diff options
Diffstat (limited to 'lib/ExecutionEngine/Interpreter/Execution.cpp')
-rw-r--r-- | lib/ExecutionEngine/Interpreter/Execution.cpp | 1084 |
1 files changed, 1084 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp new file mode 100644 index 0000000000..a41d12af4f --- /dev/null +++ b/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -0,0 +1,1084 @@ +//===-- Execution.cpp - Implement code to simulate the program ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the actual instruction interpreter. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "interpreter" +#include "Interpreter.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Debug.h" +#include <cmath> // For fmod +using namespace llvm; + +namespace { + Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); + + Interpreter *TheEE = 0; +} + + +//===----------------------------------------------------------------------===// +// Value Manipulation code +//===----------------------------------------------------------------------===// + +static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, + GenericValue Src3); + +GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, + ExecutionContext &SF) { + switch (CE->getOpcode()) { + case Instruction::Cast: + return executeCastOperation(CE->getOperand(0), CE->getType(), SF); + case Instruction::GetElementPtr: + return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), + gep_type_end(CE), SF); + case Instruction::Add: + return executeAddInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Sub: + return executeSubInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Mul: + return executeMulInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Div: + return executeDivInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Rem: + return executeRemInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::And: + return executeAndInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Or: + return executeOrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Xor: + return executeXorInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SetEQ: + return executeSetEQInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SetNE: + return executeSetNEInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SetLE: + return executeSetLEInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SetGE: + return executeSetGEInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SetLT: + return executeSetLTInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SetGT: + return executeSetGTInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Shl: + return executeShlInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Shr: + return executeShrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Select: + return executeSelectInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + getOperandValue(CE->getOperand(2), SF)); + default: + std::cerr << "Unhandled ConstantExpr: " << *CE << "\n"; + abort(); + return GenericValue(); + } +} + +GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + return getConstantExprValue(CE, SF); + } else if (Constant *CPV = dyn_cast<Constant>(V)) { + return getConstantValue(CPV); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + return PTOGV(getPointerToGlobal(GV)); + } else { + return SF.Values[V]; + } +} + +static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { + SF.Values[V] = Val; +} + +void Interpreter::initializeExecutionEngine() { + TheEE = this; +} + +//===----------------------------------------------------------------------===// +// Binary Instruction Implementations +//===----------------------------------------------------------------------===// + +#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ + case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break + +static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(+, UByte); + IMPLEMENT_BINARY_OPERATOR(+, SByte); + IMPLEMENT_BINARY_OPERATOR(+, UShort); + IMPLEMENT_BINARY_OPERATOR(+, Short); + IMPLEMENT_BINARY_OPERATOR(+, UInt); + IMPLEMENT_BINARY_OPERATOR(+, Int); + IMPLEMENT_BINARY_OPERATOR(+, ULong); + IMPLEMENT_BINARY_OPERATOR(+, Long); + IMPLEMENT_BINARY_OPERATOR(+, Float); + IMPLEMENT_BINARY_OPERATOR(+, Double); + default: + std::cout << "Unhandled type for Add instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(-, UByte); + IMPLEMENT_BINARY_OPERATOR(-, SByte); + IMPLEMENT_BINARY_OPERATOR(-, UShort); + IMPLEMENT_BINARY_OPERATOR(-, Short); + IMPLEMENT_BINARY_OPERATOR(-, UInt); + IMPLEMENT_BINARY_OPERATOR(-, Int); + IMPLEMENT_BINARY_OPERATOR(-, ULong); + IMPLEMENT_BINARY_OPERATOR(-, Long); + IMPLEMENT_BINARY_OPERATOR(-, Float); + IMPLEMENT_BINARY_OPERATOR(-, Double); + default: + std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(*, UByte); + IMPLEMENT_BINARY_OPERATOR(*, SByte); + IMPLEMENT_BINARY_OPERATOR(*, UShort); + IMPLEMENT_BINARY_OPERATOR(*, Short); + IMPLEMENT_BINARY_OPERATOR(*, UInt); + IMPLEMENT_BINARY_OPERATOR(*, Int); + IMPLEMENT_BINARY_OPERATOR(*, ULong); + IMPLEMENT_BINARY_OPERATOR(*, Long); + IMPLEMENT_BINARY_OPERATOR(*, Float); + IMPLEMENT_BINARY_OPERATOR(*, Double); + default: + std::cout << "Unhandled type for Mul instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(/, UByte); + IMPLEMENT_BINARY_OPERATOR(/, SByte); + IMPLEMENT_BINARY_OPERATOR(/, UShort); + IMPLEMENT_BINARY_OPERATOR(/, Short); + IMPLEMENT_BINARY_OPERATOR(/, UInt); + IMPLEMENT_BINARY_OPERATOR(/, Int); + IMPLEMENT_BINARY_OPERATOR(/, ULong); + IMPLEMENT_BINARY_OPERATOR(/, Long); + IMPLEMENT_BINARY_OPERATOR(/, Float); + IMPLEMENT_BINARY_OPERATOR(/, Double); + default: + std::cout << "Unhandled type for Div instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(%, UByte); + IMPLEMENT_BINARY_OPERATOR(%, SByte); + IMPLEMENT_BINARY_OPERATOR(%, UShort); + IMPLEMENT_BINARY_OPERATOR(%, Short); + IMPLEMENT_BINARY_OPERATOR(%, UInt); + IMPLEMENT_BINARY_OPERATOR(%, Int); + IMPLEMENT_BINARY_OPERATOR(%, ULong); + IMPLEMENT_BINARY_OPERATOR(%, Long); + case Type::FloatTyID: + Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); + break; + case Type::DoubleTyID: + Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); + break; + default: + std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(&, Bool); + IMPLEMENT_BINARY_OPERATOR(&, UByte); + IMPLEMENT_BINARY_OPERATOR(&, SByte); + IMPLEMENT_BINARY_OPERATOR(&, UShort); + IMPLEMENT_BINARY_OPERATOR(&, Short); + IMPLEMENT_BINARY_OPERATOR(&, UInt); + IMPLEMENT_BINARY_OPERATOR(&, Int); + IMPLEMENT_BINARY_OPERATOR(&, ULong); + IMPLEMENT_BINARY_OPERATOR(&, Long); + default: + std::cout << "Unhandled type for And instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(|, Bool); + IMPLEMENT_BINARY_OPERATOR(|, UByte); + IMPLEMENT_BINARY_OPERATOR(|, SByte); + IMPLEMENT_BINARY_OPERATOR(|, UShort); + IMPLEMENT_BINARY_OPERATOR(|, Short); + IMPLEMENT_BINARY_OPERATOR(|, UInt); + IMPLEMENT_BINARY_OPERATOR(|, Int); + IMPLEMENT_BINARY_OPERATOR(|, ULong); + IMPLEMENT_BINARY_OPERATOR(|, Long); + default: + std::cout << "Unhandled type for Or instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(^, Bool); + IMPLEMENT_BINARY_OPERATOR(^, UByte); + IMPLEMENT_BINARY_OPERATOR(^, SByte); + IMPLEMENT_BINARY_OPERATOR(^, UShort); + IMPLEMENT_BINARY_OPERATOR(^, Short); + IMPLEMENT_BINARY_OPERATOR(^, UInt); + IMPLEMENT_BINARY_OPERATOR(^, Int); + IMPLEMENT_BINARY_OPERATOR(^, ULong); + IMPLEMENT_BINARY_OPERATOR(^, Long); + default: + std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +#define IMPLEMENT_SETCC(OP, TY) \ + case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break + +// Handle pointers specially because they must be compared with only as much +// width as the host has. We _do not_ want to be comparing 64 bit values when +// running on a 32-bit target, otherwise the upper 32 bits might mess up +// comparisons if they contain garbage. +#define IMPLEMENT_POINTERSETCC(OP) \ + case Type::PointerTyID: \ + Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ + (void*)(intptr_t)Src2.PointerVal; break + +static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SETCC(==, UByte); + IMPLEMENT_SETCC(==, SByte); + IMPLEMENT_SETCC(==, UShort); + IMPLEMENT_SETCC(==, Short); + IMPLEMENT_SETCC(==, UInt); + IMPLEMENT_SETCC(==, Int); + IMPLEMENT_SETCC(==, ULong); + IMPLEMENT_SETCC(==, Long); + IMPLEMENT_SETCC(==, Float); + IMPLEMENT_SETCC(==, Double); + IMPLEMENT_POINTERSETCC(==); + default: + std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SETCC(!=, UByte); + IMPLEMENT_SETCC(!=, SByte); + IMPLEMENT_SETCC(!=, UShort); + IMPLEMENT_SETCC(!=, Short); + IMPLEMENT_SETCC(!=, UInt); + IMPLEMENT_SETCC(!=, Int); + IMPLEMENT_SETCC(!=, ULong); + IMPLEMENT_SETCC(!=, Long); + IMPLEMENT_SETCC(!=, Float); + IMPLEMENT_SETCC(!=, Double); + IMPLEMENT_POINTERSETCC(!=); + + default: + std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SETCC(<=, UByte); + IMPLEMENT_SETCC(<=, SByte); + IMPLEMENT_SETCC(<=, UShort); + IMPLEMENT_SETCC(<=, Short); + IMPLEMENT_SETCC(<=, UInt); + IMPLEMENT_SETCC(<=, Int); + IMPLEMENT_SETCC(<=, ULong); + IMPLEMENT_SETCC(<=, Long); + IMPLEMENT_SETCC(<=, Float); + IMPLEMENT_SETCC(<=, Double); + IMPLEMENT_POINTERSETCC(<=); + default: + std::cout << "Unhandled type for SetLE instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SETCC(>=, UByte); + IMPLEMENT_SETCC(>=, SByte); + IMPLEMENT_SETCC(>=, UShort); + IMPLEMENT_SETCC(>=, Short); + IMPLEMENT_SETCC(>=, UInt); + IMPLEMENT_SETCC(>=, Int); + IMPLEMENT_SETCC(>=, ULong); + IMPLEMENT_SETCC(>=, Long); + IMPLEMENT_SETCC(>=, Float); + IMPLEMENT_SETCC(>=, Double); + IMPLEMENT_POINTERSETCC(>=); + default: + std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SETCC(<, UByte); + IMPLEMENT_SETCC(<, SByte); + IMPLEMENT_SETCC(<, UShort); + IMPLEMENT_SETCC(<, Short); + IMPLEMENT_SETCC(<, UInt); + IMPLEMENT_SETCC(<, Int); + IMPLEMENT_SETCC(<, ULong); + IMPLEMENT_SETCC(<, Long); + IMPLEMENT_SETCC(<, Float); + IMPLEMENT_SETCC(<, Double); + IMPLEMENT_POINTERSETCC(<); + default: + std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SETCC(>, UByte); + IMPLEMENT_SETCC(>, SByte); + IMPLEMENT_SETCC(>, UShort); + IMPLEMENT_SETCC(>, Short); + IMPLEMENT_SETCC(>, UInt); + IMPLEMENT_SETCC(>, Int); + IMPLEMENT_SETCC(>, ULong); + IMPLEMENT_SETCC(>, Long); + IMPLEMENT_SETCC(>, Float); + IMPLEMENT_SETCC(>, Double); + IMPLEMENT_POINTERSETCC(>); + default: + std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +void Interpreter::visitBinaryOperator(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getOpcode()) { + case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; + case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; + case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; + case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break; + case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break; + case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; + case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; + case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; + case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; + case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; + case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; + case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; + case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; + case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; + default: + std::cout << "Don't know how to handle this binary operator!\n-->" << I; + abort(); + } + + SetValue(&I, R, SF); +} + +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, + GenericValue Src3) { + return Src1.BoolVal ? Src2 : Src3; +} + +void Interpreter::visitSelectInst(SelectInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue R = executeSelectInst(Src1, Src2, Src3); + SetValue(&I, R, SF); +} + + +//===----------------------------------------------------------------------===// +// Terminator Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::exitCalled(GenericValue GV) { + // runAtExitHandlers() assumes there are no stack frames, but + // if exit() was called, then it had a stack frame. Blow away + // the stack before interpreting atexit handlers. + ECStack.clear (); + runAtExitHandlers (); + exit (GV.IntVal); +} + +/// Pop the last stack frame off of ECStack and then copy the result +/// back into the result variable if we are not returning void. The +/// result variable may be the ExitCode, or the Value of the calling +/// CallInst if there was a previous stack frame. This method may +/// invalidate any ECStack iterators you have. This method also takes +/// care of switching to the normal destination BB, if we are returning +/// from an invoke. +/// +void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, + GenericValue Result) { + // Pop the current stack frame. + ECStack.pop_back(); + + if (ECStack.empty()) { // Finished main. Put result into exit code... + if (RetTy && RetTy->isIntegral()) { // Nonvoid return type? + ExitCode = Result.IntVal; // Capture the exit code of the program + } else { + ExitCode = 0; + } + } else { + // If we have a previous stack frame, and we have a previous call, + // fill in the return value... + ExecutionContext &CallingSF = ECStack.back(); + if (Instruction *I = CallingSF.Caller.getInstruction()) { + if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... + SetValue(I, Result, CallingSF); + if (InvokeInst *II = dyn_cast<InvokeInst> (I)) + SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); + CallingSF.Caller = CallSite(); // We returned from the call... + } + } +} + +void Interpreter::visitReturnInst(ReturnInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *RetTy = Type::VoidTy; + GenericValue Result; + + // Save away the return value... (if we are not 'ret void') + if (I.getNumOperands()) { + RetTy = I.getReturnValue()->getType(); + Result = getOperandValue(I.getReturnValue(), SF); + } + + popStackAndReturnValueToCaller(RetTy, Result); +} + +void Interpreter::visitUnwindInst(UnwindInst &I) { + // Unwind stack + Instruction *Inst; + do { + ECStack.pop_back (); + if (ECStack.empty ()) + abort (); + Inst = ECStack.back ().Caller.getInstruction (); + } while (!(Inst && isa<InvokeInst> (Inst))); + + // Return from invoke + ExecutionContext &InvokingSF = ECStack.back (); + InvokingSF.Caller = CallSite (); + + // Go to exceptional destination BB of invoke instruction + SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF); +} + +void Interpreter::visitUnreachableInst(UnreachableInst &I) { + std::cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; + abort(); +} + +void Interpreter::visitBranchInst(BranchInst &I) { + ExecutionContext &SF = ECStack.back(); + BasicBlock *Dest; + + Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... + if (!I.isUnconditional()) { + Value *Cond = I.getCondition(); + if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... + Dest = I.getSuccessor(1); + } + SwitchToNewBasicBlock(Dest, SF); +} + +void Interpreter::visitSwitchInst(SwitchInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue CondVal = getOperandValue(I.getOperand(0), SF); + const Type *ElTy = I.getOperand(0)->getType(); + + // Check to see if any of the cases match... + BasicBlock *Dest = 0; + for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) + if (executeSetEQInst(CondVal, + getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { + Dest = cast<BasicBlock>(I.getOperand(i+1)); + break; + } + + if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default + SwitchToNewBasicBlock(Dest, SF); +} + +// SwitchToNewBasicBlock - This method is used to jump to a new basic block. +// This function handles the actual updating of block and instruction iterators +// as well as execution of all of the PHI nodes in the destination block. +// +// This method does this because all of the PHI nodes must be executed +// atomically, reading their inputs before any of the results are updated. Not +// doing this can cause problems if the PHI nodes depend on other PHI nodes for +// their inputs. If the input PHI node is updated before it is read, incorrect +// results can happen. Thus we use a two phase approach. +// +void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ + BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... + SF.CurBB = Dest; // Update CurBB to branch destination + SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... + + if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do + + // Loop over all of the PHI nodes in the current block, reading their inputs. + std::vector<GenericValue> ResultValues; + + for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { + // Search for the value corresponding to this previous bb... + int i = PN->getBasicBlockIndex(PrevBB); + assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); + Value *IncomingValue = PN->getIncomingValue(i); + + // Save the incoming value for this PHI node... + ResultValues.push_back(getOperandValue(IncomingValue, SF)); + } + + // Now loop over all of the PHI nodes setting their values... + SF.CurInst = SF.CurBB->begin(); + for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { + PHINode *PN = cast<PHINode>(SF.CurInst); + SetValue(PN, ResultValues[i], SF); + } +} + +//===----------------------------------------------------------------------===// +// Memory Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::visitAllocationInst(AllocationInst &I) { + ExecutionContext &SF = ECStack.back(); + + const Type *Ty = I.getType()->getElementType(); // Type to be allocated + + // Get the number of elements being allocated by the array... + unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; + + // Allocate enough memory to hold the type... + void *Memory = malloc(NumElements * (size_t)TD.getTypeSize(Ty)); + + GenericValue Result = PTOGV(Memory); + assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); + SetValue(&I, Result, SF); + + if (I.getOpcode() == Instruction::Alloca) + ECStack.back().Allocas.add(Memory); +} + +void Interpreter::visitFreeInst(FreeInst &I) { + ExecutionContext &SF = ECStack.back(); + assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?"); + GenericValue Value = getOperandValue(I.getOperand(0), SF); + // TODO: Check to make sure memory is allocated + free(GVTOP(Value)); // Free memory +} + +// getElementOffset - The workhorse for getelementptr. +// +GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, + gep_type_iterator E, + ExecutionContext &SF) { + assert(isa<PointerType>(Ptr->getType()) && + "Cannot getElementOffset of a nonpointer type!"); + + PointerTy Total = 0; + + for (; I != E; ++I) { + if (const StructType *STy = dyn_cast<StructType>(*I)) { + const StructLayout *SLO = TD.getStructLayout(STy); + + const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand()); + unsigned Index = unsigned(CPU->getValue()); + + Total += (PointerTy)SLO->MemberOffsets[Index]; + } else { + const SequentialType *ST = cast<SequentialType>(*I); + // Get the index number for the array... which must be long type... + GenericValue IdxGV = getOperandValue(I.getOperand(), SF); + + uint64_t Idx; + switch (I.getOperand()->getType()->getTypeID()) { + default: assert(0 && "Illegal getelementptr index for sequential type!"); + case Type::SByteTyID: Idx = IdxGV.SByteVal; break; + case Type::ShortTyID: Idx = IdxGV.ShortVal; break; + case Type::IntTyID: Idx = IdxGV.IntVal; break; + case Type::LongTyID: Idx = IdxGV.LongVal; break; + case Type::UByteTyID: Idx = IdxGV.UByteVal; break; + case Type::UShortTyID: Idx = IdxGV.UShortVal; break; + case Type::UIntTyID: Idx = IdxGV.UIntVal; break; + case Type::ULongTyID: Idx = IdxGV.ULongVal; break; + } + Total += PointerTy(TD.getTypeSize(ST->getElementType())*Idx); + } + } + + GenericValue Result; + Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total; + return Result; +} + +void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), + gep_type_begin(I), gep_type_end(I), SF), SF); +} + +void Interpreter::visitLoadInst(LoadInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); + GenericValue *Ptr = (GenericValue*)GVTOP(SRC); + GenericValue Result = LoadValueFromMemory(Ptr, I.getType()); + SetValue(&I, Result, SF); +} + +void Interpreter::visitStoreInst(StoreInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Val = getOperandValue(I.getOperand(0), SF); + GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); + StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), + I.getOperand(0)->getType()); +} + +//===----------------------------------------------------------------------===// +// Miscellaneous Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::visitCallSite(CallSite CS) { + ExecutionContext &SF = ECStack.back(); + + // Check to see if this is an intrinsic function call... + if (Function *F = CS.getCalledFunction()) + if (F->isExternal ()) + switch (F->getIntrinsicID()) { + case Intrinsic::not_intrinsic: + break; + case Intrinsic::vastart: { // va_start + GenericValue ArgIndex; + ArgIndex.UIntPairVal.first = ECStack.size() - 1; + ArgIndex.UIntPairVal.second = 0; + SetValue(CS.getInstruction(), ArgIndex, SF); + return; + } + case Intrinsic::vaend: // va_end is a noop for the interpreter + return; + case Intrinsic::vacopy: // va_copy: dest = src + SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); + return; + default: + // If it is an unknown intrinsic function, use the intrinsic lowering + // class to transform it into hopefully tasty LLVM code. + // + Instruction *Prev = CS.getInstruction()->getPrev(); + BasicBlock *Parent = CS.getInstruction()->getParent(); + IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); + + // Restore the CurInst pointer to the first instruction newly inserted, if + // any. + if (!Prev) { + SF.CurInst = Parent->begin(); + } else { + SF.CurInst = Prev; + ++SF.CurInst; + } + return; + } + + SF.Caller = CS; + std::vector<GenericValue> ArgVals; + const unsigned NumArgs = SF.Caller.arg_size(); + ArgVals.reserve(NumArgs); + for (CallSite::arg_iterator i = SF.Caller.arg_begin(), + e = SF.Caller.arg_end(); i != e; ++i) { + Value *V = *i; + ArgVals.push_back(getOperandValue(V, SF)); + // Promote all integral types whose size is < sizeof(int) into ints. We do + // this by zero or sign extending the value as appropriate according to the + // source type. + const Type *Ty = V->getType(); + if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) { + if (Ty == Type::ShortTy) + ArgVals.back().IntVal = ArgVals.back().ShortVal; + else if (Ty == Type::UShortTy) + ArgVals.back().UIntVal = ArgVals.back().UShortVal; + else if (Ty == Type::SByteTy) + ArgVals.back().IntVal = ArgVals.back().SByteVal; + else if (Ty == Type::UByteTy) + ArgVals.back().UIntVal = ArgVals.back().UByteVal; + else if (Ty == Type::BoolTy) + ArgVals.back().UIntVal = ArgVals.back().BoolVal; + else + assert(0 && "Unknown type!"); + } + } + + // To handle indirect calls, we must get the pointer value from the argument + // and treat it as a function pointer. + GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); + callFunction((Function*)GVTOP(SRC), ArgVals); +} + +#define IMPLEMENT_SHIFT(OP, TY) \ + case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break + +static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SHIFT(<<, UByte); + IMPLEMENT_SHIFT(<<, SByte); + IMPLEMENT_SHIFT(<<, UShort); + IMPLEMENT_SHIFT(<<, Short); + IMPLEMENT_SHIFT(<<, UInt); + IMPLEMENT_SHIFT(<<, Int); + IMPLEMENT_SHIFT(<<, ULong); + IMPLEMENT_SHIFT(<<, Long); + default: + std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n"; + } + return Dest; +} + +static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SHIFT(>>, UByte); + IMPLEMENT_SHIFT(>>, SByte); + IMPLEMENT_SHIFT(>>, UShort); + IMPLEMENT_SHIFT(>>, Short); + IMPLEMENT_SHIFT(>>, UInt); + IMPLEMENT_SHIFT(>>, Int); + IMPLEMENT_SHIFT(>>, ULong); + IMPLEMENT_SHIFT(>>, Long); + default: + std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +void Interpreter::visitShl(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + Dest = executeShlInst (Src1, Src2, Ty); + SetValue(&I, Dest, SF); +} + +void Interpreter::visitShr(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + Dest = executeShrInst (Src1, Src2, Ty); + SetValue(&I, Dest, SF); +} + +#define IMPLEMENT_CAST(DTY, DCTY, STY) \ + case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; + +#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ + case Type::DESTTY##TyID: \ + switch (SrcTy->getTypeID()) { \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); + +#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ + IMPLEMENT_CAST(DESTTY, DESTCTY, Double) + +#define IMPLEMENT_CAST_CASE_END() \ + default: std::cout << "Unhandled cast: " << *SrcTy << " to " << *Ty << "\n"; \ + abort(); \ + } \ + break + +#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ + IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ + IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ + IMPLEMENT_CAST_CASE_END() + +GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + + switch (Ty->getTypeID()) { + IMPLEMENT_CAST_CASE(UByte , (unsigned char)); + IMPLEMENT_CAST_CASE(SByte , ( signed char)); + IMPLEMENT_CAST_CASE(UShort , (unsigned short)); + IMPLEMENT_CAST_CASE(Short , ( signed short)); + IMPLEMENT_CAST_CASE(UInt , (unsigned int )); + IMPLEMENT_CAST_CASE(Int , ( signed int )); + IMPLEMENT_CAST_CASE(ULong , (uint64_t)); + IMPLEMENT_CAST_CASE(Long , ( int64_t)); + IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); + IMPLEMENT_CAST_CASE(Float , (float)); + IMPLEMENT_CAST_CASE(Double , (double)); + IMPLEMENT_CAST_CASE(Bool , (bool)); + default: + std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n"; + abort(); + } + + return Dest; +} + +void Interpreter::visitCastInst(CastInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); +} + +#define IMPLEMENT_VAARG(TY) \ + case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break + +void Interpreter::visitVAArgInst(VAArgInst &I) { + ExecutionContext &SF = ECStack.back(); + + // Get the incoming valist parameter. LLI treats the valist as a + // (ec-stack-depth var-arg-index) pair. + GenericValue VAList = getOperandValue(I.getOperand(0), SF); + GenericValue Dest; + GenericValue Src = ECStack[VAList.UIntPairVal.first] + .VarArgs[VAList.UIntPairVal.second]; + const Type *Ty = I.getType(); + switch (Ty->getTypeID()) { + IMPLEMENT_VAARG(UByte); + IMPLEMENT_VAARG(SByte); + IMPLEMENT_VAARG(UShort); + IMPLEMENT_VAARG(Short); + IMPLEMENT_VAARG(UInt); + IMPLEMENT_VAARG(Int); + IMPLEMENT_VAARG(ULong); + IMPLEMENT_VAARG(Long); + IMPLEMENT_VAARG(Pointer); + IMPLEMENT_VAARG(Float); + IMPLEMENT_VAARG(Double); + IMPLEMENT_VAARG(Bool); + default: + std::cout << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; + abort(); + } + + // Set the Value of this Instruction. + SetValue(&I, Dest, SF); + + // Move the pointer to the next vararg. + ++VAList.UIntPairVal.second; +} + +//===----------------------------------------------------------------------===// +// Dispatch and Execution Code +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// callFunction - Execute the specified function... +// +void Interpreter::callFunction(Function *F, + const std::vector<GenericValue> &ArgVals) { + assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || + ECStack.back().Caller.arg_size() == ArgVals.size()) && + "Incorrect number of arguments passed into function call!"); + // Make a new stack frame... and fill it in. + ECStack.push_back(ExecutionContext()); + ExecutionContext &StackFrame = ECStack.back(); + StackFrame.CurFunction = F; + + // Special handling for external functions. + if (F->isExternal()) { + GenericValue Result = callExternalFunction (F, ArgVals); + // Simulate a 'ret' instruction of the appropriate type. + popStackAndReturnValueToCaller (F->getReturnType (), Result); + return; + } + + // Get pointers to first LLVM BB & Instruction in function. + StackFrame.CurBB = F->begin(); + StackFrame.CurInst = StackFrame.CurBB->begin(); + + // Run through the function arguments and initialize their values... + assert((ArgVals.size() == F->arg_size() || + (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& + "Invalid number of values passed to function invocation!"); + + // Handle non-varargs arguments... + unsigned i = 0; + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) + SetValue(AI, ArgVals[i], StackFrame); + + // Handle varargs arguments... + StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); +} + +void Interpreter::run() { + while (!ECStack.empty()) { + // Interpret a single instruction & increment the "PC". + ExecutionContext &SF = ECStack.back(); // Current stack frame + Instruction &I = *SF.CurInst++; // Increment before execute + + // Track the number of dynamic instructions executed. + ++NumDynamicInsts; + + DEBUG(std::cerr << "About to interpret: " << I); + visit(I); // Dispatch to one of the visit* methods... + } +} |