aboutsummaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/ExecutionEngine.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r--lib/ExecutionEngine/ExecutionEngine.cpp552
1 files changed, 552 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
new file mode 100644
index 0000000000..d8bd8f44aa
--- /dev/null
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -0,0 +1,552 @@
+//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common interface used by the various execution engine
+// subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "Interpreter/Interpreter.h"
+#include "JIT/JIT.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Target/TargetData.h"
+using namespace llvm;
+
+namespace {
+ Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
+ Statistic<> NumGlobals ("lli", "Number of global vars initialized");
+}
+
+ExecutionEngine::ExecutionEngine(ModuleProvider *P) :
+ CurMod(*P->getModule()), MP(P) {
+ assert(P && "ModuleProvider is null?");
+}
+
+ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) {
+ assert(M && "Module is null?");
+}
+
+ExecutionEngine::~ExecutionEngine() {
+ delete MP;
+}
+
+/// getGlobalValueAtAddress - Return the LLVM global value object that starts
+/// at the specified address.
+///
+const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
+ MutexGuard locked(lock);
+
+ // If we haven't computed the reverse mapping yet, do so first.
+ if (state.getGlobalAddressReverseMap(locked).empty()) {
+ for (std::map<const GlobalValue*, void *>::iterator I =
+ state.getGlobalAddressMap(locked).begin(), E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
+ state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first));
+ }
+
+ std::map<void *, const GlobalValue*>::iterator I =
+ state.getGlobalAddressReverseMap(locked).find(Addr);
+ return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
+}
+
+// CreateArgv - Turn a vector of strings into a nice argv style array of
+// pointers to null terminated strings.
+//
+static void *CreateArgv(ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv) {
+ unsigned PtrSize = EE->getTargetData().getPointerSize();
+ char *Result = new char[(InputArgv.size()+1)*PtrSize];
+
+ DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
+ const Type *SBytePtr = PointerType::get(Type::SByteTy);
+
+ for (unsigned i = 0; i != InputArgv.size(); ++i) {
+ unsigned Size = InputArgv[i].size()+1;
+ char *Dest = new char[Size];
+ DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
+
+ std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
+ Dest[Size-1] = 0;
+
+ // Endian safe: Result[i] = (PointerTy)Dest;
+ EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
+ SBytePtr);
+ }
+
+ // Null terminate it
+ EE->StoreValueToMemory(PTOGV(0),
+ (GenericValue*)(Result+InputArgv.size()*PtrSize),
+ SBytePtr);
+ return Result;
+}
+
+/// runFunctionAsMain - This is a helper function which wraps runFunction to
+/// handle the common task of starting up main with the specified argc, argv,
+/// and envp parameters.
+int ExecutionEngine::runFunctionAsMain(Function *Fn,
+ const std::vector<std::string> &argv,
+ const char * const * envp) {
+ std::vector<GenericValue> GVArgs;
+ GenericValue GVArgc;
+ GVArgc.IntVal = argv.size();
+ unsigned NumArgs = Fn->getFunctionType()->getNumParams();
+ if (NumArgs) {
+ GVArgs.push_back(GVArgc); // Arg #0 = argc.
+ if (NumArgs > 1) {
+ GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
+ assert(((char **)GVTOP(GVArgs[1]))[0] &&
+ "argv[0] was null after CreateArgv");
+ if (NumArgs > 2) {
+ std::vector<std::string> EnvVars;
+ for (unsigned i = 0; envp[i]; ++i)
+ EnvVars.push_back(envp[i]);
+ GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
+ }
+ }
+ }
+ return runFunction(Fn, GVArgs).IntVal;
+}
+
+
+
+/// If possible, create a JIT, unless the caller specifically requests an
+/// Interpreter or there's an error. If even an Interpreter cannot be created,
+/// NULL is returned.
+///
+ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
+ bool ForceInterpreter,
+ IntrinsicLowering *IL) {
+ ExecutionEngine *EE = 0;
+
+ // Unless the interpreter was explicitly selected, try making a JIT.
+ if (!ForceInterpreter)
+ EE = JIT::create(MP, IL);
+
+ // If we can't make a JIT, make an interpreter instead.
+ if (EE == 0) {
+ try {
+ Module *M = MP->materializeModule();
+ try {
+ EE = Interpreter::create(M, IL);
+ } catch (...) {
+ std::cerr << "Error creating the interpreter!\n";
+ }
+ } catch (std::string& errmsg) {
+ std::cerr << "Error reading the bytecode file: " << errmsg << "\n";
+ } catch (...) {
+ std::cerr << "Error reading the bytecode file!\n";
+ }
+ }
+
+ if (EE == 0)
+ delete IL;
+ else
+ // Make sure we can resolve symbols in the program as well. The zero arg
+ // to the function tells DynamicLibrary to load the program, not a library.
+ sys::DynamicLibrary::LoadLibraryPermanently(0);
+
+ return EE;
+}
+
+/// getPointerToGlobal - This returns the address of the specified global
+/// value. This may involve code generation if it's a function.
+///
+void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
+ if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
+ return getPointerToFunction(F);
+
+ MutexGuard locked(lock);
+ assert(state.getGlobalAddressMap(locked)[GV] && "Global hasn't had an address allocated yet?");
+ return state.getGlobalAddressMap(locked)[GV];
+}
+
+/// FIXME: document
+///
+GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
+ GenericValue Result;
+ if (isa<UndefValue>(C)) return Result;
+
+ if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ Result = getConstantValue(CE->getOperand(0));
+ std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
+ uint64_t Offset =
+ TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
+
+ if (getTargetData().getPointerSize() == 4)
+ Result.IntVal += Offset;
+ else
+ Result.LongVal += Offset;
+ return Result;
+ }
+ case Instruction::Cast: {
+ // We only need to handle a few cases here. Almost all casts will
+ // automatically fold, just the ones involving pointers won't.
+ //
+ Constant *Op = CE->getOperand(0);
+ GenericValue GV = getConstantValue(Op);
+
+ // Handle cast of pointer to pointer...
+ if (Op->getType()->getTypeID() == C->getType()->getTypeID())
+ return GV;
+
+ // Handle a cast of pointer to any integral type...
+ if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
+ return GV;
+
+ // Handle cast of integer to a pointer...
+ if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral())
+ switch (Op->getType()->getTypeID()) {
+ case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal);
+ case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal);
+ case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal);
+ case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal);
+ case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal);
+ case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal);
+ case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal);
+ case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal);
+ case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal);
+ default: assert(0 && "Unknown integral type!");
+ }
+ break;
+ }
+
+ case Instruction::Add:
+ switch (CE->getOperand(0)->getType()->getTypeID()) {
+ default: assert(0 && "Bad add type!"); abort();
+ case Type::LongTyID:
+ case Type::ULongTyID:
+ Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
+ getConstantValue(CE->getOperand(1)).LongVal;
+ break;
+ case Type::IntTyID:
+ case Type::UIntTyID:
+ Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal +
+ getConstantValue(CE->getOperand(1)).IntVal;
+ break;
+ case Type::ShortTyID:
+ case Type::UShortTyID:
+ Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal +
+ getConstantValue(CE->getOperand(1)).ShortVal;
+ break;
+ case Type::SByteTyID:
+ case Type::UByteTyID:
+ Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal +
+ getConstantValue(CE->getOperand(1)).SByteVal;
+ break;
+ case Type::FloatTyID:
+ Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
+ getConstantValue(CE->getOperand(1)).FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
+ getConstantValue(CE->getOperand(1)).DoubleVal;
+ break;
+ }
+ return Result;
+ default:
+ break;
+ }
+ std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
+ abort();
+ }
+
+ switch (C->getType()->getTypeID()) {
+#define GET_CONST_VAL(TY, CTY, CLASS) \
+ case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break
+ GET_CONST_VAL(Bool , bool , ConstantBool);
+ GET_CONST_VAL(UByte , unsigned char , ConstantUInt);
+ GET_CONST_VAL(SByte , signed char , ConstantSInt);
+ GET_CONST_VAL(UShort , unsigned short, ConstantUInt);
+ GET_CONST_VAL(Short , signed short , ConstantSInt);
+ GET_CONST_VAL(UInt , unsigned int , ConstantUInt);
+ GET_CONST_VAL(Int , signed int , ConstantSInt);
+ GET_CONST_VAL(ULong , uint64_t , ConstantUInt);
+ GET_CONST_VAL(Long , int64_t , ConstantSInt);
+ GET_CONST_VAL(Float , float , ConstantFP);
+ GET_CONST_VAL(Double , double , ConstantFP);
+#undef GET_CONST_VAL
+ case Type::PointerTyID:
+ if (isa<ConstantPointerNull>(C))
+ Result.PointerVal = 0;
+ else if (const Function *F = dyn_cast<Function>(C))
+ Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
+ else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
+ Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+ else
+ assert(0 && "Unknown constant pointer type!");
+ break;
+ default:
+ std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
+ abort();
+ }
+ return Result;
+}
+
+/// FIXME: document
+///
+void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
+ const Type *Ty) {
+ if (getTargetData().isLittleEndian()) {
+ switch (Ty->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
+ case Type::UShortTyID:
+ case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
+ Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
+ break;
+ Store4BytesLittleEndian:
+ case Type::FloatTyID:
+ case Type::UIntTyID:
+ case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
+ Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
+ Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
+ Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
+ break;
+ case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
+ goto Store4BytesLittleEndian;
+ case Type::DoubleTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID:
+ Ptr->Untyped[0] = (unsigned char)(Val.ULongVal );
+ Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8);
+ Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16);
+ Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24);
+ Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32);
+ Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40);
+ Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48);
+ Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56);
+ break;
+ default:
+ std::cout << "Cannot store value of type " << *Ty << "!\n";
+ }
+ } else {
+ switch (Ty->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
+ case Type::UShortTyID:
+ case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
+ Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
+ break;
+ Store4BytesBigEndian:
+ case Type::FloatTyID:
+ case Type::UIntTyID:
+ case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
+ Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
+ Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
+ Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
+ break;
+ case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
+ goto Store4BytesBigEndian;
+ case Type::DoubleTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID:
+ Ptr->Untyped[7] = (unsigned char)(Val.ULongVal );
+ Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8);
+ Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16);
+ Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24);
+ Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32);
+ Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40);
+ Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48);
+ Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56);
+ break;
+ default:
+ std::cout << "Cannot store value of type " << *Ty << "!\n";
+ }
+ }
+}
+
+/// FIXME: document
+///
+GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
+ const Type *Ty) {
+ GenericValue Result;
+ if (getTargetData().isLittleEndian()) {
+ switch (Ty->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
+ case Type::UShortTyID:
+ case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] |
+ ((unsigned)Ptr->Untyped[1] << 8);
+ break;
+ Load4BytesLittleEndian:
+ case Type::FloatTyID:
+ case Type::UIntTyID:
+ case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] |
+ ((unsigned)Ptr->Untyped[1] << 8) |
+ ((unsigned)Ptr->Untyped[2] << 16) |
+ ((unsigned)Ptr->Untyped[3] << 24);
+ break;
+ case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
+ goto Load4BytesLittleEndian;
+ case Type::DoubleTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
+ ((uint64_t)Ptr->Untyped[1] << 8) |
+ ((uint64_t)Ptr->Untyped[2] << 16) |
+ ((uint64_t)Ptr->Untyped[3] << 24) |
+ ((uint64_t)Ptr->Untyped[4] << 32) |
+ ((uint64_t)Ptr->Untyped[5] << 40) |
+ ((uint64_t)Ptr->Untyped[6] << 48) |
+ ((uint64_t)Ptr->Untyped[7] << 56);
+ break;
+ default:
+ std::cout << "Cannot load value of type " << *Ty << "!\n";
+ abort();
+ }
+ } else {
+ switch (Ty->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
+ case Type::UShortTyID:
+ case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] |
+ ((unsigned)Ptr->Untyped[0] << 8);
+ break;
+ Load4BytesBigEndian:
+ case Type::FloatTyID:
+ case Type::UIntTyID:
+ case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] |
+ ((unsigned)Ptr->Untyped[2] << 8) |
+ ((unsigned)Ptr->Untyped[1] << 16) |
+ ((unsigned)Ptr->Untyped[0] << 24);
+ break;
+ case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
+ goto Load4BytesBigEndian;
+ case Type::DoubleTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
+ ((uint64_t)Ptr->Untyped[6] << 8) |
+ ((uint64_t)Ptr->Untyped[5] << 16) |
+ ((uint64_t)Ptr->Untyped[4] << 24) |
+ ((uint64_t)Ptr->Untyped[3] << 32) |
+ ((uint64_t)Ptr->Untyped[2] << 40) |
+ ((uint64_t)Ptr->Untyped[1] << 48) |
+ ((uint64_t)Ptr->Untyped[0] << 56);
+ break;
+ default:
+ std::cout << "Cannot load value of type " << *Ty << "!\n";
+ abort();
+ }
+ }
+ return Result;
+}
+
+// InitializeMemory - Recursive function to apply a Constant value into the
+// specified memory location...
+//
+void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
+ if (isa<UndefValue>(Init)) {
+ return;
+ } else if (Init->getType()->isFirstClassType()) {
+ GenericValue Val = getConstantValue(Init);
+ StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
+ return;
+ } else if (isa<ConstantAggregateZero>(Init)) {
+ memset(Addr, 0, (size_t)getTargetData().getTypeSize(Init->getType()));
+ return;
+ }
+
+ switch (Init->getType()->getTypeID()) {
+ case Type::ArrayTyID: {
+ const ConstantArray *CPA = cast<ConstantArray>(Init);
+ unsigned ElementSize =
+ getTargetData().getTypeSize(CPA->getType()->getElementType());
+ for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ case Type::StructTyID: {
+ const ConstantStruct *CPS = cast<ConstantStruct>(Init);
+ const StructLayout *SL =
+ getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
+ for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]);
+ return;
+ }
+
+ default:
+ std::cerr << "Bad Type: " << *Init->getType() << "\n";
+ assert(0 && "Unknown constant type to initialize memory with!");
+ }
+}
+
+/// EmitGlobals - Emit all of the global variables to memory, storing their
+/// addresses into GlobalAddress. This must make sure to copy the contents of
+/// their initializers into the memory.
+///
+void ExecutionEngine::emitGlobals() {
+ const TargetData &TD = getTargetData();
+
+ // Loop over all of the global variables in the program, allocating the memory
+ // to hold them.
+ Module &M = getModule();
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (!I->isExternal()) {
+ // Get the type of the global...
+ const Type *Ty = I->getType()->getElementType();
+
+ // Allocate some memory for it!
+ unsigned Size = TD.getTypeSize(Ty);
+ addGlobalMapping(I, new char[Size]);
+ } else {
+ // External variable reference. Try to use the dynamic loader to
+ // get a pointer to it.
+ if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
+ I->getName().c_str()))
+ addGlobalMapping(I, SymAddr);
+ else {
+ std::cerr << "Could not resolve external global address: "
+ << I->getName() << "\n";
+ abort();
+ }
+ }
+
+ // Now that all of the globals are set up in memory, loop through them all and
+ // initialize their contents.
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (!I->isExternal())
+ EmitGlobalVariable(I);
+}
+
+// EmitGlobalVariable - This method emits the specified global variable to the
+// address specified in GlobalAddresses, or allocates new memory if it's not
+// already in the map.
+void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
+ void *GA = getPointerToGlobalIfAvailable(GV);
+ DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n");
+
+ const Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getTargetData().getTypeSize(ElTy);
+ if (GA == 0) {
+ // If it's not already specified, allocate memory for the global.
+ GA = new char[GVSize];
+ addGlobalMapping(GV, GA);
+ }
+
+ InitializeMemory(GV->getInitializer(), GA);
+ NumInitBytes += (unsigned)GVSize;
+ ++NumGlobals;
+}