diff options
Diffstat (limited to 'lib/CodeGen/TwoAddressInstructionPass.cpp')
-rw-r--r-- | lib/CodeGen/TwoAddressInstructionPass.cpp | 216 |
1 files changed, 216 insertions, 0 deletions
diff --git a/lib/CodeGen/TwoAddressInstructionPass.cpp b/lib/CodeGen/TwoAddressInstructionPass.cpp new file mode 100644 index 0000000000..3aa2cc7c9b --- /dev/null +++ b/lib/CodeGen/TwoAddressInstructionPass.cpp @@ -0,0 +1,216 @@ +//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the TwoAddress instruction pass which is used +// by most register allocators. Two-Address instructions are rewritten +// from: +// +// A = B op C +// +// to: +// +// A = B +// A op= C +// +// Note that if a register allocator chooses to use this pass, that it +// has to be capable of handling the non-SSA nature of these rewritten +// virtual registers. +// +// It is also worth noting that the duplicate operand of the two +// address instruction is removed. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "twoaddrinstr" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +using namespace llvm; + +namespace { + Statistic<> NumTwoAddressInstrs("twoaddressinstruction", + "Number of two-address instructions"); + Statistic<> NumCommuted("twoaddressinstruction", + "Number of instructions commuted to coalesce"); + Statistic<> NumConvertedTo3Addr("twoaddressinstruction", + "Number of instructions promoted to 3-address"); + + struct TwoAddressInstructionPass : public MachineFunctionPass { + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + + /// runOnMachineFunction - pass entry point + bool runOnMachineFunction(MachineFunction&); + }; + + RegisterPass<TwoAddressInstructionPass> + X("twoaddressinstruction", "Two-Address instruction pass"); +}; + +const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo(); + +void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<LiveVariables>(); + AU.addPreserved<LiveVariables>(); + AU.addPreservedID(PHIEliminationID); + MachineFunctionPass::getAnalysisUsage(AU); +} + +/// runOnMachineFunction - Reduce two-address instructions to two +/// operands. +/// +bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { + DEBUG(std::cerr << "Machine Function\n"); + const TargetMachine &TM = MF.getTarget(); + const MRegisterInfo &MRI = *TM.getRegisterInfo(); + const TargetInstrInfo &TII = *TM.getInstrInfo(); + LiveVariables &LV = getAnalysis<LiveVariables>(); + + bool MadeChange = false; + + DEBUG(std::cerr << "********** REWRITING TWO-ADDR INSTRS **********\n"); + DEBUG(std::cerr << "********** Function: " + << MF.getFunction()->getName() << '\n'); + + for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); + mbbi != mbbe; ++mbbi) { + for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); + mi != me; ++mi) { + unsigned opcode = mi->getOpcode(); + + // ignore if it is not a two-address instruction + if (!TII.isTwoAddrInstr(opcode)) + continue; + + ++NumTwoAddressInstrs; + DEBUG(std::cerr << '\t'; mi->print(std::cerr, &TM)); + assert(mi->getOperand(1).isRegister() && mi->getOperand(1).getReg() && + mi->getOperand(1).isUse() && "two address instruction invalid"); + + // if the two operands are the same we just remove the use + // and mark the def as def&use, otherwise we have to insert a copy. + if (mi->getOperand(0).getReg() != mi->getOperand(1).getReg()) { + // rewrite: + // a = b op c + // to: + // a = b + // a = a op c + unsigned regA = mi->getOperand(0).getReg(); + unsigned regB = mi->getOperand(1).getReg(); + + assert(MRegisterInfo::isVirtualRegister(regA) && + MRegisterInfo::isVirtualRegister(regB) && + "cannot update physical register live information"); + +#ifndef NDEBUG + // First, verify that we do not have a use of a in the instruction (a = + // b + a for example) because our transformation will not work. This + // should never occur because we are in SSA form. + for (unsigned i = 1; i != mi->getNumOperands(); ++i) + assert(!mi->getOperand(i).isRegister() || + mi->getOperand(i).getReg() != regA); +#endif + + // If this instruction is not the killing user of B, see if we can + // rearrange the code to make it so. Making it the killing user will + // allow us to coalesce A and B together, eliminating the copy we are + // about to insert. + if (!LV.KillsRegister(mi, regB)) { + const TargetInstrDescriptor &TID = TII.get(opcode); + + // If this instruction is commutative, check to see if C dies. If so, + // swap the B and C operands. This makes the live ranges of A and C + // joinable. + if (TID.Flags & M_COMMUTABLE) { + assert(mi->getOperand(2).isRegister() && + "Not a proper commutative instruction!"); + unsigned regC = mi->getOperand(2).getReg(); + if (LV.KillsRegister(mi, regC)) { + DEBUG(std::cerr << "2addr: COMMUTING : " << *mi); + MachineInstr *NewMI = TII.commuteInstruction(mi); + if (NewMI == 0) { + DEBUG(std::cerr << "2addr: COMMUTING FAILED!\n"); + } else { + DEBUG(std::cerr << "2addr: COMMUTED TO: " << *NewMI); + // If the instruction changed to commute it, update livevar. + if (NewMI != mi) { + LV.instructionChanged(mi, NewMI); // Update live variables + mbbi->insert(mi, NewMI); // Insert the new inst + mbbi->erase(mi); // Nuke the old inst. + mi = NewMI; + } + + ++NumCommuted; + regB = regC; + goto InstructionRearranged; + } + } + } + // If this instruction is potentially convertible to a true + // three-address instruction, + if (TID.Flags & M_CONVERTIBLE_TO_3_ADDR) + if (MachineInstr *New = TII.convertToThreeAddress(mi)) { + DEBUG(std::cerr << "2addr: CONVERTING 2-ADDR: " << *mi); + DEBUG(std::cerr << "2addr: TO 3-ADDR: " << *New); + LV.instructionChanged(mi, New); // Update live variables + mbbi->insert(mi, New); // Insert the new inst + mbbi->erase(mi); // Nuke the old inst. + mi = New; + ++NumConvertedTo3Addr; + assert(!TII.isTwoAddrInstr(New->getOpcode()) && + "convertToThreeAddress returned a 2-addr instruction??"); + // Done with this instruction. + continue; + } + } + InstructionRearranged: + const TargetRegisterClass* rc = MF.getSSARegMap()->getRegClass(regA); + MRI.copyRegToReg(*mbbi, mi, regA, regB, rc); + + MachineBasicBlock::iterator prevMi = prior(mi); + DEBUG(std::cerr << "\t\tprepend:\t"; prevMi->print(std::cerr, &TM)); + + // Update live variables for regA + LiveVariables::VarInfo& varInfo = LV.getVarInfo(regA); + varInfo.DefInst = prevMi; + + // update live variables for regB + if (LV.removeVirtualRegisterKilled(regB, mbbi, mi)) + LV.addVirtualRegisterKilled(regB, prevMi); + + if (LV.removeVirtualRegisterDead(regB, mbbi, mi)) + LV.addVirtualRegisterDead(regB, prevMi); + + // replace all occurences of regB with regA + for (unsigned i = 1, e = mi->getNumOperands(); i != e; ++i) { + if (mi->getOperand(i).isRegister() && + mi->getOperand(i).getReg() == regB) + mi->SetMachineOperandReg(i, regA); + } + } + + assert(mi->getOperand(0).isDef()); + mi->getOperand(0).setUse(); + mi->RemoveOperand(1); + MadeChange = true; + + DEBUG(std::cerr << "\t\trewrite to:\t"; mi->print(std::cerr, &TM)); + } + } + + return MadeChange; +} |