aboutsummaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/JIT/JIT.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ExecutionEngine/JIT/JIT.cpp')
-rw-r--r--lib/ExecutionEngine/JIT/JIT.cpp335
1 files changed, 335 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/JIT/JIT.cpp b/lib/ExecutionEngine/JIT/JIT.cpp
new file mode 100644
index 0000000000..1e879a9166
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/JIT.cpp
@@ -0,0 +1,335 @@
+//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tool implements a just-in-time compiler for LLVM, allowing direct
+// execution of LLVM bytecode in an efficient manner.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetJITInfo.h"
+#include <iostream>
+
+using namespace llvm;
+
+JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
+ : ExecutionEngine(MP), TM(tm), TJI(tji), state(MP) {
+ setTargetData(TM.getTargetData());
+
+ // Initialize MCE
+ MCE = createEmitter(*this);
+
+ // Add target data
+ MutexGuard locked(lock);
+ FunctionPassManager& PM = state.getPM(locked);
+ PM.add(new TargetData(TM.getTargetData()));
+
+ // Compile LLVM Code down to machine code in the intermediate representation
+ TJI.addPassesToJITCompile(PM);
+
+ // Turn the machine code intermediate representation into bytes in memory that
+ // may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
+ std::cerr << "Target '" << TM.getName()
+ << "' doesn't support machine code emission!\n";
+ abort();
+ }
+}
+
+JIT::~JIT() {
+ delete MCE;
+ delete &TM;
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue JIT::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ const FunctionType *FTy = F->getFunctionType();
+ const Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
+ "Too many arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy == Type::IntTy || RetTy == Type::UIntTy || RetTy == Type::VoidTy) {
+ switch (ArgValues.size()) {
+ case 3:
+ if ((FTy->getParamType(0) == Type::IntTy ||
+ FTy->getParamType(0) == Type::UIntTy) &&
+ isa<PointerType>(FTy->getParamType(1)) &&
+ isa<PointerType>(FTy->getParamType(2))) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2]));
+ return rv;
+ }
+ break;
+ case 2:
+ if ((FTy->getParamType(0) == Type::IntTy ||
+ FTy->getParamType(0) == Type::UIntTy) &&
+ isa<PointerType>(FTy->getParamType(1))) {
+ int (*PF)(int, char **) = (int(*)(int, char **))FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getNumParams() == 1 &&
+ (FTy->getParamType(0) == Type::IntTy ||
+ FTy->getParamType(0) == Type::UIntTy)) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))FPtr;
+ rv.IntVal = PF(ArgValues[0].IntVal);
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: assert(0 && "Unknown return type for function call!");
+ case Type::BoolTyID:
+ rv.BoolVal = ((bool(*)())FPtr)();
+ return rv;
+ case Type::SByteTyID:
+ case Type::UByteTyID:
+ rv.SByteVal = ((char(*)())FPtr)();
+ return rv;
+ case Type::ShortTyID:
+ case Type::UShortTyID:
+ rv.ShortVal = ((short(*)())FPtr)();
+ return rv;
+ case Type::VoidTyID:
+ case Type::IntTyID:
+ case Type::UIntTyID:
+ rv.IntVal = ((int(*)())FPtr)();
+ return rv;
+ case Type::LongTyID:
+ case Type::ULongTyID:
+ rv.LongVal = ((int64_t(*)())FPtr)();
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())FPtr)();
+ return rv;
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())FPtr)());
+ }
+ }
+
+ // Okay, this is not one of our quick and easy cases. Because we don't have a
+ // full FFI, we have to codegen a nullary stub function that just calls the
+ // function we are interested in, passing in constants for all of the
+ // arguments. Make this function and return.
+
+ // First, create the function.
+ FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
+ Function *Stub = new Function(STy, Function::InternalLinkage, "",
+ F->getParent());
+
+ // Insert a basic block.
+ BasicBlock *StubBB = new BasicBlock("", Stub);
+
+ // Convert all of the GenericValue arguments over to constants. Note that we
+ // currently don't support varargs.
+ std::vector<Value*> Args;
+ for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
+ Constant *C = 0;
+ const Type *ArgTy = FTy->getParamType(i);
+ const GenericValue &AV = ArgValues[i];
+ switch (ArgTy->getTypeID()) {
+ default: assert(0 && "Unknown argument type for function call!");
+ case Type::BoolTyID: C = ConstantBool::get(AV.BoolVal); break;
+ case Type::SByteTyID: C = ConstantSInt::get(ArgTy, AV.SByteVal); break;
+ case Type::UByteTyID: C = ConstantUInt::get(ArgTy, AV.UByteVal); break;
+ case Type::ShortTyID: C = ConstantSInt::get(ArgTy, AV.ShortVal); break;
+ case Type::UShortTyID: C = ConstantUInt::get(ArgTy, AV.UShortVal); break;
+ case Type::IntTyID: C = ConstantSInt::get(ArgTy, AV.IntVal); break;
+ case Type::UIntTyID: C = ConstantUInt::get(ArgTy, AV.UIntVal); break;
+ case Type::LongTyID: C = ConstantSInt::get(ArgTy, AV.LongVal); break;
+ case Type::ULongTyID: C = ConstantUInt::get(ArgTy, AV.ULongVal); break;
+ case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break;
+ case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break;
+ case Type::PointerTyID:
+ void *ArgPtr = GVTOP(AV);
+ if (sizeof(void*) == 4) {
+ C = ConstantSInt::get(Type::IntTy, (int)(intptr_t)ArgPtr);
+ } else {
+ C = ConstantSInt::get(Type::LongTy, (intptr_t)ArgPtr);
+ }
+ C = ConstantExpr::getCast(C, ArgTy); // Cast the integer to pointer
+ break;
+ }
+ Args.push_back(C);
+ }
+
+ CallInst *TheCall = new CallInst(F, Args, "", StubBB);
+ TheCall->setTailCall();
+ if (TheCall->getType() != Type::VoidTy)
+ new ReturnInst(TheCall, StubBB); // Return result of the call.
+ else
+ new ReturnInst(StubBB); // Just return void.
+
+ // Finally, return the value returned by our nullary stub function.
+ return runFunction(Stub, std::vector<GenericValue>());
+}
+
+/// runJITOnFunction - Run the FunctionPassManager full of
+/// just-in-time compilation passes on F, hopefully filling in
+/// GlobalAddress[F] with the address of F's machine code.
+///
+void JIT::runJITOnFunction(Function *F) {
+ static bool isAlreadyCodeGenerating = false;
+ assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
+
+ MutexGuard locked(lock);
+
+ // JIT the function
+ isAlreadyCodeGenerating = true;
+ state.getPM(locked).run(*F);
+ isAlreadyCodeGenerating = false;
+
+ // If the function referred to a global variable that had not yet been
+ // emitted, it allocates memory for the global, but doesn't emit it yet. Emit
+ // all of these globals now.
+ while (!state.getPendingGlobals(locked).empty()) {
+ const GlobalVariable *GV = state.getPendingGlobals(locked).back();
+ state.getPendingGlobals(locked).pop_back();
+ EmitGlobalVariable(GV);
+ }
+}
+
+/// getPointerToFunction - This method is used to get the address of the
+/// specified function, compiling it if neccesary.
+///
+void *JIT::getPointerToFunction(Function *F) {
+ MutexGuard locked(lock);
+
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr; // Check if function already code gen'd
+
+ // Make sure we read in the function if it exists in this Module
+ if (F->hasNotBeenReadFromBytecode())
+ try {
+ MP->materializeFunction(F);
+ } catch ( std::string& errmsg ) {
+ std::cerr << "Error reading function '" << F->getName()
+ << "' from bytecode file: " << errmsg << "\n";
+ abort();
+ } catch (...) {
+ std::cerr << "Error reading function '" << F->getName()
+ << "from bytecode file!\n";
+ abort();
+ }
+
+ if (F->isExternal()) {
+ void *Addr = getPointerToNamedFunction(F->getName());
+ addGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ runJITOnFunction(F);
+
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ return Addr;
+}
+
+/// getOrEmitGlobalVariable - Return the address of the specified global
+/// variable, possibly emitting it to memory if needed. This is used by the
+/// Emitter.
+void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
+ MutexGuard locked(lock);
+
+ void *Ptr = getPointerToGlobalIfAvailable(GV);
+ if (Ptr) return Ptr;
+
+ // If the global is external, just remember the address.
+ if (GV->isExternal()) {
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
+ if (Ptr == 0) {
+ std::cerr << "Could not resolve external global address: "
+ << GV->getName() << "\n";
+ abort();
+ }
+ } else {
+ // If the global hasn't been emitted to memory yet, allocate space. We will
+ // actually initialize the global after current function has finished
+ // compilation.
+ uint64_t S = getTargetData().getTypeSize(GV->getType()->getElementType());
+ unsigned char A = getTargetData().getTypeAlignment(GV->getType()->getElementType());
+ Ptr = MCE->allocateGlobal(S, A);
+ state.getPendingGlobals(locked).push_back(GV);
+ }
+ addGlobalMapping(GV, Ptr);
+ return Ptr;
+}
+
+
+/// recompileAndRelinkFunction - This method is used to force a function
+/// which has already been compiled, to be compiled again, possibly
+/// after it has been modified. Then the entry to the old copy is overwritten
+/// with a branch to the new copy. If there was no old copy, this acts
+/// just like JIT::getPointerToFunction().
+///
+void *JIT::recompileAndRelinkFunction(Function *F) {
+ void *OldAddr = getPointerToGlobalIfAvailable(F);
+
+ // If it's not already compiled there is no reason to patch it up.
+ if (OldAddr == 0) { return getPointerToFunction(F); }
+
+ // Delete the old function mapping.
+ addGlobalMapping(F, 0);
+
+ // Recodegen the function
+ runJITOnFunction(F);
+
+ // Update state, forward the old function to the new function.
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ TJI.replaceMachineCodeForFunction(OldAddr, Addr);
+ return Addr;
+}
+
+/// freeMachineCodeForFunction - release machine code memory for given Function
+///
+void JIT::freeMachineCodeForFunction(Function *F) {
+ // currently a no-op
+}