloatingPointTy()) + return secondOp; + return 0; + case 7: { + // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size + if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) + return 0; + unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); + unsigned MidSize = MidTy->getScalarSizeInBits(); + if (MidSize >= PtrSize) + return Instruction::BitCast; + return 0; + } + case 8: { + // ext, trunc -> bitcast, if the SrcTy and DstTy are same size + // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) + // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) + unsigned SrcSize = SrcTy->getScalarSizeInBits(); + unsigned DstSize = DstTy->getScalarSizeInBits(); + if (SrcSize == DstSize) + return Instruction::BitCast; + else if (SrcSize < DstSize) + return firstOp; + return secondOp; + } + case 9: // zext, sext -> zext, because sext can't sign extend after zext + return Instruction::ZExt; + case 10: + // fpext followed by ftrunc is allowed if the bit size returned to is + // the same as the original, in which case its just a bitcast + if (SrcTy == DstTy) + return Instruction::BitCast; + return 0; // If the types are not the same we can't eliminate it. + case 11: + // bitcast followed by ptrtoint is allowed as long as the bitcast + // is a pointer to pointer cast. + if (SrcTy->isPointerTy() && MidTy->isPointerTy()) + return secondOp; + return 0; + case 12: + // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast + if (MidTy->isPointerTy() && DstTy->isPointerTy()) + return firstOp; + return 0; + case 13: { + // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize + if (!MidIntPtrTy) + return 0; + unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); + unsigned SrcSize = SrcTy->getScalarSizeInBits(); + unsigned DstSize = DstTy->getScalarSizeInBits(); + if (SrcSize <= PtrSize && SrcSize == DstSize) + return Instruction::BitCast; + return 0; + } + case 99: + // cast combination can't happen (error in input). This is for all cases + // where the MidTy is not the same for the two cast instructions. + llvm_unreachable("Invalid Cast Combination"); + default: + llvm_unreachable("Error in CastResults table!!!"); + } +} + +CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, + const Twine &Name, Instruction *InsertBefore) { + assert(castIsValid(op, S, Ty) && "Invalid cast!"); + // Construct and return the appropriate CastInst subclass + switch (op) { + case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); + case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); + case SExt: return new SExtInst (S, Ty, Name, InsertBefore); + case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); + case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); + case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); + case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); + case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); + case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); + case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); + case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); + case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); + default: llvm_unreachable("Invalid opcode provided"); + } +} + +CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, + const Twine &Name, BasicBlock *InsertAtEnd) { + assert(castIsValid(op, S, Ty) && "Invalid cast!"); + // Construct and return the appropriate CastInst subclass + switch (op) { + case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); + case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); + case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); + case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); + case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); + case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); + case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); + case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); + case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); + case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); + case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); + case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); + default: llvm_unreachable("Invalid opcode provided"); + } +} + +CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); + return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); + return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); + return Create(Instruction::SExt, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); + return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); + return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); + return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + assert(S->getType()->isPointerTy() && "Invalid cast"); + assert((Ty->isIntegerTy() || Ty->isPointerTy()) && + "Invalid cast"); + + if (Ty->isIntegerTy()) + return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); + return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); +} + +/// @brief Create a BitCast or a PtrToInt cast instruction +CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); + assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && + "Invalid cast"); + + if (Ty->isIntOrIntVectorTy()) + return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); + return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, + bool isSigned, const Twine &Name, + Instruction *InsertBefore) { + assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && + "Invalid integer cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return Create(opcode, C, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, + bool isSigned, const Twine &Name, + BasicBlock *InsertAtEnd) { + assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return Create(opcode, C, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, + const Twine &Name, + Instruction *InsertBefore) { + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); + return Create(opcode, C, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, + const Twine &Name, + BasicBlock *InsertAtEnd) { + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); + return Create(opcode, C, Ty, Name, InsertAtEnd); +} + +// Check whether it is valid to call getCastOpcode for these types. +// This routine must be kept in sync with getCastOpcode. +bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { + if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) + return false; + + if (SrcTy == DestTy) + return true; + + if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) + if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) + if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { + // An element by element cast. Valid if casting the elements is valid. + SrcTy = SrcVecTy->getElementType(); + DestTy = DestVecTy->getElementType(); + } + + // Get the bit sizes, we'll need these + unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr + unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr + + // Run through the possibilities ... + if (DestTy->isIntegerTy()) { // Casting to integral + if (SrcTy->isIntegerTy()) { // Casting from integral + return true; + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + return true; + } else if (SrcTy->isVectorTy()) { // Casting from vector + return DestBits == SrcBits; + } else { // Casting from something else + return SrcTy->isPointerTy(); + } + } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt + if (SrcTy->isIntegerTy()) { // Casting from integral + return true; + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + return true; + } else if (SrcTy->isVectorTy()) { // Casting from vector + return DestBits == SrcBits; + } else { // Casting from something else + return false; + } + } else if (DestTy->isVectorTy()) { // Casting to vector + return DestBits == SrcBits; + } else if (DestTy->isPointerTy()) { // Casting to pointer + if (SrcTy->isPointerTy()) { // Casting from pointer + return true; + } else if (SrcTy->isIntegerTy()) { // Casting from integral + return true; + } else { // Casting from something else + return false; + } + } else if (DestTy->isX86_MMXTy()) { + if (SrcTy->isVectorTy()) { + return DestBits == SrcBits; // 64-bit vector to MMX + } else { + return false; + } + } else { // Casting to something else + return false; + } +} + +// Provide a way to get a "cast" where the cast opcode is inferred from the +// types and size of the operand. This, basically, is a parallel of the +// logic in the castIsValid function below. This axiom should hold: +// castIsValid( getCastOpcode(Val, Ty), Val, Ty) +// should not assert in castIsValid. In other words, this produces a "correct" +// casting opcode for the arguments passed to it. +// This routine must be kept in sync with isCastable. +Instruction::CastOps +CastInst::getCastOpcode( + const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { + Type *SrcTy = Src->getType(); + + assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && + "Only first class types are castable!"); + + if (SrcTy == DestTy) + return BitCast; + + if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) + if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) + if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { + // An element by element cast. Find the appropriate opcode based on the + // element types. + SrcTy = SrcVecTy->getElementType(); + DestTy = DestVecTy->getElementType(); + } + + // Get the bit sizes, we'll need these + unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr + unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr + + // Run through the possibilities ... + if (DestTy->isIntegerTy()) { // Casting to integral + if (SrcTy->isIntegerTy()) { // Casting from integral + if (DestBits < SrcBits) + return Trunc; // int -> smaller int + else if (DestBits > SrcBits) { // its an extension + if (SrcIsSigned) + return SExt; // signed -> SEXT + else + return ZExt; // unsigned -> ZEXT + } else { + return BitCast; // Same size, No-op cast + } + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + if (DestIsSigned) + return FPToSI; // FP -> sint + else + return FPToUI; // FP -> uint + } else if (SrcTy->isVectorTy()) { + assert(DestBits == SrcBits && + "Casting vector to integer of different width"); + return BitCast; // Same size, no-op cast + } else { + assert(SrcTy->isPointerTy() && + "Casting from a value that is not first-class type"); + return PtrToInt; // ptr -> int + } + } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt + if (SrcTy->isIntegerTy()) { // Casting from integral + if (SrcIsSigned) + return SIToFP; // sint -> FP + else + return UIToFP; // uint -> FP + } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt + if (DestBits < SrcBits) { + return FPTrunc; // FP -> smaller FP + } else if (DestBits > SrcBits) { + return FPExt; // FP -> larger FP + } else { + return BitCast; // same size, no-op cast + } + } else if (SrcTy->isVectorTy()) { + assert(DestBits == SrcBits && + "Casting vector to floating point of different width"); + return BitCast; // same size, no-op cast + } + llvm_unreachable("Casting pointer or non-first class to float"); + } else if (DestTy->isVectorTy()) { + assert(DestBits == SrcBits && + "Illegal cast to vector (wrong type or size)"); + return BitCast; + } else if (DestTy->isPointerTy()) { + if (SrcTy->isPointerTy()) { + return BitCast; // ptr -> ptr + } else if (SrcTy->isIntegerTy()) { + return IntToPtr; // int -> ptr + } + llvm_unreachable("Casting pointer to other than pointer or int"); + } else if (DestTy->isX86_MMXTy()) { + if (SrcTy->isVectorTy()) { + assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); + return BitCast; // 64-bit vector to MMX + } + llvm_unreachable("Illegal cast to X86_MMX"); + } + llvm_unreachable("Casting to type that is not first-class"); +} + +//===----------------------------------------------------------------------===// +// CastInst SubClass Constructors +//===----------------------------------------------------------------------===// + +/// Check that the construction parameters for a CastInst are correct. This +/// could be broken out into the separate constructors but it is useful to have +/// it in one place and to eliminate the redundant code for getting the sizes +/// of the types involved. +bool +CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { + + // Check for type sanity on the arguments + Type *SrcTy = S->getType(); + + // If this is a cast to the same type then it's trivially true. + if (SrcTy == DstTy) + return true; + + if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || + SrcTy->isAggregateType() || DstTy->isAggregateType()) + return false; + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DstBitSize = DstTy->getScalarSizeInBits(); + + // If these are vector types, get the lengths of the vectors (using zero for + // scalar types means that checking that vector lengths match also checks that + // scalars are not being converted to vectors or vectors to scalars). + unsigned SrcLength = SrcTy->isVectorTy() ? + cast<VectorType>(SrcTy)->getNumElements() : 0; + unsigned DstLength = DstTy->isVectorTy() ? + cast<VectorType>(DstTy)->getNumElements() : 0; + + // Switch on the opcode provided + switch (op) { + default: return false; // This is an input error + case Instruction::Trunc: + return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && + SrcLength == DstLength && SrcBitSize > DstBitSize; + case Instruction::ZExt: + return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && + SrcLength == DstLength && SrcBitSize < DstBitSize; + case Instruction::SExt: + return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && + SrcLength == DstLength && SrcBitSize < DstBitSize; + case Instruction::FPTrunc: + return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && + SrcLength == DstLength && SrcBitSize > DstBitSize; + case Instruction::FPExt: + return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && + SrcLength == DstLength && SrcBitSize < DstBitSize; + case Instruction::UIToFP: + case Instruction::SIToFP: + return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && + SrcLength == DstLength; + case Instruction::FPToUI: + case Instruction::FPToSI: + return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && + SrcLength == DstLength; + case Instruction::PtrToInt: + if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) + return false; + if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) + if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) + return false; + return SrcTy->getScalarType()->isPointerTy() && + DstTy->getScalarType()->isIntegerTy(); + case Instruction::IntToPtr: + if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) + return false; + if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) + if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) + return false; + return SrcTy->getScalarType()->isIntegerTy() && + DstTy->getScalarType()->isPointerTy(); + case Instruction::BitCast: + // BitCast implies a no-op cast of type only. No bits change. + // However, you can't cast pointers to anything but pointers. + if (SrcTy->isPointerTy() != DstTy->isPointerTy()) + return false; + + // Now we know we're not dealing with a pointer/non-pointer mismatch. In all + // these cases, the cast is okay if the source and destination bit widths + // are identical. + return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); + } +} + +TruncInst::TruncInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, Trunc, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); +} + +TruncInst::TruncInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); +} + +ZExtInst::ZExtInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, ZExt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); +} + +ZExtInst::ZExtInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); +} +SExtInst::SExtInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, SExt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); +} + +SExtInst::SExtInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); +} + +FPTruncInst::FPTruncInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); +} + +FPTruncInst::FPTruncInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); +} + +FPExtInst::FPExtInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPExt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); +} + +FPExtInst::FPExtInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); +} + +UIToFPInst::UIToFPInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); +} + +UIToFPInst::UIToFPInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); +} + +SIToFPInst::SIToFPInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); +} + +SIToFPInst::SIToFPInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); +} + +FPToUIInst::FPToUIInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); +} + +FPToUIInst::FPToUIInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); +} + +FPToSIInst::FPToSIInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); +} + +FPToSIInst::FPToSIInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); +} + +PtrToIntInst::PtrToIntInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); +} + +PtrToIntInst::PtrToIntInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); +} + +IntToPtrInst::IntToPtrInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); +} + +IntToPtrInst::IntToPtrInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); +} + +BitCastInst::BitCastInst( + Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, BitCast, S, Name, InsertBefore) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); +} + +BitCastInst::BitCastInst( + Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { + assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); +} + +//===----------------------------------------------------------------------===// +// CmpInst Classes +//===----------------------------------------------------------------------===// + +void CmpInst::anchor() {} + +CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, + Value *LHS, Value *RHS, const Twine &Name, + Instruction *InsertBefore) + : Instruction(ty, op, + OperandTraits<CmpInst>::op_begin(this), + OperandTraits<CmpInst>::operands(this), + InsertBefore) { + Op<0>() = LHS; + Op<1>() = RHS; + setPredicate((Predicate)predicate); + setName(Name); +} + +CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, + Value *LHS, Value *RHS, const Twine &Name, + BasicBlock *InsertAtEnd) + : Instruction(ty, op, + OperandTraits<CmpInst>::op_begin(this), + OperandTraits<CmpInst>::operands(this), + InsertAtEnd) { + Op<0>() = LHS; + Op<1>() = RHS; + setPredicate((Predicate)predicate); + setName(Name); +} + +CmpInst * +CmpInst::Create(OtherOps Op, unsigned short predicate, + Value *S1, Value *S2, + const Twine &Name, Instruction *InsertBefore) { + if (Op == Instruction::ICmp) { + if (InsertBefore) + return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), + S1, S2, Name); + else + return new ICmpInst(CmpInst::Predicate(predicate), + S1, S2, Name); + } + + if (InsertBefore) + return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), + S1, S2, Name); + else + return new FCmpInst(CmpInst::Predicate(predicate), + S1, S2, Name); +} + +CmpInst * +CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, + const Twine &Name, BasicBlock *InsertAtEnd) { + if (Op == Instruction::ICmp) { + return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), + S1, S2, Name); + } + return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), + S1, S2, Name); +} + +void CmpInst::swapOperands() { + if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) + IC->swapOperands(); + else + cast<FCmpInst>(this)->swapOperands(); +} + +bool CmpInst::isCommutative() const { + if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) + return IC->isCommutative(); + return cast<FCmpInst>(this)->isCommutative(); +} + +bool CmpInst::isEquality() const { + if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) + return IC->isEquality(); + return cast<FCmpInst>(this)->isEquality(); +} + + +CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { + switch (pred) { + default: llvm_unreachable("Unknown cmp predicate!"); + case ICMP_EQ: return ICMP_NE; + case ICMP_NE: return ICMP_EQ; + case ICMP_UGT: return ICMP_ULE; + case ICMP_ULT: return ICMP_UGE; + case ICMP_UGE: return ICMP_ULT; + case ICMP_ULE: return ICMP_UGT; + case ICMP_SGT: return ICMP_SLE; + case ICMP_SLT: return ICMP_SGE; + case ICMP_SGE: return ICMP_SLT; + case ICMP_SLE: return ICMP_SGT; + + case FCMP_OEQ: return FCMP_UNE; + case FCMP_ONE: return FCMP_UEQ; + case FCMP_OGT: return FCMP_ULE; + case FCMP_OLT: return FCMP_UGE; + case FCMP_OGE: return FCMP_ULT; + case FCMP_OLE: return FCMP_UGT; + case FCMP_UEQ: return FCMP_ONE; + case FCMP_UNE: return FCMP_OEQ; + case FCMP_UGT: return FCMP_OLE; + case FCMP_ULT: return FCMP_OGE; + case FCMP_UGE: return FCMP_OLT; + case FCMP_ULE: return FCMP_OGT; + case FCMP_ORD: return FCMP_UNO; + case FCMP_UNO: return FCMP_ORD; + case FCMP_TRUE: return FCMP_FALSE; + case FCMP_FALSE: return FCMP_TRUE; + } +} + +ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { + switch (pred) { + default: llvm_unreachable("Unknown icmp predicate!"); + case ICMP_EQ: case ICMP_NE: + case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: + return pred; + case ICMP_UGT: return ICMP_SGT; + case ICMP_ULT: return ICMP_SLT; + case ICMP_UGE: return ICMP_SGE; + case ICMP_ULE: return ICMP_SLE; + } +} + +ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { + switch (pred) { + default: llvm_unreachable("Unknown icmp predicate!"); + case ICMP_EQ: case ICMP_NE: + case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: + return pred; + case ICMP_SGT: return ICMP_UGT; + case ICMP_SLT: return ICMP_ULT; + case ICMP_SGE: return ICMP_UGE; + case ICMP_SLE: return ICMP_ULE; + } +} + +/// Initialize a set of values that all satisfy the condition with C. +/// +ConstantRange +ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { + APInt Lower(C); + APInt Upper(C); + uint32_t BitWidth = C.getBitWidth(); + switch (pred) { + default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); + case ICmpInst::ICMP_EQ: Upper++; break; + case ICmpInst::ICMP_NE: Lower++; break; + case ICmpInst::ICMP_ULT: + Lower = APInt::getMinValue(BitWidth); + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_SLT: + Lower = APInt::getSignedMinValue(BitWidth); + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_UGT: + Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_SGT: + Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) + // Check for an empty-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/false); + break; + case ICmpInst::ICMP_ULE: + Lower = APInt::getMinValue(BitWidth); Upper++; + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + case ICmpInst::ICMP_SLE: + Lower = APInt::getSignedMinValue(BitWidth); Upper++; + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + case ICmpInst::ICMP_UGE: + Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + case ICmpInst::ICMP_SGE: + Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) + // Check for a full-set condition. + if (Lower == Upper) + return ConstantRange(BitWidth, /*isFullSet=*/true); + break; + } + return ConstantRange(Lower, Upper); +} + +CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { + switch (pred) { + default: llvm_unreachable("Unknown cmp predicate!"); + case ICMP_EQ: case ICMP_NE: + return pred; + case ICMP_SGT: return ICMP_SLT; + case ICMP_SLT: return ICMP_SGT; + case ICMP_SGE: return ICMP_SLE; + case ICMP_SLE: return ICMP_SGE; + case ICMP_UGT: return ICMP_ULT; + case ICMP_ULT: return ICMP_UGT; + case ICMP_UGE: return ICMP_ULE; + case ICMP_ULE: return ICMP_UGE; + + case FCMP_FALSE: case FCMP_TRUE: + case FCMP_OEQ: case FCMP_ONE: + case FCMP_UEQ: case FCMP_UNE: + case FCMP_ORD: case FCMP_UNO: + return pred; + case FCMP_OGT: return FCMP_OLT; + case FCMP_OLT: return FCMP_OGT; + case FCMP_OGE: return FCMP_OLE; + case FCMP_OLE: return FCMP_OGE; + case FCMP_UGT: return FCMP_ULT; + case FCMP_ULT: return FCMP_UGT; + case FCMP_UGE: return FCMP_ULE; + case FCMP_ULE: return FCMP_UGE; + } +} + +bool CmpInst::isUnsigned(unsigned short predicate) { + switch (predicate) { + default: return false; + case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return true; + } +} + +bool CmpInst::isSigned(unsigned short predicate) { + switch (predicate) { + default: return false; + case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return true; + } +} + +bool CmpInst::isOrdered(unsigned short predicate) { + switch (predicate) { + default: return false; + case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: + case FCmpInst::FCMP_ORD: return true; + } +} + +bool CmpInst::isUnordered(unsigned short predicate) { + switch (predicate) { + default: return false; + case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_UNO: return true; + } +} + +bool CmpInst::isTrueWhenEqual(unsigned short predicate) { + switch(predicate) { + default: return false; + case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: + case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; + } +} + +bool CmpInst::isFalseWhenEqual(unsigned short predicate) { + switch(predicate) { + case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: + case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; + default: return false; + } +} + + +//===----------------------------------------------------------------------===// +// SwitchInst Implementation +//===----------------------------------------------------------------------===// + +void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { + assert(Value && Default && NumReserved); + ReservedSpace = NumReserved; + NumOperands = 2; + OperandList = allocHungoffUses(ReservedSpace); + + OperandList[0] = Value; + OperandList[1] = Default; +} + +/// SwitchInst ctor - Create a new switch instruction, specifying a value to +/// switch on and a default destination. The number of additional cases can +/// be specified here to make memory allocation more efficient. This +/// constructor can also autoinsert before another instruction. +SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, + Instruction *InsertBefore) + : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, + 0, 0, InsertBefore) { + init(Value, Default, 2+NumCases*2); +} + +/// SwitchInst ctor - Create a new switch instruction, specifying a value to +/// switch on and a default destination. The number of additional cases can +/// be specified here to make memory allocation more efficient. This +/// constructor also autoinserts at the end of the specified BasicBlock. +SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, + BasicBlock *InsertAtEnd) + : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, + 0, 0, InsertAtEnd) { + init(Value, Default, 2+NumCases*2); +} + +SwitchInst::SwitchInst(const SwitchInst &SI) + : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) { + init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); + NumOperands = SI.getNumOperands(); + Use *OL = OperandList, *InOL = SI.OperandList; + for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { + OL[i] = InOL[i]; + OL[i+1] = InOL[i+1]; + } + TheSubsets = SI.TheSubsets; + SubclassOptionalData = SI.SubclassOptionalData; +} + +SwitchInst::~SwitchInst() { + dropHungoffUses(); +} + + +/// addCase - Add an entry to the switch instruction... +/// +void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { + IntegersSubsetToBB Mapping; + + // FIXME: Currently we work with ConstantInt based cases. + // So inititalize IntItem container directly from ConstantInt. + Mapping.add(IntItem::fromConstantInt(OnVal)); + IntegersSubset CaseRanges = Mapping.getCase(); + addCase(CaseRanges, Dest); +} + +void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) { + unsigned NewCaseIdx = getNumCases(); + unsigned OpNo = NumOperands; + if (OpNo+2 > ReservedSpace) + growOperands(); // Get more space! + // Initialize some new operands. + assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); + NumOperands = OpNo+2; + + SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal); + + CaseIt Case(this, NewCaseIdx, TheSubsetsIt); + Case.updateCaseValueOperand(OnVal); + Case.setSuccessor(Dest); +} + +/// removeCase - This method removes the specified case and its successor +/// from the switch instruction. +void SwitchInst::removeCase(CaseIt& i) { + unsigned idx = i.getCaseIndex(); + + assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); + + unsigned NumOps = getNumOperands(); + Use *OL = OperandList; + + // Overwrite this case with the end of the list. + if (2 + (idx + 1) * 2 != NumOps) { + OL[2 + idx * 2] = OL[NumOps - 2]; + OL[2 + idx * 2 + 1] = OL[NumOps - 1]; + } + + // Nuke the last value. + OL[NumOps-2].set(0); + OL[NumOps-2+1].set(0); + + // Do the same with TheCases collection: + if (i.SubsetIt != --TheSubsets.end()) { + *i.SubsetIt = TheSubsets.back(); + TheSubsets.pop_back(); + } else { + TheSubsets.pop_back(); + i.SubsetIt = TheSubsets.end(); + } + + NumOperands = NumOps-2; +} + +/// growOperands - grow operands - This grows the operand list in response +/// to a push_back style of operation. This grows the number of ops by 3 times. +/// +void SwitchInst::growOperands() { + unsigned e = getNumOperands(); + unsigned NumOps = e*3; + + ReservedSpace = NumOps; + Use *NewOps = allocHungoffUses(NumOps); + Use *OldOps = OperandList; + for (unsigned i = 0; i != e; ++i) { + NewOps[i] = OldOps[i]; + } + OperandList = NewOps; + Use::zap(OldOps, OldOps + e, true); +} + + +BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned SwitchInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { + setSuccessor(idx, B); +} + +//===----------------------------------------------------------------------===// +// IndirectBrInst Implementation +//===----------------------------------------------------------------------===// + +void IndirectBrInst::init(Value *Address, unsigned NumDests) { + assert(Address && Address->getType()->isPointerTy() && + "Address of indirectbr must be a pointer"); + ReservedSpace = 1+NumDests; + NumOperands = 1; + OperandList = allocHungoffUses(ReservedSpace); + + OperandList[0] = Address; +} + + +/// growOperands - grow operands - This grows the operand list in response +/// to a push_back style of operation. This grows the number of ops by 2 times. +/// +void IndirectBrInst::growOperands() { + unsigned e = getNumOperands(); + unsigned NumOps = e*2; + + ReservedSpace = NumOps; + Use *NewOps = allocHungoffUses(NumOps); + Use *OldOps = OperandList; + for (unsigned i = 0; i != e; ++i) + NewOps[i] = OldOps[i]; + OperandList = NewOps; + Use::zap(OldOps, OldOps + e, true); +} + +IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, + Instruction *InsertBefore) +: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, + 0, 0, InsertBefore) { + init(Address, NumCases); +} + +IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, + BasicBlock *InsertAtEnd) +: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, + 0, 0, InsertAtEnd) { + init(Address, NumCases); +} + +IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) + : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, + allocHungoffUses(IBI.getNumOperands()), + IBI.getNumOperands()) { + Use *OL = OperandList, *InOL = IBI.OperandList; + for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) + OL[i] = InOL[i]; + SubclassOptionalData = IBI.SubclassOptionalData; +} + +IndirectBrInst::~IndirectBrInst() { + dropHungoffUses(); +} + +/// addDestination - Add a destination. +/// +void IndirectBrInst::addDestination(BasicBlock *DestBB) { + unsigned OpNo = NumOperands; + if (OpNo+1 > ReservedSpace) + growOperands(); // Get more space! + // Initialize some new operands. + assert(OpNo < ReservedSpace && "Growing didn't work!"); + NumOperands = OpNo+1; + OperandList[OpNo] = DestBB; +} + +/// removeDestination - This method removes the specified successor from the +/// indirectbr instruction. +void IndirectBrInst::removeDestination(unsigned idx) { + assert(idx < getNumOperands()-1 && "Successor index out of range!"); + + unsigned NumOps = getNumOperands(); + Use *OL = OperandList; + + // Replace this value with the last one. + OL[idx+1] = OL[NumOps-1]; + + // Nuke the last value. + OL[NumOps-1].set(0); + NumOperands = NumOps-1; +} + +BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { + return getSuccessor(idx); +} +unsigned IndirectBrInst::getNumSuccessorsV() const { + return getNumSuccessors(); +} +void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { + setSuccessor(idx, B); +} + +//===----------------------------------------------------------------------===// +// clone_impl() implementations +//===----------------------------------------------------------------------===// + +// Define these methods here so vtables don't get emitted into every translation +// unit that uses these classes. + +GetElementPtrInst *GetElementPtrInst::clone_impl() const { + return new (getNumOperands()) GetElementPtrInst(*this); +} + +BinaryOperator *BinaryOperator::clone_impl() const { + return Create(getOpcode(), Op<0>(), Op<1>()); +} + +FCmpInst* FCmpInst::clone_impl() const { + return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); +} + +ICmpInst* ICmpInst::clone_impl() const { + return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); +} + +ExtractValueInst *ExtractValueInst::clone_impl() const { + return new ExtractValueInst(*this); +} + +InsertValueInst *InsertValueInst::clone_impl() const { + return new InsertValueInst(*this); +} + +AllocaInst *AllocaInst::clone_impl() const { + return new AllocaInst(getAllocatedType(), + (Value*)getOperand(0), + getAlignment()); +} + +LoadInst *LoadInst::clone_impl() const { + return new LoadInst(getOperand(0), Twine(), isVolatile(), + getAlignment(), getOrdering(), getSynchScope()); +} + +StoreInst *StoreInst::clone_impl() const { + return new StoreInst(getOperand(0), getOperand(1), isVolatile(), + getAlignment(), getOrdering(), getSynchScope()); + +} + +AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const { + AtomicCmpXchgInst *Result = + new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), + getOrdering(), getSynchScope()); + Result->setVolatile(isVolatile()); + return Result; +} + +AtomicRMWInst *AtomicRMWInst::clone_impl() const { + AtomicRMWInst *Result = + new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), + getOrdering(), getSynchScope()); + Result->setVolatile(isVolatile()); + return Result; +} + +FenceInst *FenceInst::clone_impl() const { + return new FenceInst(getContext(), getOrdering(), getSynchScope()); +} + +TruncInst *TruncInst::clone_impl() const { + return new TruncInst(getOperand(0), getType()); +} + +ZExtInst *ZExtInst::clone_impl() const { + return new ZExtInst(getOperand(0), getType()); +} + +SExtInst *SExtInst::clone_impl() const { + return new SExtInst(getOperand(0), getType()); +} + +FPTruncInst *FPTruncInst::clone_impl() const { + return new FPTruncInst(getOperand(0), getType()); +} + +FPExtInst *FPExtInst::clone_impl() const { + return new FPExtInst(getOperand(0), getType()); +} + +UIToFPInst *UIToFPInst::clone_impl() const { + return new UIToFPInst(getOperand(0), getType()); +} + +SIToFPInst *SIToFPInst::clone_impl() const { + return new SIToFPInst(getOperand(0), getType()); +} + +FPToUIInst *FPToUIInst::clone_impl() const { + return new FPToUIInst(getOperand(0), getType()); +} + +FPToSIInst *FPToSIInst::clone_impl() const { + return new FPToSIInst(getOperand(0), getType()); +} + +PtrToIntInst *PtrToIntInst::clone_impl() const { + return new PtrToIntInst(getOperand(0), getType()); +} + +IntToPtrInst *IntToPtrInst::clone_impl() const { + return new IntToPtrInst(getOperand(0), getType()); +} + +BitCastInst *BitCastInst::clone_impl() const { + return new BitCastInst(getOperand(0), getType()); +} + +CallInst *CallInst::clone_impl() const { + return new(getNumOperands()) CallInst(*this); +} + +SelectInst *SelectInst::clone_impl() const { + return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); +} + +VAArgInst *VAArgInst::clone_impl() const { + return new VAArgInst(getOperand(0), getType()); +} + +ExtractElementInst *ExtractElementInst::clone_impl() const { + return ExtractElementInst::Create(getOperand(0), getOperand(1)); +} + +InsertElementInst *InsertElementInst::clone_impl() const { + return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); +} + +ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { + return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); +} + +PHINode *PHINode::clone_impl() const { + return new PHINode(*this); +} + +LandingPadInst *LandingPadInst::clone_impl() const { + return new LandingPadInst(*this); +} + +ReturnInst *ReturnInst::clone_impl() const { + return new(getNumOperands()) ReturnInst(*this); +} + +BranchInst *BranchInst::clone_impl() const { + return new(getNumOperands()) BranchInst(*this); +} + +SwitchInst *SwitchInst::clone_impl() const { + return new SwitchInst(*this); +} + +IndirectBrInst *IndirectBrInst::clone_impl() const { + return new IndirectBrInst(*this); +} + + +InvokeInst *InvokeInst::clone_impl() const { + return new(getNumOperands()) InvokeInst(*this); +} + +ResumeInst *ResumeInst::clone_impl() const { + return new(1) ResumeInst(*this); +} + +UnreachableInst *UnreachableInst::clone_impl() const { + LLVMContext &Context = getContext(); + return new UnreachableInst(Context); +} |