diff options
Diffstat (limited to 'lib/IR/AsmWriter.cpp')
-rw-r--r-- | lib/IR/AsmWriter.cpp | 2159 |
1 files changed, 2159 insertions, 0 deletions
diff --git a/lib/IR/AsmWriter.cpp b/lib/IR/AsmWriter.cpp new file mode 100644 index 0000000000..7e80322cc6 --- /dev/null +++ b/lib/IR/AsmWriter.cpp @@ -0,0 +1,2159 @@ +//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This library implements the functionality defined in llvm/Assembly/Writer.h +// +// Note that these routines must be extremely tolerant of various errors in the +// LLVM code, because it can be used for debugging transformations. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Assembly/Writer.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Assembly/AssemblyAnnotationWriter.h" +#include "llvm/Assembly/PrintModulePass.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DebugInfo.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/Operator.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Dwarf.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/TypeFinder.h" +#include "llvm/ValueSymbolTable.h" +#include <algorithm> +#include <cctype> +using namespace llvm; + +// Make virtual table appear in this compilation unit. +AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +static const Module *getModuleFromVal(const Value *V) { + if (const Argument *MA = dyn_cast<Argument>(V)) + return MA->getParent() ? MA->getParent()->getParent() : 0; + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return BB->getParent() ? BB->getParent()->getParent() : 0; + + if (const Instruction *I = dyn_cast<Instruction>(V)) { + const Function *M = I->getParent() ? I->getParent()->getParent() : 0; + return M ? M->getParent() : 0; + } + + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) + return GV->getParent(); + return 0; +} + +static void PrintCallingConv(unsigned cc, raw_ostream &Out) +{ + switch (cc) { + case CallingConv::Fast: Out << "fastcc"; break; + case CallingConv::Cold: Out << "coldcc"; break; + case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; + case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; + case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; + case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; + case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; + case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; + case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc"; break; + case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; + case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; + case CallingConv::PTX_Device: Out << "ptx_device"; break; + default: Out << "cc" << cc; break; + } +} + +// PrintEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +static void PrintEscapedString(StringRef Name, raw_ostream &Out) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + unsigned char C = Name[i]; + if (isprint(C) && C != '\\' && C != '"') + Out << C; + else + Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); + } +} + +enum PrefixType { + GlobalPrefix, + LabelPrefix, + LocalPrefix, + NoPrefix +}; + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { + assert(!Name.empty() && "Cannot get empty name!"); + switch (Prefix) { + case NoPrefix: break; + case GlobalPrefix: OS << '@'; break; + case LabelPrefix: break; + case LocalPrefix: OS << '%'; break; + } + + // Scan the name to see if it needs quotes first. + bool NeedsQuotes = isdigit(Name[0]); + if (!NeedsQuotes) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + // By making this unsigned, the value passed in to isalnum will always be + // in the range 0-255. This is important when building with MSVC because + // its implementation will assert. This situation can arise when dealing + // with UTF-8 multibyte characters. + unsigned char C = Name[i]; + if (!isalnum(C) && C != '-' && C != '.' && C != '_') { + NeedsQuotes = true; + break; + } + } + } + + // If we didn't need any quotes, just write out the name in one blast. + if (!NeedsQuotes) { + OS << Name; + return; + } + + // Okay, we need quotes. Output the quotes and escape any scary characters as + // needed. + OS << '"'; + PrintEscapedString(Name, OS); + OS << '"'; +} + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, const Value *V) { + PrintLLVMName(OS, V->getName(), + isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); +} + +//===----------------------------------------------------------------------===// +// TypePrinting Class: Type printing machinery +//===----------------------------------------------------------------------===// + +/// TypePrinting - Type printing machinery. +namespace { +class TypePrinting { + TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION; + void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION; +public: + + /// NamedTypes - The named types that are used by the current module. + TypeFinder NamedTypes; + + /// NumberedTypes - The numbered types, along with their value. + DenseMap<StructType*, unsigned> NumberedTypes; + + + TypePrinting() {} + ~TypePrinting() {} + + void incorporateTypes(const Module &M); + + void print(Type *Ty, raw_ostream &OS); + + void printStructBody(StructType *Ty, raw_ostream &OS); +}; +} // end anonymous namespace. + + +void TypePrinting::incorporateTypes(const Module &M) { + NamedTypes.run(M, false); + + // The list of struct types we got back includes all the struct types, split + // the unnamed ones out to a numbering and remove the anonymous structs. + unsigned NextNumber = 0; + + std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; + for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { + StructType *STy = *I; + + // Ignore anonymous types. + if (STy->isLiteral()) + continue; + + if (STy->getName().empty()) + NumberedTypes[STy] = NextNumber++; + else + *NextToUse++ = STy; + } + + NamedTypes.erase(NextToUse, NamedTypes.end()); +} + + +/// CalcTypeName - Write the specified type to the specified raw_ostream, making +/// use of type names or up references to shorten the type name where possible. +void TypePrinting::print(Type *Ty, raw_ostream &OS) { + switch (Ty->getTypeID()) { + case Type::VoidTyID: OS << "void"; break; + case Type::HalfTyID: OS << "half"; break; + case Type::FloatTyID: OS << "float"; break; + case Type::DoubleTyID: OS << "double"; break; + case Type::X86_FP80TyID: OS << "x86_fp80"; break; + case Type::FP128TyID: OS << "fp128"; break; + case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; + case Type::LabelTyID: OS << "label"; break; + case Type::MetadataTyID: OS << "metadata"; break; + case Type::X86_MMXTyID: OS << "x86_mmx"; break; + case Type::IntegerTyID: + OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); + return; + + case Type::FunctionTyID: { + FunctionType *FTy = cast<FunctionType>(Ty); + print(FTy->getReturnType(), OS); + OS << " ("; + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) + OS << ", "; + print(*I, OS); + } + if (FTy->isVarArg()) { + if (FTy->getNumParams()) OS << ", "; + OS << "..."; + } + OS << ')'; + return; + } + case Type::StructTyID: { + StructType *STy = cast<StructType>(Ty); + + if (STy->isLiteral()) + return printStructBody(STy, OS); + + if (!STy->getName().empty()) + return PrintLLVMName(OS, STy->getName(), LocalPrefix); + + DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy); + if (I != NumberedTypes.end()) + OS << '%' << I->second; + else // Not enumerated, print the hex address. + OS << "%\"type " << STy << '\"'; + return; + } + case Type::PointerTyID: { + PointerType *PTy = cast<PointerType>(Ty); + print(PTy->getElementType(), OS); + if (unsigned AddressSpace = PTy->getAddressSpace()) + OS << " addrspace(" << AddressSpace << ')'; + OS << '*'; + return; + } + case Type::ArrayTyID: { + ArrayType *ATy = cast<ArrayType>(Ty); + OS << '[' << ATy->getNumElements() << " x "; + print(ATy->getElementType(), OS); + OS << ']'; + return; + } + case Type::VectorTyID: { + VectorType *PTy = cast<VectorType>(Ty); + OS << "<" << PTy->getNumElements() << " x "; + print(PTy->getElementType(), OS); + OS << '>'; + return; + } + default: + OS << "<unrecognized-type>"; + return; + } +} + +void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { + if (STy->isOpaque()) { + OS << "opaque"; + return; + } + + if (STy->isPacked()) + OS << '<'; + + if (STy->getNumElements() == 0) { + OS << "{}"; + } else { + StructType::element_iterator I = STy->element_begin(); + OS << "{ "; + print(*I++, OS); + for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { + OS << ", "; + print(*I, OS); + } + + OS << " }"; + } + if (STy->isPacked()) + OS << '>'; +} + + + +//===----------------------------------------------------------------------===// +// SlotTracker Class: Enumerate slot numbers for unnamed values +//===----------------------------------------------------------------------===// + +namespace { + +/// This class provides computation of slot numbers for LLVM Assembly writing. +/// +class SlotTracker { +public: + /// ValueMap - A mapping of Values to slot numbers. + typedef DenseMap<const Value*, unsigned> ValueMap; + +private: + /// TheModule - The module for which we are holding slot numbers. + const Module* TheModule; + + /// TheFunction - The function for which we are holding slot numbers. + const Function* TheFunction; + bool FunctionProcessed; + + /// mMap - The slot map for the module level data. + ValueMap mMap; + unsigned mNext; + + /// fMap - The slot map for the function level data. + ValueMap fMap; + unsigned fNext; + + /// mdnMap - Map for MDNodes. + DenseMap<const MDNode*, unsigned> mdnMap; + unsigned mdnNext; +public: + /// Construct from a module + explicit SlotTracker(const Module *M); + /// Construct from a function, starting out in incorp state. + explicit SlotTracker(const Function *F); + + /// Return the slot number of the specified value in it's type + /// plane. If something is not in the SlotTracker, return -1. + int getLocalSlot(const Value *V); + int getGlobalSlot(const GlobalValue *V); + int getMetadataSlot(const MDNode *N); + + /// If you'd like to deal with a function instead of just a module, use + /// this method to get its data into the SlotTracker. + void incorporateFunction(const Function *F) { + TheFunction = F; + FunctionProcessed = false; + } + + /// After calling incorporateFunction, use this method to remove the + /// most recently incorporated function from the SlotTracker. This + /// will reset the state of the machine back to just the module contents. + void purgeFunction(); + + /// MDNode map iterators. + typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; + mdn_iterator mdn_begin() { return mdnMap.begin(); } + mdn_iterator mdn_end() { return mdnMap.end(); } + unsigned mdn_size() const { return mdnMap.size(); } + bool mdn_empty() const { return mdnMap.empty(); } + + /// This function does the actual initialization. + inline void initialize(); + + // Implementation Details +private: + /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. + void CreateModuleSlot(const GlobalValue *V); + + /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. + void CreateMetadataSlot(const MDNode *N); + + /// CreateFunctionSlot - Insert the specified Value* into the slot table. + void CreateFunctionSlot(const Value *V); + + /// Add all of the module level global variables (and their initializers) + /// and function declarations, but not the contents of those functions. + void processModule(); + + /// Add all of the functions arguments, basic blocks, and instructions. + void processFunction(); + + SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION; + void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION; +}; + +} // end anonymous namespace + + +static SlotTracker *createSlotTracker(const Value *V) { + if (const Argument *FA = dyn_cast<Argument>(V)) + return new SlotTracker(FA->getParent()); + + if (const Instruction *I = dyn_cast<Instruction>(V)) + if (I->getParent()) + return new SlotTracker(I->getParent()->getParent()); + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return new SlotTracker(BB->getParent()); + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + return new SlotTracker(GV->getParent()); + + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) + return new SlotTracker(GA->getParent()); + + if (const Function *Func = dyn_cast<Function>(V)) + return new SlotTracker(Func); + + if (const MDNode *MD = dyn_cast<MDNode>(V)) { + if (!MD->isFunctionLocal()) + return new SlotTracker(MD->getFunction()); + + return new SlotTracker((Function *)0); + } + + return 0; +} + +#if 0 +#define ST_DEBUG(X) dbgs() << X +#else +#define ST_DEBUG(X) +#endif + +// Module level constructor. Causes the contents of the Module (sans functions) +// to be added to the slot table. +SlotTracker::SlotTracker(const Module *M) + : TheModule(M), TheFunction(0), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0) { +} + +// Function level constructor. Causes the contents of the Module and the one +// function provided to be added to the slot table. +SlotTracker::SlotTracker(const Function *F) + : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0) { +} + +inline void SlotTracker::initialize() { + if (TheModule) { + processModule(); + TheModule = 0; ///< Prevent re-processing next time we're called. + } + + if (TheFunction && !FunctionProcessed) + processFunction(); +} + +// Iterate through all the global variables, functions, and global +// variable initializers and create slots for them. +void SlotTracker::processModule() { + ST_DEBUG("begin processModule!\n"); + + // Add all of the unnamed global variables to the value table. + for (Module::const_global_iterator I = TheModule->global_begin(), + E = TheModule->global_end(); I != E; ++I) { + if (!I->hasName()) + CreateModuleSlot(I); + } + + // Add metadata used by named metadata. + for (Module::const_named_metadata_iterator + I = TheModule->named_metadata_begin(), + E = TheModule->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) + CreateMetadataSlot(NMD->getOperand(i)); + } + + // Add all the unnamed functions to the table. + for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); + I != E; ++I) + if (!I->hasName()) + CreateModuleSlot(I); + + ST_DEBUG("end processModule!\n"); +} + +// Process the arguments, basic blocks, and instructions of a function. +void SlotTracker::processFunction() { + ST_DEBUG("begin processFunction!\n"); + fNext = 0; + + // Add all the function arguments with no names. + for(Function::const_arg_iterator AI = TheFunction->arg_begin(), + AE = TheFunction->arg_end(); AI != AE; ++AI) + if (!AI->hasName()) + CreateFunctionSlot(AI); + + ST_DEBUG("Inserting Instructions:\n"); + + SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; + + // Add all of the basic blocks and instructions with no names. + for (Function::const_iterator BB = TheFunction->begin(), + E = TheFunction->end(); BB != E; ++BB) { + if (!BB->hasName()) + CreateFunctionSlot(BB); + + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { + if (!I->getType()->isVoidTy() && !I->hasName()) + CreateFunctionSlot(I); + + // Intrinsics can directly use metadata. We allow direct calls to any + // llvm.foo function here, because the target may not be linked into the + // optimizer. + if (const CallInst *CI = dyn_cast<CallInst>(I)) { + if (Function *F = CI->getCalledFunction()) + if (F->getName().startswith("llvm.")) + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) + CreateMetadataSlot(N); + } + + // Process metadata attached with this instruction. + I->getAllMetadata(MDForInst); + for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) + CreateMetadataSlot(MDForInst[i].second); + MDForInst.clear(); + } + } + + FunctionProcessed = true; + + ST_DEBUG("end processFunction!\n"); +} + +/// Clean up after incorporating a function. This is the only way to get out of +/// the function incorporation state that affects get*Slot/Create*Slot. Function +/// incorporation state is indicated by TheFunction != 0. +void SlotTracker::purgeFunction() { + ST_DEBUG("begin purgeFunction!\n"); + fMap.clear(); // Simply discard the function level map + TheFunction = 0; + FunctionProcessed = false; + ST_DEBUG("end purgeFunction!\n"); +} + +/// getGlobalSlot - Get the slot number of a global value. +int SlotTracker::getGlobalSlot(const GlobalValue *V) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the value in the module map + ValueMap::iterator MI = mMap.find(V); + return MI == mMap.end() ? -1 : (int)MI->second; +} + +/// getMetadataSlot - Get the slot number of a MDNode. +int SlotTracker::getMetadataSlot(const MDNode *N) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the MDNode in the module map + mdn_iterator MI = mdnMap.find(N); + return MI == mdnMap.end() ? -1 : (int)MI->second; +} + + +/// getLocalSlot - Get the slot number for a value that is local to a function. +int SlotTracker::getLocalSlot(const Value *V) { + assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); + + // Check for uninitialized state and do lazy initialization. + initialize(); + + ValueMap::iterator FI = fMap.find(V); + return FI == fMap.end() ? -1 : (int)FI->second; +} + + +/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. +void SlotTracker::CreateModuleSlot(const GlobalValue *V) { + assert(V && "Can't insert a null Value into SlotTracker!"); + assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); + assert(!V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = mNext++; + mMap[V] = DestSlot; + + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " ["); + // G = Global, F = Function, A = Alias, o = other + ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : + (isa<Function>(V) ? 'F' : + (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); +} + +/// CreateSlot - Create a new slot for the specified value if it has no name. +void SlotTracker::CreateFunctionSlot(const Value *V) { + assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = fNext++; + fMap[V] = DestSlot; + + // G = Global, F = Function, o = other + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " [o]\n"); +} + +/// CreateModuleSlot - Insert the specified MDNode* into the slot table. +void SlotTracker::CreateMetadataSlot(const MDNode *N) { + assert(N && "Can't insert a null Value into SlotTracker!"); + + // Don't insert if N is a function-local metadata, these are always printed + // inline. + if (!N->isFunctionLocal()) { + mdn_iterator I = mdnMap.find(N); + if (I != mdnMap.end()) + return; + + unsigned DestSlot = mdnNext++; + mdnMap[N] = DestSlot; + } + + // Recursively add any MDNodes referenced by operands. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) + CreateMetadataSlot(Op); +} + +//===----------------------------------------------------------------------===// +// AsmWriter Implementation +//===----------------------------------------------------------------------===// + +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine, + const Module *Context); + + + +static const char *getPredicateText(unsigned predicate) { + const char * pred = "unknown"; + switch (predicate) { + case FCmpInst::FCMP_FALSE: pred = "false"; break; + case FCmpInst::FCMP_OEQ: pred = "oeq"; break; + case FCmpInst::FCMP_OGT: pred = "ogt"; break; + case FCmpInst::FCMP_OGE: pred = "oge"; break; + case FCmpInst::FCMP_OLT: pred = "olt"; break; + case FCmpInst::FCMP_OLE: pred = "ole"; break; + case FCmpInst::FCMP_ONE: pred = "one"; break; + case FCmpInst::FCMP_ORD: pred = "ord"; break; + case FCmpInst::FCMP_UNO: pred = "uno"; break; + case FCmpInst::FCMP_UEQ: pred = "ueq"; break; + case FCmpInst::FCMP_UGT: pred = "ugt"; break; + case FCmpInst::FCMP_UGE: pred = "uge"; break; + case FCmpInst::FCMP_ULT: pred = "ult"; break; + case FCmpInst::FCMP_ULE: pred = "ule"; break; + case FCmpInst::FCMP_UNE: pred = "une"; break; + case FCmpInst::FCMP_TRUE: pred = "true"; break; + case ICmpInst::ICMP_EQ: pred = "eq"; break; + case ICmpInst::ICMP_NE: pred = "ne"; break; + case ICmpInst::ICMP_SGT: pred = "sgt"; break; + case ICmpInst::ICMP_SGE: pred = "sge"; break; + case ICmpInst::ICMP_SLT: pred = "slt"; break; + case ICmpInst::ICMP_SLE: pred = "sle"; break; + case ICmpInst::ICMP_UGT: pred = "ugt"; break; + case ICmpInst::ICMP_UGE: pred = "uge"; break; + case ICmpInst::ICMP_ULT: pred = "ult"; break; + case ICmpInst::ICMP_ULE: pred = "ule"; break; + } + return pred; +} + +static void writeAtomicRMWOperation(raw_ostream &Out, + AtomicRMWInst::BinOp Op) { + switch (Op) { + default: Out << " <unknown operation " << Op << ">"; break; + case AtomicRMWInst::Xchg: Out << " xchg"; break; + case AtomicRMWInst::Add: Out << " add"; break; + case AtomicRMWInst::Sub: Out << " sub"; break; + case AtomicRMWInst::And: Out << " and"; break; + case AtomicRMWInst::Nand: Out << " nand"; break; + case AtomicRMWInst::Or: Out << " or"; break; + case AtomicRMWInst::Xor: Out << " xor"; break; + case AtomicRMWInst::Max: Out << " max"; break; + case AtomicRMWInst::Min: Out << " min"; break; + case AtomicRMWInst::UMax: Out << " umax"; break; + case AtomicRMWInst::UMin: Out << " umin"; break; + } +} + +static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { + if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { + // Unsafe algebra implies all the others, no need to write them all out + if (FPO->hasUnsafeAlgebra()) + Out << " fast"; + else { + if (FPO->hasNoNaNs()) + Out << " nnan"; + if (FPO->hasNoInfs()) + Out << " ninf"; + if (FPO->hasNoSignedZeros()) + Out << " nsz"; + if (FPO->hasAllowReciprocal()) + Out << " arcp"; + } + } + + if (const OverflowingBinaryOperator *OBO = + dyn_cast<OverflowingBinaryOperator>(U)) { + if (OBO->hasNoUnsignedWrap()) + Out << " nuw"; + if (OBO->hasNoSignedWrap()) + Out << " nsw"; + } else if (const PossiblyExactOperator *Div = + dyn_cast<PossiblyExactOperator>(U)) { + if (Div->isExact()) + Out << " exact"; + } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { + if (GEP->isInBounds()) + Out << " inbounds"; + } +} + +static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, + TypePrinting &TypePrinter, + SlotTracker *Machine, + const Module *Context) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { + if (CI->getType()->isIntegerTy(1)) { + Out << (CI->getZExtValue() ? "true" : "false"); + return; + } + Out << CI->getValue(); + return; + } + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { + if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle || + &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) { + // We would like to output the FP constant value in exponential notation, + // but we cannot do this if doing so will lose precision. Check here to + // make sure that we only output it in exponential format if we can parse + // the value back and get the same value. + // + bool ignored; + bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf; + bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; + bool isInf = CFP->getValueAPF().isInfinity(); + bool isNaN = CFP->getValueAPF().isNaN(); + if (!isHalf && !isInf && !isNaN) { + double Val = isDouble ? CFP->getValueAPF().convertToDouble() : + CFP->getValueAPF().convertToFloat(); + SmallString<128> StrVal; + raw_svector_ostream(StrVal) << Val; + + // Check to make sure that the stringized number is not some string like + // "Inf" or NaN, that atof will accept, but the lexer will not. Check + // that the string matches the "[-+]?[0-9]" regex. + // + if ((StrVal[0] >= '0' && StrVal[0] <= '9') || + ((StrVal[0] == '-' || StrVal[0] == '+') && + (StrVal[1] >= '0' && StrVal[1] <= '9'))) { + // Reparse stringized version! + if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) { + Out << StrVal.str(); + return; + } + } + } + // Otherwise we could not reparse it to exactly the same value, so we must + // output the string in hexadecimal format! Note that loading and storing + // floating point types changes the bits of NaNs on some hosts, notably + // x86, so we must not use these types. + assert(sizeof(double) == sizeof(uint64_t) && + "assuming that double is 64 bits!"); + char Buffer[40]; + APFloat apf = CFP->getValueAPF(); + // Halves and floats are represented in ASCII IR as double, convert. + if (!isDouble) + apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + Out << "0x" << + utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), + Buffer+40); + return; + } + + // Either half, or some form of long double. + // These appear as a magic letter identifying the type, then a + // fixed number of hex digits. + Out << "0x"; + // Bit position, in the current word, of the next nibble to print. + int shiftcount; + + if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { + Out << 'K'; + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = p[1]; + shiftcount = 12; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *p; + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) { + shiftcount = 60; + Out << 'L'; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) { + shiftcount = 60; + Out << 'M'; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) { + shiftcount = 12; + Out << 'H'; + } else + llvm_unreachable("Unsupported floating point type"); + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = *p; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *(++p); + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } + + if (isa<ConstantAggregateZero>(CV)) { + Out << "zeroinitializer"; + return; + } + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { + Out << "blockaddress("; + WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, + Context); + Out << ", "; + WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, + Context); + Out << ")"; + return; + } + + if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { + Type *ETy = CA->getType()->getElementType(); + Out << '['; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(0), + &TypePrinter, Machine, + Context); + for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, + Context); + } + Out << ']'; + return; + } + + if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { + // As a special case, print the array as a string if it is an array of + // i8 with ConstantInt values. + if (CA->isString()) { + Out << "c\""; + PrintEscapedString(CA->getAsString(), Out); + Out << '"'; + return; + } + + Type *ETy = CA->getType()->getElementType(); + Out << '['; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getElementAsConstant(0), + &TypePrinter, Machine, + Context); + for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, + Machine, Context); + } + Out << ']'; + return; + } + + + if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { + if (CS->getType()->isPacked()) + Out << '<'; + Out << '{'; + unsigned N = CS->getNumOperands(); + if (N) { + Out << ' '; + TypePrinter.print(CS->getOperand(0)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, + Context); + + for (unsigned i = 1; i < N; i++) { + Out << ", "; + TypePrinter.print(CS->getOperand(i)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, + Context); + } + Out << ' '; + } + + Out << '}'; + if (CS->getType()->isPacked()) + Out << '>'; + return; + } + + if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { + Type *ETy = CV->getType()->getVectorElementType(); + Out << '<'; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, + Machine, Context); + for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, + Machine, Context); + } + Out << '>'; + return; + } + + if (isa<ConstantPointerNull>(CV)) { + Out << "null"; + return; + } + + if (isa<UndefValue>(CV)) { + Out << "undef"; + return; + } + + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { + Out << CE->getOpcodeName(); + WriteOptimizationInfo(Out, CE); + if (CE->isCompare()) + Out << ' ' << getPredicateText(CE->getPredicate()); + Out << " ("; + + for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { + TypePrinter.print((*OI)->getType(), Out); + Out << ' '; + WriteAsOperandInt |