aboutsummaryrefslogtreecommitdiff
path: root/lib/IR/Constants.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/IR/Constants.cpp')
-rw-r--r--lib/IR/Constants.cpp2769
1 files changed, 2769 insertions, 0 deletions
diff --git a/lib/IR/Constants.cpp b/lib/IR/Constants.cpp
new file mode 100644
index 0000000000..a97b620768
--- /dev/null
+++ b/lib/IR/Constants.cpp
@@ -0,0 +1,2769 @@
+//===-- Constants.cpp - Implement Constant nodes --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Constant* classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Constants.h"
+#include "ConstantFold.h"
+#include "LLVMContextImpl.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Operator.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdarg>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Constant Class
+//===----------------------------------------------------------------------===//
+
+void Constant::anchor() { }
+
+bool Constant::isNegativeZeroValue() const {
+ // Floating point values have an explicit -0.0 value.
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
+ return CFP->isZero() && CFP->isNegative();
+
+ // Otherwise, just use +0.0.
+ return isNullValue();
+}
+
+bool Constant::isNullValue() const {
+ // 0 is null.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
+ return CI->isZero();
+
+ // +0.0 is null.
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
+ return CFP->isZero() && !CFP->isNegative();
+
+ // constant zero is zero for aggregates and cpnull is null for pointers.
+ return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
+}
+
+bool Constant::isAllOnesValue() const {
+ // Check for -1 integers
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
+ return CI->isMinusOne();
+
+ // Check for FP which are bitcasted from -1 integers
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
+ return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
+
+ // Check for constant vectors which are splats of -1 values.
+ if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
+ if (Constant *Splat = CV->getSplatValue())
+ return Splat->isAllOnesValue();
+
+ // Check for constant vectors which are splats of -1 values.
+ if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
+ if (Constant *Splat = CV->getSplatValue())
+ return Splat->isAllOnesValue();
+
+ return false;
+}
+
+// Constructor to create a '0' constant of arbitrary type...
+Constant *Constant::getNullValue(Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ return ConstantInt::get(Ty, 0);
+ case Type::HalfTyID:
+ return ConstantFP::get(Ty->getContext(),
+ APFloat::getZero(APFloat::IEEEhalf));
+ case Type::FloatTyID:
+ return ConstantFP::get(Ty->getContext(),
+ APFloat::getZero(APFloat::IEEEsingle));
+ case Type::DoubleTyID:
+ return ConstantFP::get(Ty->getContext(),
+ APFloat::getZero(APFloat::IEEEdouble));
+ case Type::X86_FP80TyID:
+ return ConstantFP::get(Ty->getContext(),
+ APFloat::getZero(APFloat::x87DoubleExtended));
+ case Type::FP128TyID:
+ return ConstantFP::get(Ty->getContext(),
+ APFloat::getZero(APFloat::IEEEquad));
+ case Type::PPC_FP128TyID:
+ return ConstantFP::get(Ty->getContext(),
+ APFloat(APInt::getNullValue(128)));
+ case Type::PointerTyID:
+ return ConstantPointerNull::get(cast<PointerType>(Ty));
+ case Type::StructTyID:
+ case Type::ArrayTyID:
+ case Type::VectorTyID:
+ return ConstantAggregateZero::get(Ty);
+ default:
+ // Function, Label, or Opaque type?
+ llvm_unreachable("Cannot create a null constant of that type!");
+ }
+}
+
+Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
+ Type *ScalarTy = Ty->getScalarType();
+
+ // Create the base integer constant.
+ Constant *C = ConstantInt::get(Ty->getContext(), V);
+
+ // Convert an integer to a pointer, if necessary.
+ if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
+ C = ConstantExpr::getIntToPtr(C, PTy);
+
+ // Broadcast a scalar to a vector, if necessary.
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ C = ConstantVector::getSplat(VTy->getNumElements(), C);
+
+ return C;
+}
+
+Constant *Constant::getAllOnesValue(Type *Ty) {
+ if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
+ return ConstantInt::get(Ty->getContext(),
+ APInt::getAllOnesValue(ITy->getBitWidth()));
+
+ if (Ty->isFloatingPointTy()) {
+ APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
+ !Ty->isPPC_FP128Ty());
+ return ConstantFP::get(Ty->getContext(), FL);
+ }
+
+ VectorType *VTy = cast<VectorType>(Ty);
+ return ConstantVector::getSplat(VTy->getNumElements(),
+ getAllOnesValue(VTy->getElementType()));
+}
+
+/// getAggregateElement - For aggregates (struct/array/vector) return the
+/// constant that corresponds to the specified element if possible, or null if
+/// not. This can return null if the element index is a ConstantExpr, or if
+/// 'this' is a constant expr.
+Constant *Constant::getAggregateElement(unsigned Elt) const {
+ if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
+ return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
+
+ if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
+ return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
+
+ if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
+ return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
+
+ if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
+ return CAZ->getElementValue(Elt);
+
+ if (const UndefValue *UV = dyn_cast<UndefValue>(this))
+ return UV->getElementValue(Elt);
+
+ if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
+ return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
+ return 0;
+}
+
+Constant *Constant::getAggregateElement(Constant *Elt) const {
+ assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
+ return getAggregateElement(CI->getZExtValue());
+ return 0;
+}
+
+
+void Constant::destroyConstantImpl() {
+ // When a Constant is destroyed, there may be lingering
+ // references to the constant by other constants in the constant pool. These
+ // constants are implicitly dependent on the module that is being deleted,
+ // but they don't know that. Because we only find out when the CPV is
+ // deleted, we must now notify all of our users (that should only be
+ // Constants) that they are, in fact, invalid now and should be deleted.
+ //
+ while (!use_empty()) {
+ Value *V = use_back();
+#ifndef NDEBUG // Only in -g mode...
+ if (!isa<Constant>(V)) {
+ dbgs() << "While deleting: " << *this
+ << "\n\nUse still stuck around after Def is destroyed: "
+ << *V << "\n\n";
+ }
+#endif
+ assert(isa<Constant>(V) && "References remain to Constant being destroyed");
+ cast<Constant>(V)->destroyConstant();
+
+ // The constant should remove itself from our use list...
+ assert((use_empty() || use_back() != V) && "Constant not removed!");
+ }
+
+ // Value has no outstanding references it is safe to delete it now...
+ delete this;
+}
+
+/// canTrap - Return true if evaluation of this constant could trap. This is
+/// true for things like constant expressions that could divide by zero.
+bool Constant::canTrap() const {
+ assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
+ // The only thing that could possibly trap are constant exprs.
+ const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
+ if (!CE) return false;
+
+ // ConstantExpr traps if any operands can trap.
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (CE->getOperand(i)->canTrap())
+ return true;
+
+ // Otherwise, only specific operations can trap.
+ switch (CE->getOpcode()) {
+ default:
+ return false;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ // Div and rem can trap if the RHS is not known to be non-zero.
+ if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
+ return true;
+ return false;
+ }
+}
+
+/// isThreadDependent - Return true if the value can vary between threads.
+bool Constant::isThreadDependent() const {
+ SmallPtrSet<const Constant*, 64> Visited;
+ SmallVector<const Constant*, 64> WorkList;
+ WorkList.push_back(this);
+ Visited.insert(this);
+
+ while (!WorkList.empty()) {
+ const Constant *C = WorkList.pop_back_val();
+
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
+ if (GV->isThreadLocal())
+ return true;
+ }
+
+ for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
+ const Constant *D = dyn_cast<Constant>(C->getOperand(I));
+ if (!D)
+ continue;
+ if (Visited.insert(D))
+ WorkList.push_back(D);
+ }
+ }
+
+ return false;
+}
+
+/// isConstantUsed - Return true if the constant has users other than constant
+/// exprs and other dangling things.
+bool Constant::isConstantUsed() const {
+ for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
+ const Constant *UC = dyn_cast<Constant>(*UI);
+ if (UC == 0 || isa<GlobalValue>(UC))
+ return true;
+
+ if (UC->isConstantUsed())
+ return true;
+ }
+ return false;
+}
+
+
+
+/// getRelocationInfo - This method classifies the entry according to
+/// whether or not it may generate a relocation entry. This must be
+/// conservative, so if it might codegen to a relocatable entry, it should say
+/// so. The return values are:
+///
+/// NoRelocation: This constant pool entry is guaranteed to never have a
+/// relocation applied to it (because it holds a simple constant like
+/// '4').
+/// LocalRelocation: This entry has relocations, but the entries are
+/// guaranteed to be resolvable by the static linker, so the dynamic
+/// linker will never see them.
+/// GlobalRelocations: This entry may have arbitrary relocations.
+///
+/// FIXME: This really should not be in IR.
+Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
+ if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
+ return LocalRelocation; // Local to this file/library.
+ return GlobalRelocations; // Global reference.
+ }
+
+ if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
+ return BA->getFunction()->getRelocationInfo();
+
+ // While raw uses of blockaddress need to be relocated, differences between
+ // two of them don't when they are for labels in the same function. This is a
+ // common idiom when creating a table for the indirect goto extension, so we
+ // handle it efficiently here.
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
+ if (CE->getOpcode() == Instruction::Sub) {
+ ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
+ ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
+ if (LHS && RHS &&
+ LHS->getOpcode() == Instruction::PtrToInt &&
+ RHS->getOpcode() == Instruction::PtrToInt &&
+ isa<BlockAddress>(LHS->getOperand(0)) &&
+ isa<BlockAddress>(RHS->getOperand(0)) &&
+ cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
+ cast<BlockAddress>(RHS->getOperand(0))->getFunction())
+ return NoRelocation;
+ }
+
+ PossibleRelocationsTy Result = NoRelocation;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ Result = std::max(Result,
+ cast<Constant>(getOperand(i))->getRelocationInfo());
+
+ return Result;
+}
+
+/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
+/// it. This involves recursively eliminating any dead users of the
+/// constantexpr.
+static bool removeDeadUsersOfConstant(const Constant *C) {
+ if (isa<GlobalValue>(C)) return false; // Cannot remove this
+
+ while (!C->use_empty()) {
+ const Constant *User = dyn_cast<Constant>(C->use_back());
+ if (!User) return false; // Non-constant usage;
+ if (!removeDeadUsersOfConstant(User))
+ return false; // Constant wasn't dead
+ }
+
+ const_cast<Constant*>(C)->destroyConstant();
+ return true;
+}
+
+
+/// removeDeadConstantUsers - If there are any dead constant users dangling
+/// off of this constant, remove them. This method is useful for clients
+/// that want to check to see if a global is unused, but don't want to deal
+/// with potentially dead constants hanging off of the globals.
+void Constant::removeDeadConstantUsers() const {
+ Value::const_use_iterator I = use_begin(), E = use_end();
+ Value::const_use_iterator LastNonDeadUser = E;
+ while (I != E) {
+ const Constant *User = dyn_cast<Constant>(*I);
+ if (User == 0) {
+ LastNonDeadUser = I;
+ ++I;
+ continue;
+ }
+
+ if (!removeDeadUsersOfConstant(User)) {
+ // If the constant wasn't dead, remember that this was the last live use
+ // and move on to the next constant.
+ LastNonDeadUser = I;
+ ++I;
+ continue;
+ }
+
+ // If the constant was dead, then the iterator is invalidated.
+ if (LastNonDeadUser == E) {
+ I = use_begin();
+ if (I == E) break;
+ } else {
+ I = LastNonDeadUser;
+ ++I;
+ }
+ }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// ConstantInt
+//===----------------------------------------------------------------------===//
+
+void ConstantInt::anchor() { }
+
+ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
+ : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
+ assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
+}
+
+ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ if (!pImpl->TheTrueVal)
+ pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
+ return pImpl->TheTrueVal;
+}
+
+ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ if (!pImpl->TheFalseVal)
+ pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
+ return pImpl->TheFalseVal;
+}
+
+Constant *ConstantInt::getTrue(Type *Ty) {
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ if (!VTy) {
+ assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
+ return ConstantInt::getTrue(Ty->getContext());
+ }
+ assert(VTy->getElementType()->isIntegerTy(1) &&
+ "True must be vector of i1 or i1.");
+ return ConstantVector::getSplat(VTy->getNumElements(),
+ ConstantInt::getTrue(Ty->getContext()));
+}
+
+Constant *ConstantInt::getFalse(Type *Ty) {
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ if (!VTy) {
+ assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
+ return ConstantInt::getFalse(Ty->getContext());
+ }
+ assert(VTy->getElementType()->isIntegerTy(1) &&
+ "False must be vector of i1 or i1.");
+ return ConstantVector::getSplat(VTy->getNumElements(),
+ ConstantInt::getFalse(Ty->getContext()));
+}
+
+
+// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
+// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
+// operator== and operator!= to ensure that the DenseMap doesn't attempt to
+// compare APInt's of different widths, which would violate an APInt class
+// invariant which generates an assertion.
+ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
+ // Get the corresponding integer type for the bit width of the value.
+ IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
+ // get an existing value or the insertion position
+ DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
+ ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
+ if (!Slot) Slot = new ConstantInt(ITy, V);
+ return Slot;
+}
+
+Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
+ Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
+
+ // For vectors, broadcast the value.
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::getSplat(VTy->getNumElements(), C);
+
+ return C;
+}
+
+ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
+ bool isSigned) {
+ return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
+}
+
+ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant *ConstantInt::get(Type *Ty, const APInt& V) {
+ ConstantInt *C = get(Ty->getContext(), V);
+ assert(C->getType() == Ty->getScalarType() &&
+ "ConstantInt type doesn't match the type implied by its value!");
+
+ // For vectors, broadcast the value.
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::getSplat(VTy->getNumElements(), C);
+
+ return C;
+}
+
+ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
+ uint8_t radix) {
+ return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
+}
+
+//===----------------------------------------------------------------------===//
+// ConstantFP
+//===----------------------------------------------------------------------===//
+
+static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
+ if (Ty->isHalfTy())
+ return &APFloat::IEEEhalf;
+ if (Ty->isFloatTy())
+ return &APFloat::IEEEsingle;
+ if (Ty->isDoubleTy())
+ return &APFloat::IEEEdouble;
+ if (Ty->isX86_FP80Ty())
+ return &APFloat::x87DoubleExtended;
+ else if (Ty->isFP128Ty())
+ return &APFloat::IEEEquad;
+
+ assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
+ return &APFloat::PPCDoubleDouble;
+}
+
+void ConstantFP::anchor() { }
+
+/// get() - This returns a constant fp for the specified value in the
+/// specified type. This should only be used for simple constant values like
+/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
+Constant *ConstantFP::get(Type *Ty, double V) {
+ LLVMContext &Context = Ty->getContext();
+
+ APFloat FV(V);
+ bool ignored;
+ FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
+ APFloat::rmNearestTiesToEven, &ignored);
+ Constant *C = get(Context, FV);
+
+ // For vectors, broadcast the value.
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::getSplat(VTy->getNumElements(), C);
+
+ return C;
+}
+
+
+Constant *ConstantFP::get(Type *Ty, StringRef Str) {
+ LLVMContext &Context = Ty->getContext();
+
+ APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
+ Constant *C = get(Context, FV);
+
+ // For vectors, broadcast the value.
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::getSplat(VTy->getNumElements(), C);
+
+ return C;
+}
+
+
+ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
+ LLVMContext &Context = Ty->getContext();
+ APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
+ apf.changeSign();
+ return get(Context, apf);
+}
+
+
+Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
+ Type *ScalarTy = Ty->getScalarType();
+ if (ScalarTy->isFloatingPointTy()) {
+ Constant *C = getNegativeZero(ScalarTy);
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::getSplat(VTy->getNumElements(), C);
+ return C;
+ }
+
+ return Constant::getNullValue(Ty);
+}
+
+
+// ConstantFP accessors.
+ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
+ DenseMapAPFloatKeyInfo::KeyTy Key(V);
+
+ LLVMContextImpl* pImpl = Context.pImpl;
+
+ ConstantFP *&Slot = pImpl->FPConstants[Key];
+
+ if (!Slot) {
+ Type *Ty;
+ if (&V.getSemantics() == &APFloat::IEEEhalf)
+ Ty = Type::getHalfTy(Context);
+ else if (&V.getSemantics() == &APFloat::IEEEsingle)
+ Ty = Type::getFloatTy(Context);
+ else if (&V.getSemantics() == &APFloat::IEEEdouble)
+ Ty = Type::getDoubleTy(Context);
+ else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
+ Ty = Type::getX86_FP80Ty(Context);
+ else if (&V.getSemantics() == &APFloat::IEEEquad)
+ Ty = Type::getFP128Ty(Context);
+ else {
+ assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
+ "Unknown FP format");
+ Ty = Type::getPPC_FP128Ty(Context);
+ }
+ Slot = new ConstantFP(Ty, V);
+ }
+
+ return Slot;
+}
+
+ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
+ const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
+ return ConstantFP::get(Ty->getContext(),
+ APFloat::getInf(Semantics, Negative));
+}
+
+ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
+ : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
+ assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
+ "FP type Mismatch");
+}
+
+bool ConstantFP::isExactlyValue(const APFloat &V) const {
+ return Val.bitwiseIsEqual(V);
+}
+
+//===----------------------------------------------------------------------===//
+// ConstantAggregateZero Implementation
+//===----------------------------------------------------------------------===//
+
+/// getSequentialElement - If this CAZ has array or vector type, return a zero
+/// with the right element type.
+Constant *ConstantAggregateZero::getSequentialElement() const {
+ return Constant::getNullValue(getType()->getSequentialElementType());
+}
+
+/// getStructElement - If this CAZ has struct type, return a zero with the
+/// right element type for the specified element.
+Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
+ return Constant::getNullValue(getType()->getStructElementType(Elt));
+}
+
+/// getElementValue - Return a zero of the right value for the specified GEP
+/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
+Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
+ if (isa<SequentialType>(getType()))
+ return getSequentialElement();
+ return getStructElement(cast<ConstantInt>(C)->getZExtValue());
+}
+
+/// getElementValue - Return a zero of the right value for the specified GEP
+/// index.
+Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
+ if (isa<SequentialType>(getType()))
+ return getSequentialElement();
+ return getStructElement(Idx);
+}
+
+
+//===----------------------------------------------------------------------===//
+// UndefValue Implementation
+//===----------------------------------------------------------------------===//
+
+/// getSequentialElement - If this undef has array or vector type, return an
+/// undef with the right element type.
+UndefValue *UndefValue::getSequentialElement() const {
+ return UndefValue::get(getType()->getSequentialElementType());
+}
+
+/// getStructElement - If this undef has struct type, return a zero with the
+/// right element type for the specified element.
+UndefValue *UndefValue::getStructElement(unsigned Elt) const {
+ return UndefValue::get(getType()->getStructElementType(Elt));
+}
+
+/// getElementValue - Return an undef of the right value for the specified GEP
+/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
+UndefValue *UndefValue::getElementValue(Constant *C) const {
+ if (isa<SequentialType>(getType()))
+ return getSequentialElement();
+ return getStructElement(cast<ConstantInt>(C)->getZExtValue());
+}
+
+/// getElementValue - Return an undef of the right value for the specified GEP
+/// index.
+UndefValue *UndefValue::getElementValue(unsigned Idx) const {
+ if (isa<SequentialType>(getType()))
+ return getSequentialElement();
+ return getStructElement(Idx);
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// ConstantXXX Classes
+//===----------------------------------------------------------------------===//
+
+template <typename ItTy, typename EltTy>
+static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
+ for (; Start != End; ++Start)
+ if (*Start != Elt)
+ return false;
+ return true;
+}
+
+ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
+ : Constant(T, ConstantArrayVal,
+ OperandTraits<ConstantArray>::op_end(this) - V.size(),
+ V.size()) {
+ assert(V.size() == T->getNumElements() &&
+ "Invalid initializer vector for constant array");
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ assert(V[i]->getType() == T->getElementType() &&
+ "Initializer for array element doesn't match array element type!");
+ std::copy(V.begin(), V.end(), op_begin());
+}
+
+Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
+ // Empty arrays are canonicalized to ConstantAggregateZero.
+ if (V.empty())
+ return ConstantAggregateZero::get(Ty);
+
+ for (unsigned i = 0, e = V.size(); i != e; ++i) {
+ assert(V[i]->getType() == Ty->getElementType() &&
+ "Wrong type in array element initializer");
+ }
+ LLVMContextImpl *pImpl = Ty->getContext().pImpl;
+
+ // If this is an all-zero array, return a ConstantAggregateZero object. If
+ // all undef, return an UndefValue, if "all simple", then return a
+ // ConstantDataArray.
+ Constant *C = V[0];
+ if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
+ return UndefValue::get(Ty);
+
+ if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
+ return ConstantAggregateZero::get(Ty);
+
+ // Check to see if all of the elements are ConstantFP or ConstantInt and if
+ // the element type is compatible with ConstantDataVector. If so, use it.
+ if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
+ // We speculatively build the elements here even if it turns out that there
+ // is a constantexpr or something else weird in the array, since it is so
+ // uncommon for that to happen.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ if (CI->getType()->isIntegerTy(8)) {
+ SmallVector<uint8_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(16)) {
+ SmallVector<uint16_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(32)) {
+ SmallVector<uint32_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(64)) {
+ SmallVector<uint64_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ }
+ }
+
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ if (CFP->getType()->isFloatTy()) {
+ SmallVector<float, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
+ Elts.push_back(CFP->getValueAPF().convertToFloat());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CFP->getType()->isDoubleTy()) {
+ SmallVector<double, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
+ Elts.push_back(CFP->getValueAPF().convertToDouble());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ }
+ }
+ }
+
+ // Otherwise, we really do want to create a ConstantArray.
+ return pImpl->ArrayConstants.getOrCreate(Ty, V);
+}
+
+/// getTypeForElements - Return an anonymous struct type to use for a constant
+/// with the specified set of elements. The list must not be empty.
+StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
+ ArrayRef<Constant*> V,
+ bool Packed) {
+ unsigned VecSize = V.size();
+ SmallVector<Type*, 16> EltTypes(VecSize);
+ for (unsigned i = 0; i != VecSize; ++i)
+ EltTypes[i] = V[i]->getType();
+
+ return StructType::get(Context, EltTypes, Packed);
+}
+
+
+StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
+ bool Packed) {
+ assert(!V.empty() &&
+ "ConstantStruct::getTypeForElements cannot be called on empty list");
+ return getTypeForElements(V[0]->getContext(), V, Packed);
+}
+
+
+ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
+ : Constant(T, ConstantStructVal,
+ OperandTraits<ConstantStruct>::op_end(this) - V.size(),
+ V.size()) {
+ assert(V.size() == T->getNumElements() &&
+ "Invalid initializer vector for constant structure");
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
+ "Initializer for struct element doesn't match struct element type!");
+ std::copy(V.begin(), V.end(), op_begin());
+}
+
+// ConstantStruct accessors.
+Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
+ assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
+ "Incorrect # elements specified to ConstantStruct::get");
+
+ // Create a ConstantAggregateZero value if all elements are zeros.
+ bool isZero = true;
+ bool isUndef = false;
+
+ if (!V.empty()) {
+ isUndef = isa<UndefValue>(V[0]);
+ isZero = V[0]->isNullValue();
+ if (isUndef || isZero) {
+ for (unsigned i = 0, e = V.size(); i != e; ++i) {
+ if (!V[i]->isNullValue())
+ isZero = false;
+ if (!isa<UndefValue>(V[i]))
+ isUndef = false;
+ }
+ }
+ }
+ if (isZero)
+ return ConstantAggregateZero::get(ST);
+ if (isUndef)
+ return UndefValue::get(ST);
+
+ return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
+}
+
+Constant *ConstantStruct::get(StructType *T, ...) {
+ va_list ap;
+ SmallVector<Constant*, 8> Values;
+ va_start(ap, T);
+ while (Constant *Val = va_arg(ap, llvm::Constant*))
+ Values.push_back(Val);
+ va_end(ap);
+ return get(T, Values);
+}
+
+ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
+ : Constant(T, ConstantVectorVal,
+ OperandTraits<ConstantVector>::op_end(this) - V.size(),
+ V.size()) {
+ for (size_t i = 0, e = V.size(); i != e; i++)
+ assert(V[i]->getType() == T->getElementType() &&
+ "Initializer for vector element doesn't match vector element type!");
+ std::copy(V.begin(), V.end(), op_begin());
+}
+
+// ConstantVector accessors.
+Constant *ConstantVector::get(ArrayRef<Constant*> V) {
+ assert(!V.empty() && "Vectors can't be empty");
+ VectorType *T = VectorType::get(V.front()->getType(), V.size());
+ LLVMContextImpl *pImpl = T->getContext().pImpl;
+
+ // If this is an all-undef or all-zero vector, return a
+ // ConstantAggregateZero or UndefValue.
+ Constant *C = V[0];
+ bool isZero = C->isNullValue();
+ bool isUndef = isa<UndefValue>(C);
+
+ if (isZero || isUndef) {
+ for (unsigned i = 1, e = V.size(); i != e; ++i)
+ if (V[i] != C) {
+ isZero = isUndef = false;
+ break;
+ }
+ }
+
+ if (isZero)
+ return ConstantAggregateZero::get(T);
+ if (isUndef)
+ return UndefValue::get(T);
+
+ // Check to see if all of the elements are ConstantFP or ConstantInt and if
+ // the element type is compatible with ConstantDataVector. If so, use it.
+ if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
+ // We speculatively build the elements here even if it turns out that there
+ // is a constantexpr or something else weird in the array, since it is so
+ // uncommon for that to happen.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ if (CI->getType()->isIntegerTy(8)) {
+ SmallVector<uint8_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataVector::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(16)) {
+ SmallVector<uint16_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataVector::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(32)) {
+ SmallVector<uint32_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataVector::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(64)) {
+ SmallVector<uint64_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataVector::get(C->getContext(), Elts);<