aboutsummaryrefslogtreecommitdiff
path: root/lib/IR/ConstantFold.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/IR/ConstantFold.cpp')
-rw-r--r--lib/IR/ConstantFold.cpp2066
1 files changed, 2066 insertions, 0 deletions
diff --git a/lib/IR/ConstantFold.cpp b/lib/IR/ConstantFold.cpp
new file mode 100644
index 0000000000..91dc83f232
--- /dev/null
+++ b/lib/IR/ConstantFold.cpp
@@ -0,0 +1,2066 @@
+//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements folding of constants for LLVM. This implements the
+// (internal) ConstantFold.h interface, which is used by the
+// ConstantExpr::get* methods to automatically fold constants when possible.
+//
+// The current constant folding implementation is implemented in two pieces: the
+// pieces that don't need DataLayout, and the pieces that do. This is to avoid
+// a dependence in IR on Target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ConstantFold.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/Operator.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include <limits>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// ConstantFold*Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+/// BitCastConstantVector - Convert the specified vector Constant node to the
+/// specified vector type. At this point, we know that the elements of the
+/// input vector constant are all simple integer or FP values.
+static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
+
+ if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
+ if (CV->isNullValue()) return Constant::getNullValue(DstTy);
+
+ // If this cast changes element count then we can't handle it here:
+ // doing so requires endianness information. This should be handled by
+ // Analysis/ConstantFolding.cpp
+ unsigned NumElts = DstTy->getNumElements();
+ if (NumElts != CV->getType()->getVectorNumElements())
+ return 0;
+
+ Type *DstEltTy = DstTy->getElementType();
+
+ SmallVector<Constant*, 16> Result;
+ Type *Ty = IntegerType::get(CV->getContext(), 32);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *C =
+ ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
+ C = ConstantExpr::getBitCast(C, DstEltTy);
+ Result.push_back(C);
+ }
+
+ return ConstantVector::get(Result);
+}
+
+/// This function determines which opcode to use to fold two constant cast
+/// expressions together. It uses CastInst::isEliminableCastPair to determine
+/// the opcode. Consequently its just a wrapper around that function.
+/// @brief Determine if it is valid to fold a cast of a cast
+static unsigned
+foldConstantCastPair(
+ unsigned opc, ///< opcode of the second cast constant expression
+ ConstantExpr *Op, ///< the first cast constant expression
+ Type *DstTy ///< desintation type of the first cast
+) {
+ assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
+ assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
+ assert(CastInst::isCast(opc) && "Invalid cast opcode");
+
+ // The the types and opcodes for the two Cast constant expressions
+ Type *SrcTy = Op->getOperand(0)->getType();
+ Type *MidTy = Op->getType();
+ Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
+ Instruction::CastOps secondOp = Instruction::CastOps(opc);
+
+ // Assume that pointers are never more than 64 bits wide.
+ IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
+
+ // Let CastInst::isEliminableCastPair do the heavy lifting.
+ return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
+ FakeIntPtrTy, FakeIntPtrTy,
+ FakeIntPtrTy);
+}
+
+static Constant *FoldBitCast(Constant *V, Type *DestTy) {
+ Type *SrcTy = V->getType();
+ if (SrcTy == DestTy)
+ return V; // no-op cast
+
+ // Check to see if we are casting a pointer to an aggregate to a pointer to
+ // the first element. If so, return the appropriate GEP instruction.
+ if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
+ if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
+ if (PTy->getAddressSpace() == DPTy->getAddressSpace()
+ && DPTy->getElementType()->isSized()) {
+ SmallVector<Value*, 8> IdxList;
+ Value *Zero =
+ Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
+ IdxList.push_back(Zero);
+ Type *ElTy = PTy->getElementType();
+ while (ElTy != DPTy->getElementType()) {
+ if (StructType *STy = dyn_cast<StructType>(ElTy)) {
+ if (STy->getNumElements() == 0) break;
+ ElTy = STy->getElementType(0);
+ IdxList.push_back(Zero);
+ } else if (SequentialType *STy =
+ dyn_cast<SequentialType>(ElTy)) {
+ if (ElTy->isPointerTy()) break; // Can't index into pointers!
+ ElTy = STy->getElementType();
+ IdxList.push_back(Zero);
+ } else {
+ break;
+ }
+ }
+
+ if (ElTy == DPTy->getElementType())
+ // This GEP is inbounds because all indices are zero.
+ return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
+ }
+
+ // Handle casts from one vector constant to another. We know that the src
+ // and dest type have the same size (otherwise its an illegal cast).
+ if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
+ if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
+ assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
+ "Not cast between same sized vectors!");
+ SrcTy = NULL;
+ // First, check for null. Undef is already handled.
+ if (isa<ConstantAggregateZero>(V))
+ return Constant::getNullValue(DestTy);
+
+ // Handle ConstantVector and ConstantAggregateVector.
+ return BitCastConstantVector(V, DestPTy);
+ }
+
+ // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
+ // This allows for other simplifications (although some of them
+ // can only be handled by Analysis/ConstantFolding.cpp).
+ if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
+ return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
+ }
+
+ // Finally, implement bitcast folding now. The code below doesn't handle
+ // bitcast right.
+ if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
+ return ConstantPointerNull::get(cast<PointerType>(DestTy));
+
+ // Handle integral constant input.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (DestTy->isIntegerTy())
+ // Integral -> Integral. This is a no-op because the bit widths must
+ // be the same. Consequently, we just fold to V.
+ return V;
+
+ if (DestTy->isFloatingPointTy())
+ return ConstantFP::get(DestTy->getContext(),
+ APFloat(CI->getValue(),
+ !DestTy->isPPC_FP128Ty()));
+
+ // Otherwise, can't fold this (vector?)
+ return 0;
+ }
+
+ // Handle ConstantFP input: FP -> Integral.
+ if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
+ return ConstantInt::get(FP->getContext(),
+ FP->getValueAPF().bitcastToAPInt());
+
+ return 0;
+}
+
+
+/// ExtractConstantBytes - V is an integer constant which only has a subset of
+/// its bytes used. The bytes used are indicated by ByteStart (which is the
+/// first byte used, counting from the least significant byte) and ByteSize,
+/// which is the number of bytes used.
+///
+/// This function analyzes the specified constant to see if the specified byte
+/// range can be returned as a simplified constant. If so, the constant is
+/// returned, otherwise null is returned.
+///
+static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
+ unsigned ByteSize) {
+ assert(C->getType()->isIntegerTy() &&
+ (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
+ "Non-byte sized integer input");
+ unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
+ assert(ByteSize && "Must be accessing some piece");
+ assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
+ assert(ByteSize != CSize && "Should not extract everything");
+
+ // Constant Integers are simple.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ APInt V = CI->getValue();
+ if (ByteStart)
+ V = V.lshr(ByteStart*8);
+ V = V.trunc(ByteSize*8);
+ return ConstantInt::get(CI->getContext(), V);
+ }
+
+ // In the input is a constant expr, we might be able to recursively simplify.
+ // If not, we definitely can't do anything.
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
+ if (CE == 0) return 0;
+
+ switch (CE->getOpcode()) {
+ default: return 0;
+ case Instruction::Or: {
+ Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
+ if (RHS == 0)
+ return 0;
+
+ // X | -1 -> -1.
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
+ if (RHSC->isAllOnesValue())
+ return RHSC;
+
+ Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
+ if (LHS == 0)
+ return 0;
+ return ConstantExpr::getOr(LHS, RHS);
+ }
+ case Instruction::And: {
+ Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
+ if (RHS == 0)
+ return 0;
+
+ // X & 0 -> 0.
+ if (RHS->isNullValue())
+ return RHS;
+
+ Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
+ if (LHS == 0)
+ return 0;
+ return ConstantExpr::getAnd(LHS, RHS);
+ }
+ case Instruction::LShr: {
+ ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
+ if (Amt == 0)
+ return 0;
+ unsigned ShAmt = Amt->getZExtValue();
+ // Cannot analyze non-byte shifts.
+ if ((ShAmt & 7) != 0)
+ return 0;
+ ShAmt >>= 3;
+
+ // If the extract is known to be all zeros, return zero.
+ if (ByteStart >= CSize-ShAmt)
+ return Constant::getNullValue(IntegerType::get(CE->getContext(),
+ ByteSize*8));
+ // If the extract is known to be fully in the input, extract it.
+ if (ByteStart+ByteSize+ShAmt <= CSize)
+ return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
+
+ // TODO: Handle the 'partially zero' case.
+ return 0;
+ }
+
+ case Instruction::Shl: {
+ ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
+ if (Amt == 0)
+ return 0;
+ unsigned ShAmt = Amt->getZExtValue();
+ // Cannot analyze non-byte shifts.
+ if ((ShAmt & 7) != 0)
+ return 0;
+ ShAmt >>= 3;
+
+ // If the extract is known to be all zeros, return zero.
+ if (ByteStart+ByteSize <= ShAmt)
+ return Constant::getNullValue(IntegerType::get(CE->getContext(),
+ ByteSize*8));
+ // If the extract is known to be fully in the input, extract it.
+ if (ByteStart >= ShAmt)
+ return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
+
+ // TODO: Handle the 'partially zero' case.
+ return 0;
+ }
+
+ case Instruction::ZExt: {
+ unsigned SrcBitSize =
+ cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
+
+ // If extracting something that is completely zero, return 0.
+ if (ByteStart*8 >= SrcBitSize)
+ return Constant::getNullValue(IntegerType::get(CE->getContext(),
+ ByteSize*8));
+
+ // If exactly extracting the input, return it.
+ if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
+ return CE->getOperand(0);
+
+ // If extracting something completely in the input, if if the input is a
+ // multiple of 8 bits, recurse.
+ if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
+ return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
+
+ // Otherwise, if extracting a subset of the input, which is not multiple of
+ // 8 bits, do a shift and trunc to get the bits.
+ if ((ByteStart+ByteSize)*8 < SrcBitSize) {
+ assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
+ Constant *Res = CE->getOperand(0);
+ if (ByteStart)
+ Res = ConstantExpr::getLShr(Res,
+ ConstantInt::get(Res->getType(), ByteStart*8));
+ return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
+ ByteSize*8));
+ }
+
+ // TODO: Handle the 'partially zero' case.
+ return 0;
+ }
+ }
+}
+
+/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
+/// on Ty, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
+ bool Folded) {
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
+ Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has size zero.
+ if (NumElems == 0)
+ return ConstantExpr::getNullValue(DestTy);
+ // Check for a struct with all members having the same size.
+ Constant *MemberSize =
+ getFoldedSizeOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberSize !=
+ getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame) {
+ Constant *N = ConstantInt::get(DestTy, NumElems);
+ return ConstantExpr::getNUWMul(MemberSize, N);
+ }
+ }
+
+ // Pointer size doesn't depend on the pointee type, so canonicalize them
+ // to an arbitrary pointee.
+ if (PointerType *PTy = dyn_cast<PointerType>(Ty))
+ if (!PTy->getElementType()->isIntegerTy(1))
+ return
+ getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
+ PTy->getAddressSpace()),
+ DestTy, true);
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular sizeof expression.
+ Constant *C = ConstantExpr::getSizeOf(Ty);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
+/// on Ty, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
+ bool Folded) {
+ // The alignment of an array is equal to the alignment of the
+ // array element. Note that this is not always true for vectors.
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy,
+ false),
+ C, DestTy);
+ return C;
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ // Packed structs always have an alignment of 1.
+ if (STy->isPacked())
+ return ConstantInt::get(DestTy, 1);
+
+ // Otherwise, struct alignment is the maximum alignment of any member.
+ // Without target data, we can't compare much, but we can check to see
+ // if all the members have the same alignment.
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has minimal alignment.
+ if (NumElems == 0)
+ return ConstantInt::get(DestTy, 1);
+ // Check for a struct with all members having the same alignment.
+ Constant *MemberAlign =
+ getFoldedAlignOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame)
+ return MemberAlign;
+ }
+
+ // Pointer alignment doesn't depend on the pointee type, so canonicalize them
+ // to an arbitrary pointee.
+ if (PointerType *PTy = dyn_cast<PointerType>(Ty))
+ if (!PTy->getElementType()->isIntegerTy(1))
+ return
+ getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
+ 1),
+ PTy->getAddressSpace()),
+ DestTy, true);
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular alignof expression.
+ Constant *C = ConstantExpr::getAlignOf(Ty);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
+/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
+/// return null if no factoring was possible, to avoid endlessly
+/// bouncing an unfoldable expression back into the top-level folder.
+///
+static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
+ Type *DestTy,
+ bool Folded) {
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
+ DestTy, false),
+ FieldNo, DestTy);
+ Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
+ return ConstantExpr::getNUWMul(E, N);
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ unsigned NumElems = STy->getNumElements();
+ // An empty struct has no members.
+ if (NumElems == 0)
+ return 0;
+ // Check for a struct with all members having the same size.
+ Constant *MemberSize =
+ getFoldedSizeOf(STy->getElementType(0), DestTy, true);
+ bool AllSame = true;
+ for (unsigned i = 1; i != NumElems; ++i)
+ if (MemberSize !=
+ getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
+ AllSame = false;
+ break;
+ }
+ if (AllSame) {
+ Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
+ false,
+ DestTy,
+ false),
+ FieldNo, DestTy);
+ return ConstantExpr::getNUWMul(MemberSize, N);
+ }
+ }
+
+ // If there's no interesting folding happening, bail so that we don't create
+ // a constant that looks like it needs folding but really doesn't.
+ if (!Folded)
+ return 0;
+
+ // Base case: Get a regular offsetof expression.
+ Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ DestTy, false),
+ C, DestTy);
+ return C;
+}
+
+Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
+ Type *DestTy) {
+ if (isa<UndefValue>(V)) {
+ // zext(undef) = 0, because the top bits will be zero.
+ // sext(undef) = 0, because the top bits will all be the same.
+ // [us]itofp(undef) = 0, because the result value is bounded.
+ if (opc == Instruction::ZExt || opc == Instruction::SExt ||
+ opc == Instruction::UIToFP || opc == Instruction::SIToFP)
+ return Constant::getNullValue(DestTy);
+ return UndefValue::get(DestTy);
+ }
+
+ if (V->isNullValue() && !DestTy->isX86_MMXTy())
+ return Constant::getNullValue(DestTy);
+
+ // If the cast operand is a constant expression, there's a few things we can
+ // do to try to simplify it.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (CE->isCast()) {
+ // Try hard to fold cast of cast because they are often eliminable.
+ if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
+ return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
+ } else if (CE->getOpcode() == Instruction::GetElementPtr) {
+ // If all of the indexes in the GEP are null values, there is no pointer
+ // adjustment going on. We might as well cast the source pointer.
+ bool isAllNull = true;
+ for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
+ if (!CE->getOperand(i)->isNullValue()) {
+ isAllNull = false;
+ break;
+ }
+ if (isAllNull)
+ // This is casting one pointer type to another, always BitCast
+ return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
+ }
+ }
+
+ // If the cast operand is a constant vector, perform the cast by
+ // operating on each element. In the cast of bitcasts, the element
+ // count may be mismatched; don't attempt to handle that here.
+ if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
+ DestTy->isVectorTy() &&
+ DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
+ SmallVector<Constant*, 16> res;
+ VectorType *DestVecTy = cast<VectorType>(DestTy);
+ Type *DstEltTy = DestVecTy->getElementType();
+ Type *Ty = IntegerType::get(V->getContext(), 32);
+ for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
+ Constant *C =
+ ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
+ res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
+ }
+ return ConstantVector::get(res);
+ }
+
+ // We actually have to do a cast now. Perform the cast according to the
+ // opcode specified.
+ switch (opc) {
+ default:
+ llvm_unreachable("Failed to cast constant expression");
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ bool ignored;
+ APFloat Val = FPC->getValueAPF();
+ Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
+ DestTy->isFloatTy() ? APFloat::IEEEsingle :
+ DestTy->isDoubleTy() ? APFloat::IEEEdouble :
+ DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
+ DestTy->isFP128Ty() ? APFloat::IEEEquad :
+ DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
+ APFloat::Bogus,
+ APFloat::rmNearestTiesToEven, &ignored);
+ return ConstantFP::get(V->getContext(), Val);
+ }
+ return 0; // Can't fold.
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ const APFloat &V = FPC->getValueAPF();
+ bool ignored;
+ uint64_t x[2];
+ uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
+ APFloat::rmTowardZero, &ignored);
+ APInt Val(DestBitWidth, x);
+ return ConstantInt::get(FPC->getContext(), Val);
+ }
+ return 0; // Can't fold.
+ case Instruction::IntToPtr: //always treated as unsigned
+ if (V->isNullValue()) // Is it an integral null value?
+ return ConstantPointerNull::get(cast<PointerType>(DestTy));
+ return 0; // Other pointer types cannot be casted
+ case Instruction::PtrToInt: // always treated as unsigned
+ // Is it a null pointer value?
+ if (V->isNullValue())
+ return ConstantInt::get(DestTy, 0);
+ // If this is a sizeof-like expression, pull out multiplications by
+ // known factors to expose them to subsequent folding. If it's an
+ // alignof-like expression, factor out known factors.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getOperand(0)->isNullValue()) {
+ Type *Ty =
+ cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+ if (CE->getNumOperands() == 2) {
+ // Handle a sizeof-like expression.
+ Constant *Idx = CE->getOperand(1);
+ bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
+ if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
+ Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
+ DestTy, false),
+ Idx, DestTy);
+ return ConstantExpr::getMul(C, Idx);
+ }
+ } else if (CE->getNumOperands() == 3 &&
+ CE->getOperand(1)->isNullValue()) {
+ // Handle an alignof-like expression.
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked()) {
+ ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
+ if (CI->isOne() &&
+ STy->getNumElements() == 2 &&
+ STy->getElementType(0)->isIntegerTy(1)) {
+ return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
+ }
+ }
+ // Handle an offsetof-like expression.
+ if (Ty->isStructTy() || Ty->isArrayTy()) {
+ if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
+ DestTy, false))
+ return C;
+ }
+ }
+ }
+ // Other pointer types cannot be casted
+ return 0;
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ APInt api = CI->getValue();
+ APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()),
+ !DestTy->isPPC_FP128Ty() /* isEEEE */);
+ (void)apf.convertFromAPInt(api,
+ opc==Instruction::SIToFP,
+ APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(V->getContext(), apf);
+ }
+ return 0;
+ case Instruction::ZExt:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ return ConstantInt::get(V->getContext(),
+ CI->getValue().zext(BitWidth));
+ }
+ return 0;
+ case Instruction::SExt:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ return ConstantInt::get(V->getContext(),
+ CI->getValue().sext(BitWidth));
+ }
+ return 0;
+ case Instruction::Trunc: {
+ uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ return ConstantInt::get(V->getContext(),
+ CI->getValue().trunc(DestBitWidth));
+ }
+
+ // The input must be a constantexpr. See if we can simplify this based on
+ // the bytes we are demanding. Only do this if the source and dest are an
+ // even multiple of a byte.
+ if ((DestBitWidth & 7) == 0 &&
+ (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
+ if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
+ return Res;
+
+ return 0;
+ }
+ case Instruction::BitCast:
+ return FoldBitCast(V, DestTy);
+ }
+}
+
+Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
+ Constant *V1, Constant *V2) {
+ // Check for i1 and vector true/false conditions.
+ if (Cond->isNullValue()) return V2;
+ if (Cond->isAllOnesValue()) return V1;
+
+ // If the condition is a vector constant, fold the result elementwise.
+ if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
+ SmallVector<Constant*, 16> Result;
+ Type *Ty = IntegerType::get(CondV->getContext(), 32);
+ for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
+ ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
+ if (Cond == 0) break;
+
+ Constant *V = Cond->isNullValue() ? V2 : V1;
+ Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
+ Result.push_back(Res);
+ }
+
+ // If we were able to build the vector, return it.
+ if (Result.size() == V1->getType()->getVectorNumElements())
+ return ConstantVector::get(Result);
+ }
+
+ if (isa<UndefValue>(Cond)) {
+ if (isa<UndefValue>(V1)) return V1;
+ return V2;
+ }
+ if (isa<UndefValue>(V1)) return V2;
+ if (isa<UndefValue>(V2)) return V1;
+ if (V1 == V2) return V1;
+
+ if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
+ if (TrueVal->getOpcode() == Instruction::Select)
+ if (TrueVal->getOperand(0) == Cond)
+ return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
+ }
+ if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
+ if (FalseVal->getOpcode() == Instruction::Select)
+ if (FalseVal->getOperand(0) == Cond)
+ return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
+ }
+
+ return 0;
+}
+
+Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
+ Constant *Idx) {
+ if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
+ return UndefValue::get(Val->getType()->getVectorElementType());
+ if (Val->isNullValue()) // ee(zero, x) -> zero
+ return Constant::getNullValue(Val->getType()->getVectorElementType());
+ // ee({w,x,y,z}, undef) -> undef
+ if (isa<UndefValue>(Idx))
+ return UndefValue::get(Val->getType()->getVectorElementType());
+
+ if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
+ uint64_t Index = CIdx->getZExtValue();
+ // ee({w,x,y,z}, wrong_value) -> undef
+ if (Index >= Val->getType()->getVectorNumElements())
+ return UndefValue::get(Val->getType()->getVectorElementType());
+ return Val->getAggregateElement(Index);
+ }
+ return 0;
+}
+
+Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
+ Constant *Elt,
+ Constant *Idx) {
+ ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
+ if (!CIdx) return 0;
+ const APInt &IdxVal = CIdx->getValue();
+
+ SmallVector<Constant*, 16> Result;
+ Type *Ty = IntegerType::get(Val->getContext(), 32);
+ for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
+ if (i == IdxVal) {
+ Result.push_back(Elt);
+ continue;
+ }
+
+ Constant *C =
+ ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
+ Result.push_back(C);
+ }
+
+ return ConstantVector::get(Result);
+}
+
+Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
+ Constant *V2,
+ Constant *Mask) {
+ unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
+ Type *EltTy = V1->getType()->getVectorElementType();
+
+ // Undefined shuffle mask -> undefined value.
+ if (isa<UndefValue>(Mask))
+ return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
+
+ // Don't break the bitcode reader hack.
+ if (isa<ConstantExpr>(Mask)) return 0;
+
+ unsigned SrcNumElts = V1->getType()->getVectorNumElements();
+
+ // Loop over the shuffle mask, evaluating each element.
+ SmallVector<Constant*, 32> Result;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
+ if (Elt == -1) {
+ Result.push_back(UndefValue::get(EltTy));
+ continue;
+ }
+ Constant *InElt;
+ if (unsigned(Elt) >= SrcNumElts*2)
+ InElt = UndefValue::get(EltTy);
+ else if (unsigned(Elt) >= SrcNumElts) {
+ Type *Ty = IntegerType::get(V2->getContext(), 32);
+ InElt =
+ ConstantExpr::getExtractElement(V2,
+ ConstantInt::get(Ty, Elt - SrcNumElts));
+ } else {
+ Type *Ty = IntegerType::get(V1->getContext(), 32);
+ InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
+ }
+ Result.push_back(InElt);
+ }
+
+ return ConstantVector::get(Result);
+}
+
+Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
+ ArrayRef<unsigned> Idxs) {
+ // Base case: no indices, so return the entire value.
+ if (Idxs.empty())
+ return Agg;
+
+ if (Constant *C = Agg->getAggregateElement(Idxs[0]))
+ return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
+
+ return 0;
+}
+
+Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
+ Constant *Val,
+ ArrayRef<unsigned> Idxs) {
+ // Base case: no indices, so replace the entire value.
+ if (Idxs.empty())
+ return Val;
+
+ unsigned NumElts;
+ if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
+ NumElts = ST->getNumElements();
+ else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
+ NumElts = AT->getNumElements();
+ else
+ NumElts = AT->getVectorNumElements();
+
+ SmallVector<Constant*, 32> Result;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *C = Agg->getAggregateElement(i);
+ if (C == 0) return 0;
+
+ if (Idxs[0] == i)
+ C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
+
+ Result.push_back(C);
+ }
+
+ if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
+ return ConstantStruct::get(ST, Result);
+ if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
+ return ConstantArray::get(AT, Result);
+ return ConstantVector::get(Result);
+}
+
+
+Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
+ Constant *C1, Constant *C2) {
+ // Handle UndefValue up front.
+ if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
+ switch (Opcode) {
+ case Instruction::Xor:
+ if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
+ // Handle undef ^ undef -> 0 special case. This is a common
+ // idiom (misuse).
+ return Constant::getNullValue(C1->getType());
+ // Fallthrough
+ case Instruction::Add:
+ case Instruction::Sub:
+ return UndefValue::get(C1->getType());
+ case Instruction::And:
+ if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
+ return C1;
+ return Constant::getNullValue(C1->getType()); // undef & X -> 0
+ case Instruction::Mul: {
+ ConstantInt *CI;
+ // X * undef -> undef if X is odd or undef
+ if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
+ ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
+ (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
+ return UndefValue::get(C1->getType());
+
+ // X * undef -> 0 otherwise
+ return Constant::getNullValue(C1->getType());
+ }
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ // undef / 1 -> undef
+ if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
+ if (ConstantInt *CI2 = dyn_cast