aboutsummaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/Interpreter/Execution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ExecutionEngine/Interpreter/Execution.cpp')
-rw-r--r--lib/ExecutionEngine/Interpreter/Execution.cpp1084
1 files changed, 1084 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp
new file mode 100644
index 0000000000..a41d12af4f
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -0,0 +1,1084 @@
+//===-- Execution.cpp - Implement code to simulate the program ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the actual instruction interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "interpreter"
+#include "Interpreter.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include <cmath> // For fmod
+using namespace llvm;
+
+namespace {
+ Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");
+
+ Interpreter *TheEE = 0;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Value Manipulation code
+//===----------------------------------------------------------------------===//
+
+static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty);
+static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
+ GenericValue Src3);
+
+GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
+ ExecutionContext &SF) {
+ switch (CE->getOpcode()) {
+ case Instruction::Cast:
+ return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::GetElementPtr:
+ return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
+ gep_type_end(CE), SF);
+ case Instruction::Add:
+ return executeAddInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Sub:
+ return executeSubInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Mul:
+ return executeMulInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Div:
+ return executeDivInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Rem:
+ return executeRemInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::And:
+ return executeAndInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Or:
+ return executeOrInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Xor:
+ return executeXorInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::SetEQ:
+ return executeSetEQInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::SetNE:
+ return executeSetNEInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::SetLE:
+ return executeSetLEInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::SetGE:
+ return executeSetGEInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::SetLT:
+ return executeSetLTInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::SetGT:
+ return executeSetGTInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Shl:
+ return executeShlInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Shr:
+ return executeShrInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Select:
+ return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ getOperandValue(CE->getOperand(2), SF));
+ default:
+ std::cerr << "Unhandled ConstantExpr: " << *CE << "\n";
+ abort();
+ return GenericValue();
+ }
+}
+
+GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ return getConstantExprValue(CE, SF);
+ } else if (Constant *CPV = dyn_cast<Constant>(V)) {
+ return getConstantValue(CPV);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ return PTOGV(getPointerToGlobal(GV));
+ } else {
+ return SF.Values[V];
+ }
+}
+
+static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
+ SF.Values[V] = Val;
+}
+
+void Interpreter::initializeExecutionEngine() {
+ TheEE = this;
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
+ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
+
+static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(+, UByte);
+ IMPLEMENT_BINARY_OPERATOR(+, SByte);
+ IMPLEMENT_BINARY_OPERATOR(+, UShort);
+ IMPLEMENT_BINARY_OPERATOR(+, Short);
+ IMPLEMENT_BINARY_OPERATOR(+, UInt);
+ IMPLEMENT_BINARY_OPERATOR(+, Int);
+ IMPLEMENT_BINARY_OPERATOR(+, ULong);
+ IMPLEMENT_BINARY_OPERATOR(+, Long);
+ IMPLEMENT_BINARY_OPERATOR(+, Float);
+ IMPLEMENT_BINARY_OPERATOR(+, Double);
+ default:
+ std::cout << "Unhandled type for Add instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(-, UByte);
+ IMPLEMENT_BINARY_OPERATOR(-, SByte);
+ IMPLEMENT_BINARY_OPERATOR(-, UShort);
+ IMPLEMENT_BINARY_OPERATOR(-, Short);
+ IMPLEMENT_BINARY_OPERATOR(-, UInt);
+ IMPLEMENT_BINARY_OPERATOR(-, Int);
+ IMPLEMENT_BINARY_OPERATOR(-, ULong);
+ IMPLEMENT_BINARY_OPERATOR(-, Long);
+ IMPLEMENT_BINARY_OPERATOR(-, Float);
+ IMPLEMENT_BINARY_OPERATOR(-, Double);
+ default:
+ std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(*, UByte);
+ IMPLEMENT_BINARY_OPERATOR(*, SByte);
+ IMPLEMENT_BINARY_OPERATOR(*, UShort);
+ IMPLEMENT_BINARY_OPERATOR(*, Short);
+ IMPLEMENT_BINARY_OPERATOR(*, UInt);
+ IMPLEMENT_BINARY_OPERATOR(*, Int);
+ IMPLEMENT_BINARY_OPERATOR(*, ULong);
+ IMPLEMENT_BINARY_OPERATOR(*, Long);
+ IMPLEMENT_BINARY_OPERATOR(*, Float);
+ IMPLEMENT_BINARY_OPERATOR(*, Double);
+ default:
+ std::cout << "Unhandled type for Mul instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(/, UByte);
+ IMPLEMENT_BINARY_OPERATOR(/, SByte);
+ IMPLEMENT_BINARY_OPERATOR(/, UShort);
+ IMPLEMENT_BINARY_OPERATOR(/, Short);
+ IMPLEMENT_BINARY_OPERATOR(/, UInt);
+ IMPLEMENT_BINARY_OPERATOR(/, Int);
+ IMPLEMENT_BINARY_OPERATOR(/, ULong);
+ IMPLEMENT_BINARY_OPERATOR(/, Long);
+ IMPLEMENT_BINARY_OPERATOR(/, Float);
+ IMPLEMENT_BINARY_OPERATOR(/, Double);
+ default:
+ std::cout << "Unhandled type for Div instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(%, UByte);
+ IMPLEMENT_BINARY_OPERATOR(%, SByte);
+ IMPLEMENT_BINARY_OPERATOR(%, UShort);
+ IMPLEMENT_BINARY_OPERATOR(%, Short);
+ IMPLEMENT_BINARY_OPERATOR(%, UInt);
+ IMPLEMENT_BINARY_OPERATOR(%, Int);
+ IMPLEMENT_BINARY_OPERATOR(%, ULong);
+ IMPLEMENT_BINARY_OPERATOR(%, Long);
+ case Type::FloatTyID:
+ Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
+ break;
+ default:
+ std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(&, Bool);
+ IMPLEMENT_BINARY_OPERATOR(&, UByte);
+ IMPLEMENT_BINARY_OPERATOR(&, SByte);
+ IMPLEMENT_BINARY_OPERATOR(&, UShort);
+ IMPLEMENT_BINARY_OPERATOR(&, Short);
+ IMPLEMENT_BINARY_OPERATOR(&, UInt);
+ IMPLEMENT_BINARY_OPERATOR(&, Int);
+ IMPLEMENT_BINARY_OPERATOR(&, ULong);
+ IMPLEMENT_BINARY_OPERATOR(&, Long);
+ default:
+ std::cout << "Unhandled type for And instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(|, Bool);
+ IMPLEMENT_BINARY_OPERATOR(|, UByte);
+ IMPLEMENT_BINARY_OPERATOR(|, SByte);
+ IMPLEMENT_BINARY_OPERATOR(|, UShort);
+ IMPLEMENT_BINARY_OPERATOR(|, Short);
+ IMPLEMENT_BINARY_OPERATOR(|, UInt);
+ IMPLEMENT_BINARY_OPERATOR(|, Int);
+ IMPLEMENT_BINARY_OPERATOR(|, ULong);
+ IMPLEMENT_BINARY_OPERATOR(|, Long);
+ default:
+ std::cout << "Unhandled type for Or instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(^, Bool);
+ IMPLEMENT_BINARY_OPERATOR(^, UByte);
+ IMPLEMENT_BINARY_OPERATOR(^, SByte);
+ IMPLEMENT_BINARY_OPERATOR(^, UShort);
+ IMPLEMENT_BINARY_OPERATOR(^, Short);
+ IMPLEMENT_BINARY_OPERATOR(^, UInt);
+ IMPLEMENT_BINARY_OPERATOR(^, Int);
+ IMPLEMENT_BINARY_OPERATOR(^, ULong);
+ IMPLEMENT_BINARY_OPERATOR(^, Long);
+ default:
+ std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+#define IMPLEMENT_SETCC(OP, TY) \
+ case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
+
+// Handle pointers specially because they must be compared with only as much
+// width as the host has. We _do not_ want to be comparing 64 bit values when
+// running on a 32-bit target, otherwise the upper 32 bits might mess up
+// comparisons if they contain garbage.
+#define IMPLEMENT_POINTERSETCC(OP) \
+ case Type::PointerTyID: \
+ Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \
+ (void*)(intptr_t)Src2.PointerVal; break
+
+static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SETCC(==, UByte);
+ IMPLEMENT_SETCC(==, SByte);
+ IMPLEMENT_SETCC(==, UShort);
+ IMPLEMENT_SETCC(==, Short);
+ IMPLEMENT_SETCC(==, UInt);
+ IMPLEMENT_SETCC(==, Int);
+ IMPLEMENT_SETCC(==, ULong);
+ IMPLEMENT_SETCC(==, Long);
+ IMPLEMENT_SETCC(==, Float);
+ IMPLEMENT_SETCC(==, Double);
+ IMPLEMENT_POINTERSETCC(==);
+ default:
+ std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SETCC(!=, UByte);
+ IMPLEMENT_SETCC(!=, SByte);
+ IMPLEMENT_SETCC(!=, UShort);
+ IMPLEMENT_SETCC(!=, Short);
+ IMPLEMENT_SETCC(!=, UInt);
+ IMPLEMENT_SETCC(!=, Int);
+ IMPLEMENT_SETCC(!=, ULong);
+ IMPLEMENT_SETCC(!=, Long);
+ IMPLEMENT_SETCC(!=, Float);
+ IMPLEMENT_SETCC(!=, Double);
+ IMPLEMENT_POINTERSETCC(!=);
+
+ default:
+ std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SETCC(<=, UByte);
+ IMPLEMENT_SETCC(<=, SByte);
+ IMPLEMENT_SETCC(<=, UShort);
+ IMPLEMENT_SETCC(<=, Short);
+ IMPLEMENT_SETCC(<=, UInt);
+ IMPLEMENT_SETCC(<=, Int);
+ IMPLEMENT_SETCC(<=, ULong);
+ IMPLEMENT_SETCC(<=, Long);
+ IMPLEMENT_SETCC(<=, Float);
+ IMPLEMENT_SETCC(<=, Double);
+ IMPLEMENT_POINTERSETCC(<=);
+ default:
+ std::cout << "Unhandled type for SetLE instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SETCC(>=, UByte);
+ IMPLEMENT_SETCC(>=, SByte);
+ IMPLEMENT_SETCC(>=, UShort);
+ IMPLEMENT_SETCC(>=, Short);
+ IMPLEMENT_SETCC(>=, UInt);
+ IMPLEMENT_SETCC(>=, Int);
+ IMPLEMENT_SETCC(>=, ULong);
+ IMPLEMENT_SETCC(>=, Long);
+ IMPLEMENT_SETCC(>=, Float);
+ IMPLEMENT_SETCC(>=, Double);
+ IMPLEMENT_POINTERSETCC(>=);
+ default:
+ std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SETCC(<, UByte);
+ IMPLEMENT_SETCC(<, SByte);
+ IMPLEMENT_SETCC(<, UShort);
+ IMPLEMENT_SETCC(<, Short);
+ IMPLEMENT_SETCC(<, UInt);
+ IMPLEMENT_SETCC(<, Int);
+ IMPLEMENT_SETCC(<, ULong);
+ IMPLEMENT_SETCC(<, Long);
+ IMPLEMENT_SETCC(<, Float);
+ IMPLEMENT_SETCC(<, Double);
+ IMPLEMENT_POINTERSETCC(<);
+ default:
+ std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SETCC(>, UByte);
+ IMPLEMENT_SETCC(>, SByte);
+ IMPLEMENT_SETCC(>, UShort);
+ IMPLEMENT_SETCC(>, Short);
+ IMPLEMENT_SETCC(>, UInt);
+ IMPLEMENT_SETCC(>, Int);
+ IMPLEMENT_SETCC(>, ULong);
+ IMPLEMENT_SETCC(>, Long);
+ IMPLEMENT_SETCC(>, Float);
+ IMPLEMENT_SETCC(>, Double);
+ IMPLEMENT_POINTERSETCC(>);
+ default:
+ std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+void Interpreter::visitBinaryOperator(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getOpcode()) {
+ case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break;
+ case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break;
+ case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break;
+ case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break;
+ case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break;
+ case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break;
+ case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break;
+ case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break;
+ case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break;
+ case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break;
+ case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break;
+ case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break;
+ case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break;
+ case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break;
+ default:
+ std::cout << "Don't know how to handle this binary operator!\n-->" << I;
+ abort();
+ }
+
+ SetValue(&I, R, SF);
+}
+
+static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
+ GenericValue Src3) {
+ return Src1.BoolVal ? Src2 : Src3;
+}
+
+void Interpreter::visitSelectInst(SelectInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue R = executeSelectInst(Src1, Src2, Src3);
+ SetValue(&I, R, SF);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Terminator Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::exitCalled(GenericValue GV) {
+ // runAtExitHandlers() assumes there are no stack frames, but
+ // if exit() was called, then it had a stack frame. Blow away
+ // the stack before interpreting atexit handlers.
+ ECStack.clear ();
+ runAtExitHandlers ();
+ exit (GV.IntVal);
+}
+
+/// Pop the last stack frame off of ECStack and then copy the result
+/// back into the result variable if we are not returning void. The
+/// result variable may be the ExitCode, or the Value of the calling
+/// CallInst if there was a previous stack frame. This method may
+/// invalidate any ECStack iterators you have. This method also takes
+/// care of switching to the normal destination BB, if we are returning
+/// from an invoke.
+///
+void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
+ GenericValue Result) {
+ // Pop the current stack frame.
+ ECStack.pop_back();
+
+ if (ECStack.empty()) { // Finished main. Put result into exit code...
+ if (RetTy && RetTy->isIntegral()) { // Nonvoid return type?
+ ExitCode = Result.IntVal; // Capture the exit code of the program
+ } else {
+ ExitCode = 0;
+ }
+ } else {
+ // If we have a previous stack frame, and we have a previous call,
+ // fill in the return value...
+ ExecutionContext &CallingSF = ECStack.back();
+ if (Instruction *I = CallingSF.Caller.getInstruction()) {
+ if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
+ SetValue(I, Result, CallingSF);
+ if (InvokeInst *II = dyn_cast<InvokeInst> (I))
+ SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
+ CallingSF.Caller = CallSite(); // We returned from the call...
+ }
+ }
+}
+
+void Interpreter::visitReturnInst(ReturnInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *RetTy = Type::VoidTy;
+ GenericValue Result;
+
+ // Save away the return value... (if we are not 'ret void')
+ if (I.getNumOperands()) {
+ RetTy = I.getReturnValue()->getType();
+ Result = getOperandValue(I.getReturnValue(), SF);
+ }
+
+ popStackAndReturnValueToCaller(RetTy, Result);
+}
+
+void Interpreter::visitUnwindInst(UnwindInst &I) {
+ // Unwind stack
+ Instruction *Inst;
+ do {
+ ECStack.pop_back ();
+ if (ECStack.empty ())
+ abort ();
+ Inst = ECStack.back ().Caller.getInstruction ();
+ } while (!(Inst && isa<InvokeInst> (Inst)));
+
+ // Return from invoke
+ ExecutionContext &InvokingSF = ECStack.back ();
+ InvokingSF.Caller = CallSite ();
+
+ // Go to exceptional destination BB of invoke instruction
+ SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
+}
+
+void Interpreter::visitUnreachableInst(UnreachableInst &I) {
+ std::cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
+ abort();
+}
+
+void Interpreter::visitBranchInst(BranchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ BasicBlock *Dest;
+
+ Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
+ if (!I.isUnconditional()) {
+ Value *Cond = I.getCondition();
+ if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond...
+ Dest = I.getSuccessor(1);
+ }
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+void Interpreter::visitSwitchInst(SwitchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
+ const Type *ElTy = I.getOperand(0)->getType();
+
+ // Check to see if any of the cases match...
+ BasicBlock *Dest = 0;
+ for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
+ if (executeSetEQInst(CondVal,
+ getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) {
+ Dest = cast<BasicBlock>(I.getOperand(i+1));
+ break;
+ }
+
+ if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
+// This function handles the actual updating of block and instruction iterators
+// as well as execution of all of the PHI nodes in the destination block.
+//
+// This method does this because all of the PHI nodes must be executed
+// atomically, reading their inputs before any of the results are updated. Not
+// doing this can cause problems if the PHI nodes depend on other PHI nodes for
+// their inputs. If the input PHI node is updated before it is read, incorrect
+// results can happen. Thus we use a two phase approach.
+//
+void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
+ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
+ SF.CurBB = Dest; // Update CurBB to branch destination
+ SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
+
+ if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
+
+ // Loop over all of the PHI nodes in the current block, reading their inputs.
+ std::vector<GenericValue> ResultValues;
+
+ for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
+ // Search for the value corresponding to this previous bb...
+ int i = PN->getBasicBlockIndex(PrevBB);
+ assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
+ Value *IncomingValue = PN->getIncomingValue(i);
+
+ // Save the incoming value for this PHI node...
+ ResultValues.push_back(getOperandValue(IncomingValue, SF));
+ }
+
+ // Now loop over all of the PHI nodes setting their values...
+ SF.CurInst = SF.CurBB->begin();
+ for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
+ PHINode *PN = cast<PHINode>(SF.CurInst);
+ SetValue(PN, ResultValues[i], SF);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitAllocationInst(AllocationInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ const Type *Ty = I.getType()->getElementType(); // Type to be allocated
+
+ // Get the number of elements being allocated by the array...
+ unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
+
+ // Allocate enough memory to hold the type...
+ void *Memory = malloc(NumElements * (size_t)TD.getTypeSize(Ty));
+
+ GenericValue Result = PTOGV(Memory);
+ assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
+ SetValue(&I, Result, SF);
+
+ if (I.getOpcode() == Instruction::Alloca)
+ ECStack.back().Allocas.add(Memory);
+}
+
+void Interpreter::visitFreeInst(FreeInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
+ GenericValue Value = getOperandValue(I.getOperand(0), SF);
+ // TODO: Check to make sure memory is allocated
+ free(GVTOP(Value)); // Free memory
+}
+
+// getElementOffset - The workhorse for getelementptr.
+//
+GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E,
+ ExecutionContext &SF) {
+ assert(isa<PointerType>(Ptr->getType()) &&
+ "Cannot getElementOffset of a nonpointer type!");
+
+ PointerTy Total = 0;
+
+ for (; I != E; ++I) {
+ if (const StructType *STy = dyn_cast<StructType>(*I)) {
+ const StructLayout *SLO = TD.getStructLayout(STy);
+
+ const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand());
+ unsigned Index = unsigned(CPU->getValue());
+
+ Total += (PointerTy)SLO->MemberOffsets[Index];
+ } else {
+ const SequentialType *ST = cast<SequentialType>(*I);
+ // Get the index number for the array... which must be long type...
+ GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
+
+ uint64_t Idx;
+ switch (I.getOperand()->getType()->getTypeID()) {
+ default: assert(0 && "Illegal getelementptr index for sequential type!");
+ case Type::SByteTyID: Idx = IdxGV.SByteVal; break;
+ case Type::ShortTyID: Idx = IdxGV.ShortVal; break;
+ case Type::IntTyID: Idx = IdxGV.IntVal; break;
+ case Type::LongTyID: Idx = IdxGV.LongVal; break;
+ case Type::UByteTyID: Idx = IdxGV.UByteVal; break;
+ case Type::UShortTyID: Idx = IdxGV.UShortVal; break;
+ case Type::UIntTyID: Idx = IdxGV.UIntVal; break;
+ case Type::ULongTyID: Idx = IdxGV.ULongVal; break;
+ }
+ Total += PointerTy(TD.getTypeSize(ST->getElementType())*Idx);
+ }
+ }
+
+ GenericValue Result;
+ Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total;
+ return Result;
+}
+
+void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
+ gep_type_begin(I), gep_type_end(I), SF), SF);
+}
+
+void Interpreter::visitLoadInst(LoadInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
+ GenericValue Result = LoadValueFromMemory(Ptr, I.getType());
+ SetValue(&I, Result, SF);
+}
+
+void Interpreter::visitStoreInst(StoreInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Val = getOperandValue(I.getOperand(0), SF);
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
+ I.getOperand(0)->getType());
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitCallSite(CallSite CS) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Check to see if this is an intrinsic function call...
+ if (Function *F = CS.getCalledFunction())
+ if (F->isExternal ())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ break;
+ case Intrinsic::vastart: { // va_start
+ GenericValue ArgIndex;
+ ArgIndex.UIntPairVal.first = ECStack.size() - 1;
+ ArgIndex.UIntPairVal.second = 0;
+ SetValue(CS.getInstruction(), ArgIndex, SF);
+ return;
+ }
+ case Intrinsic::vaend: // va_end is a noop for the interpreter
+ return;
+ case Intrinsic::vacopy: // va_copy: dest = src
+ SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
+ return;
+ default:
+ // If it is an unknown intrinsic function, use the intrinsic lowering
+ // class to transform it into hopefully tasty LLVM code.
+ //
+ Instruction *Prev = CS.getInstruction()->getPrev();
+ BasicBlock *Parent = CS.getInstruction()->getParent();
+ IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
+
+ // Restore the CurInst pointer to the first instruction newly inserted, if
+ // any.
+ if (!Prev) {
+ SF.CurInst = Parent->begin();
+ } else {
+ SF.CurInst = Prev;
+ ++SF.CurInst;
+ }
+ return;
+ }
+
+ SF.Caller = CS;
+ std::vector<GenericValue> ArgVals;
+ const unsigned NumArgs = SF.Caller.arg_size();
+ ArgVals.reserve(NumArgs);
+ for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
+ e = SF.Caller.arg_end(); i != e; ++i) {
+ Value *V = *i;
+ ArgVals.push_back(getOperandValue(V, SF));
+ // Promote all integral types whose size is < sizeof(int) into ints. We do
+ // this by zero or sign extending the value as appropriate according to the
+ // source type.
+ const Type *Ty = V->getType();
+ if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) {
+ if (Ty == Type::ShortTy)
+ ArgVals.back().IntVal = ArgVals.back().ShortVal;
+ else if (Ty == Type::UShortTy)
+ ArgVals.back().UIntVal = ArgVals.back().UShortVal;
+ else if (Ty == Type::SByteTy)
+ ArgVals.back().IntVal = ArgVals.back().SByteVal;
+ else if (Ty == Type::UByteTy)
+ ArgVals.back().UIntVal = ArgVals.back().UByteVal;
+ else if (Ty == Type::BoolTy)
+ ArgVals.back().UIntVal = ArgVals.back().BoolVal;
+ else
+ assert(0 && "Unknown type!");
+ }
+ }
+
+ // To handle indirect calls, we must get the pointer value from the argument
+ // and treat it as a function pointer.
+ GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
+ callFunction((Function*)GVTOP(SRC), ArgVals);
+}
+
+#define IMPLEMENT_SHIFT(OP, TY) \
+ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
+
+static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SHIFT(<<, UByte);
+ IMPLEMENT_SHIFT(<<, SByte);
+ IMPLEMENT_SHIFT(<<, UShort);
+ IMPLEMENT_SHIFT(<<, Short);
+ IMPLEMENT_SHIFT(<<, UInt);
+ IMPLEMENT_SHIFT(<<, Int);
+ IMPLEMENT_SHIFT(<<, ULong);
+ IMPLEMENT_SHIFT(<<, Long);
+ default:
+ std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n";
+ }
+ return Dest;
+}
+
+static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2,
+ const Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_SHIFT(>>, UByte);
+ IMPLEMENT_SHIFT(>>, SByte);
+ IMPLEMENT_SHIFT(>>, UShort);
+ IMPLEMENT_SHIFT(>>, Short);
+ IMPLEMENT_SHIFT(>>, UInt);
+ IMPLEMENT_SHIFT(>>, Int);
+ IMPLEMENT_SHIFT(>>, ULong);
+ IMPLEMENT_SHIFT(>>, Long);
+ default:
+ std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n";
+ abort();
+ }
+ return Dest;
+}
+
+void Interpreter::visitShl(ShiftInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ Dest = executeShlInst (Src1, Src2, Ty);
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitShr(ShiftInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ Dest = executeShrInst (Src1, Src2, Ty);
+ SetValue(&I, Dest, SF);
+}
+
+#define IMPLEMENT_CAST(DTY, DCTY, STY) \
+ case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;
+
+#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \
+ case Type::DESTTY##TyID: \
+ switch (SrcTy->getTypeID()) { \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);
+
+#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \
+ IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
+
+#define IMPLEMENT_CAST_CASE_END() \
+ default: std::cout << "Unhandled cast: " << *SrcTy << " to " << *Ty << "\n"; \
+ abort(); \
+ } \
+ break
+
+#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
+ IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
+ IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
+ IMPLEMENT_CAST_CASE_END()
+
+GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_CAST_CASE(UByte , (unsigned char));
+ IMPLEMENT_CAST_CASE(SByte , ( signed char));
+ IMPLEMENT_CAST_CASE(UShort , (unsigned short));
+ IMPLEMENT_CAST_CASE(Short , ( signed short));
+ IMPLEMENT_CAST_CASE(UInt , (unsigned int ));
+ IMPLEMENT_CAST_CASE(Int , ( signed int ));
+ IMPLEMENT_CAST_CASE(ULong , (uint64_t));
+ IMPLEMENT_CAST_CASE(Long , ( int64_t));
+ IMPLEMENT_CAST_CASE(Pointer, (PointerTy));
+ IMPLEMENT_CAST_CASE(Float , (float));
+ IMPLEMENT_CAST_CASE(Double , (double));
+ IMPLEMENT_CAST_CASE(Bool , (bool));
+ default:
+ std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n";
+ abort();
+ }
+
+ return Dest;
+}
+
+void Interpreter::visitCastInst(CastInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
+}
+
+#define IMPLEMENT_VAARG(TY) \
+ case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
+
+void Interpreter::visitVAArgInst(VAArgInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Get the incoming valist parameter. LLI treats the valist as a
+ // (ec-stack-depth var-arg-index) pair.
+ GenericValue VAList = getOperandValue(I.getOperand(0), SF);
+ GenericValue Dest;
+ GenericValue Src = ECStack[VAList.UIntPairVal.first]
+ .VarArgs[VAList.UIntPairVal.second];
+ const Type *Ty = I.getType();
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_VAARG(UByte);
+ IMPLEMENT_VAARG(SByte);
+ IMPLEMENT_VAARG(UShort);
+ IMPLEMENT_VAARG(Short);
+ IMPLEMENT_VAARG(UInt);
+ IMPLEMENT_VAARG(Int);
+ IMPLEMENT_VAARG(ULong);
+ IMPLEMENT_VAARG(Long);
+ IMPLEMENT_VAARG(Pointer);
+ IMPLEMENT_VAARG(Float);
+ IMPLEMENT_VAARG(Double);
+ IMPLEMENT_VAARG(Bool);
+ default:
+ std::cout << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
+ abort();
+ }
+
+ // Set the Value of this Instruction.
+ SetValue(&I, Dest, SF);
+
+ // Move the pointer to the next vararg.
+ ++VAList.UIntPairVal.second;
+}
+
+//===----------------------------------------------------------------------===//
+// Dispatch and Execution Code
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// callFunction - Execute the specified function...
+//
+void Interpreter::callFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals) {
+ assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
+ ECStack.back().Caller.arg_size() == ArgVals.size()) &&
+ "Incorrect number of arguments passed into function call!");
+ // Make a new stack frame... and fill it in.
+ ECStack.push_back(ExecutionContext());
+ ExecutionContext &StackFrame = ECStack.back();
+ StackFrame.CurFunction = F;
+
+ // Special handling for external functions.
+ if (F->isExternal()) {
+ GenericValue Result = callExternalFunction (F, ArgVals);
+ // Simulate a 'ret' instruction of the appropriate type.
+ popStackAndReturnValueToCaller (F->getReturnType (), Result);
+ return;
+ }
+
+ // Get pointers to first LLVM BB & Instruction in function.
+ StackFrame.CurBB = F->begin();
+ StackFrame.CurInst = StackFrame.CurBB->begin();
+
+ // Run through the function arguments and initialize their values...
+ assert((ArgVals.size() == F->arg_size() ||
+ (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
+ "Invalid number of values passed to function invocation!");
+
+ // Handle non-varargs arguments...
+ unsigned i = 0;
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i)
+ SetValue(AI, ArgVals[i], StackFrame);
+
+ // Handle varargs arguments...
+ StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
+}
+
+void Interpreter::run() {
+ while (!ECStack.empty()) {
+ // Interpret a single instruction & increment the "PC".
+ ExecutionContext &SF = ECStack.back(); // Current stack frame
+ Instruction &I = *SF.CurInst++; // Increment before execute
+
+ // Track the number of dynamic instructions executed.
+ ++NumDynamicInsts;
+
+ DEBUG(std::cerr << "About to interpret: " << I);
+ visit(I); // Dispatch to one of the visit* methods...
+ }
+}