diff options
Diffstat (limited to 'lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp | 1273 |
1 files changed, 1273 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp new file mode 100644 index 0000000000..3b5ef32e3c --- /dev/null +++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp @@ -0,0 +1,1273 @@ +//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the SelectionDAGISel class. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "isel" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include <map> +#include <iostream> +using namespace llvm; + +#ifndef NDEBUG +static cl::opt<bool> +ViewDAGs("view-isel-dags", cl::Hidden, + cl::desc("Pop up a window to show isel dags as they are selected")); +#else +static const bool ViewDAGs = 0; +#endif + + +namespace llvm { + //===--------------------------------------------------------------------===// + /// FunctionLoweringInfo - This contains information that is global to a + /// function that is used when lowering a region of the function. + class FunctionLoweringInfo { + public: + TargetLowering &TLI; + Function &Fn; + MachineFunction &MF; + SSARegMap *RegMap; + + FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); + + /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. + std::map<const BasicBlock*, MachineBasicBlock *> MBBMap; + + /// ValueMap - Since we emit code for the function a basic block at a time, + /// we must remember which virtual registers hold the values for + /// cross-basic-block values. + std::map<const Value*, unsigned> ValueMap; + + /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in + /// the entry block. This allows the allocas to be efficiently referenced + /// anywhere in the function. + std::map<const AllocaInst*, int> StaticAllocaMap; + + unsigned MakeReg(MVT::ValueType VT) { + return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); + } + + unsigned CreateRegForValue(const Value *V) { + MVT::ValueType VT = TLI.getValueType(V->getType()); + // The common case is that we will only create one register for this + // value. If we have that case, create and return the virtual register. + unsigned NV = TLI.getNumElements(VT); + if (NV == 1) { + // If we are promoting this value, pick the next largest supported type. + return MakeReg(TLI.getTypeToTransformTo(VT)); + } + + // If this value is represented with multiple target registers, make sure + // to create enough consequtive registers of the right (smaller) type. + unsigned NT = VT-1; // Find the type to use. + while (TLI.getNumElements((MVT::ValueType)NT) != 1) + --NT; + + unsigned R = MakeReg((MVT::ValueType)NT); + for (unsigned i = 1; i != NV; ++i) + MakeReg((MVT::ValueType)NT); + return R; + } + + unsigned InitializeRegForValue(const Value *V) { + unsigned &R = ValueMap[V]; + assert(R == 0 && "Already initialized this value register!"); + return R = CreateRegForValue(V); + } + }; +} + +/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by +/// PHI nodes or outside of the basic block that defines it. +static bool isUsedOutsideOfDefiningBlock(Instruction *I) { + if (isa<PHINode>(I)) return true; + BasicBlock *BB = I->getParent(); + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) + if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) + return true; + return false; +} + +/// isOnlyUsedInEntryBlock - If the specified argument is only used in the +/// entry block, return true. +static bool isOnlyUsedInEntryBlock(Argument *A) { + BasicBlock *Entry = A->getParent()->begin(); + for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) + if (cast<Instruction>(*UI)->getParent() != Entry) + return false; // Use not in entry block. + return true; +} + +FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, + Function &fn, MachineFunction &mf) + : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { + + // Create a vreg for each argument register that is not dead and is used + // outside of the entry block for the function. + for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); + AI != E; ++AI) + if (!isOnlyUsedInEntryBlock(AI)) + InitializeRegForValue(AI); + + // Initialize the mapping of values to registers. This is only set up for + // instruction values that are used outside of the block that defines + // them. + Function::iterator BB = Fn.begin(), EB = Fn.end(); + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) + if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) { + const Type *Ty = AI->getAllocatedType(); + uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); + unsigned Align = TLI.getTargetData().getTypeAlignment(Ty); + + // If the alignment of the value is smaller than the size of the value, + // and if the size of the value is particularly small (<= 8 bytes), + // round up to the size of the value for potentially better performance. + // + // FIXME: This could be made better with a preferred alignment hook in + // TargetData. It serves primarily to 8-byte align doubles for X86. + if (Align < TySize && TySize <= 8) Align = TySize; + TySize *= CUI->getValue(); // Get total allocated size. + if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. + StaticAllocaMap[AI] = + MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); + } + + for (; BB != EB; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) + if (!isa<AllocaInst>(I) || + !StaticAllocaMap.count(cast<AllocaInst>(I))) + InitializeRegForValue(I); + + // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This + // also creates the initial PHI MachineInstrs, though none of the input + // operands are populated. + for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { + MachineBasicBlock *MBB = new MachineBasicBlock(BB); + MBBMap[BB] = MBB; + MF.getBasicBlockList().push_back(MBB); + + // Create Machine PHI nodes for LLVM PHI nodes, lowering them as + // appropriate. + PHINode *PN; + for (BasicBlock::iterator I = BB->begin(); + (PN = dyn_cast<PHINode>(I)); ++I) + if (!PN->use_empty()) { + unsigned NumElements = + TLI.getNumElements(TLI.getValueType(PN->getType())); + unsigned PHIReg = ValueMap[PN]; + assert(PHIReg &&"PHI node does not have an assigned virtual register!"); + for (unsigned i = 0; i != NumElements; ++i) + BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i); + } + } +} + + + +//===----------------------------------------------------------------------===// +/// SelectionDAGLowering - This is the common target-independent lowering +/// implementation that is parameterized by a TargetLowering object. +/// Also, targets can overload any lowering method. +/// +namespace llvm { +class SelectionDAGLowering { + MachineBasicBlock *CurMBB; + + std::map<const Value*, SDOperand> NodeMap; + + /// PendingLoads - Loads are not emitted to the program immediately. We bunch + /// them up and then emit token factor nodes when possible. This allows us to + /// get simple disambiguation between loads without worrying about alias + /// analysis. + std::vector<SDOperand> PendingLoads; + +public: + // TLI - This is information that describes the available target features we + // need for lowering. This indicates when operations are unavailable, + // implemented with a libcall, etc. + TargetLowering &TLI; + SelectionDAG &DAG; + const TargetData &TD; + + /// FuncInfo - Information about the function as a whole. + /// + FunctionLoweringInfo &FuncInfo; + + SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, + FunctionLoweringInfo &funcinfo) + : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), + FuncInfo(funcinfo) { + } + + /// getRoot - Return the current virtual root of the Selection DAG. + /// + SDOperand getRoot() { + if (PendingLoads.empty()) + return DAG.getRoot(); + + if (PendingLoads.size() == 1) { + SDOperand Root = PendingLoads[0]; + DAG.setRoot(Root); + PendingLoads.clear(); + return Root; + } + + // Otherwise, we have to make a token factor node. + SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads); + PendingLoads.clear(); + DAG.setRoot(Root); + return Root; + } + + void visit(Instruction &I) { visit(I.getOpcode(), I); } + + void visit(unsigned Opcode, User &I) { + switch (Opcode) { + default: assert(0 && "Unknown instruction type encountered!"); + abort(); + // Build the switch statement using the Instruction.def file. +#define HANDLE_INST(NUM, OPCODE, CLASS) \ + case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); +#include "llvm/Instruction.def" + } + } + + void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } + + + SDOperand getIntPtrConstant(uint64_t Val) { + return DAG.getConstant(Val, TLI.getPointerTy()); + } + + SDOperand getValue(const Value *V) { + SDOperand &N = NodeMap[V]; + if (N.Val) return N; + + MVT::ValueType VT = TLI.getValueType(V->getType()); + if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + visit(CE->getOpcode(), *CE); + assert(N.Val && "visit didn't populate the ValueMap!"); + return N; + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { + return N = DAG.getGlobalAddress(GV, VT); + } else if (isa<ConstantPointerNull>(C)) { + return N = DAG.getConstant(0, TLI.getPointerTy()); + } else if (isa<UndefValue>(C)) { + return N = DAG.getNode(ISD::UNDEF, VT); + } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + return N = DAG.getConstantFP(CFP->getValue(), VT); + } else { + // Canonicalize all constant ints to be unsigned. + return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT); + } + + if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { + std::map<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI != FuncInfo.StaticAllocaMap.end()) + return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); + } + + std::map<const Value*, unsigned>::const_iterator VMI = + FuncInfo.ValueMap.find(V); + assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!"); + + unsigned InReg = VMI->second; + + // If this type is not legal, make it so now. + MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT); + + N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT); + if (DestVT < VT) { + // Source must be expanded. This input value is actually coming from the + // register pair VMI->second and VMI->second+1. + N = DAG.getNode(ISD::BUILD_PAIR, VT, N, + DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT)); + } else { + if (DestVT > VT) { // Promotion case + if (MVT::isFloatingPoint(VT)) + N = DAG.getNode(ISD::FP_ROUND, VT, N); + else + N = DAG.getNode(ISD::TRUNCATE, VT, N); + } + } + + return N; + } + + const SDOperand &setValue(const Value *V, SDOperand NewN) { + SDOperand &N = NodeMap[V]; + assert(N.Val == 0 && "Already set a value for this node!"); + return N = NewN; + } + + // Terminator instructions. + void visitRet(ReturnInst &I); + void visitBr(BranchInst &I); + void visitUnreachable(UnreachableInst &I) { /* noop */ } + + // These all get lowered before this pass. + void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); } + void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); } + void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); } + + // + void visitBinary(User &I, unsigned Opcode, bool isShift = false); + void visitAdd(User &I) { + visitBinary(I, I.getType()->isFloatingPoint() ? ISD::FADD : ISD::ADD); + } + void visitSub(User &I); + void visitMul(User &I) { + visitBinary(I, I.getType()->isFloatingPoint() ? ISD::FMUL : ISD::MUL); + } + void visitDiv(User &I) { + unsigned Opc; + const Type *Ty = I.getType(); + if (Ty->isFloatingPoint()) + Opc = ISD::FDIV; + else if (Ty->isUnsigned()) + Opc = ISD::UDIV; + else + Opc = ISD::SDIV; + visitBinary(I, Opc); + } + void visitRem(User &I) { + unsigned Opc; + const Type *Ty = I.getType(); + if (Ty->isFloatingPoint()) + Opc = ISD::FREM; + else if (Ty->isUnsigned()) + Opc = ISD::UREM; + else + Opc = ISD::SREM; + visitBinary(I, Opc); + } + void visitAnd(User &I) { visitBinary(I, ISD::AND); } + void visitOr (User &I) { visitBinary(I, ISD::OR); } + void visitXor(User &I) { visitBinary(I, ISD::XOR); } + void visitShl(User &I) { visitBinary(I, ISD::SHL, true); } + void visitShr(User &I) { + visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA, true); + } + + void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc); + void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); } + void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); } + void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); } + void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); } + void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); } + void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); } + + void visitGetElementPtr(User &I); + void visitCast(User &I); + void visitSelect(User &I); + // + + void visitMalloc(MallocInst &I); + void visitFree(FreeInst &I); + void visitAlloca(AllocaInst &I); + void visitLoad(LoadInst &I); + void visitStore(StoreInst &I); + void visitPHI(PHINode &I) { } // PHI nodes are handled specially. + void visitCall(CallInst &I); + + void visitVAStart(CallInst &I); + void visitVAArg(VAArgInst &I); + void visitVAEnd(CallInst &I); + void visitVACopy(CallInst &I); + void visitFrameReturnAddress(CallInst &I, bool isFrameAddress); + + void visitMemIntrinsic(CallInst &I, unsigned Op); + + void visitUserOp1(Instruction &I) { + assert(0 && "UserOp1 should not exist at instruction selection time!"); + abort(); + } + void visitUserOp2(Instruction &I) { + assert(0 && "UserOp2 should not exist at instruction selection time!"); + abort(); + } +}; +} // end namespace llvm + +void SelectionDAGLowering::visitRet(ReturnInst &I) { + if (I.getNumOperands() == 0) { + DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); + return; + } + + SDOperand Op1 = getValue(I.getOperand(0)); + MVT::ValueType TmpVT; + + switch (Op1.getValueType()) { + default: assert(0 && "Unknown value type!"); + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + // If this is a machine where 32-bits is legal or expanded, promote to + // 32-bits, otherwise, promote to 64-bits. + if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) + TmpVT = TLI.getTypeToTransformTo(MVT::i32); + else + TmpVT = MVT::i32; + + // Extend integer types to result type. + if (I.getOperand(0)->getType()->isSigned()) + Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1); + else + Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1); + break; + case MVT::f32: + case MVT::i64: + case MVT::f64: + break; // No extension needed! + } + // Allow targets to lower this further to meet ABI requirements + DAG.setRoot(TLI.LowerReturnTo(getRoot(), Op1, DAG)); +} + +void SelectionDAGLowering::visitBr(BranchInst &I) { + // Update machine-CFG edges. + MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != CurMBB->getParent()->end()) + NextBlock = BBI; + + if (I.isUnconditional()) { + // If this is not a fall-through branch, emit the branch. + if (Succ0MBB != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), + DAG.getBasicBlock(Succ0MBB))); + } else { + MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; + + SDOperand Cond = getValue(I.getCondition()); + if (Succ1MBB == NextBlock) { + // If the condition is false, fall through. This means we should branch + // if the condition is true to Succ #0. + DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), + Cond, DAG.getBasicBlock(Succ0MBB))); + } else if (Succ0MBB == NextBlock) { + // If the condition is true, fall through. This means we should branch if + // the condition is false to Succ #1. Invert the condition first. + SDOperand True = DAG.getConstant(1, Cond.getValueType()); + Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); + DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), + Cond, DAG.getBasicBlock(Succ1MBB))); + } else { + std::vector<SDOperand> Ops; + Ops.push_back(getRoot()); + Ops.push_back(Cond); + Ops.push_back(DAG.getBasicBlock(Succ0MBB)); + Ops.push_back(DAG.getBasicBlock(Succ1MBB)); + DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops)); + } + } +} + +void SelectionDAGLowering::visitSub(User &I) { + // -0.0 - X --> fneg + if (I.getType()->isFloatingPoint()) { + if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) + if (CFP->isExactlyValue(-0.0)) { + SDOperand Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); + return; + } + visitBinary(I, ISD::FSUB); + } else { + visitBinary(I, ISD::SUB); + } +} + +void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode, bool isShift) { + SDOperand Op1 = getValue(I.getOperand(0)); + SDOperand Op2 = getValue(I.getOperand(1)); + + if (isShift) + Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); + + setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode, + ISD::CondCode UnsignedOpcode) { + SDOperand Op1 = getValue(I.getOperand(0)); + SDOperand Op2 = getValue(I.getOperand(1)); + ISD::CondCode Opcode = SignedOpcode; + if (I.getOperand(0)->getType()->isUnsigned()) + Opcode = UnsignedOpcode; + setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); +} + +void SelectionDAGLowering::visitSelect(User &I) { + SDOperand Cond = getValue(I.getOperand(0)); + SDOperand TrueVal = getValue(I.getOperand(1)); + SDOperand FalseVal = getValue(I.getOperand(2)); + setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, + TrueVal, FalseVal)); +} + +void SelectionDAGLowering::visitCast(User &I) { + SDOperand N = getValue(I.getOperand(0)); + MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType()); + MVT::ValueType DestTy = TLI.getValueType(I.getType()); + + if (N.getValueType() == DestTy) { + setValue(&I, N); // noop cast. + } else if (DestTy == MVT::i1) { + // Cast to bool is a comparison against zero, not truncation to zero. + SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) : + DAG.getConstantFP(0.0, N.getValueType()); + setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE)); + } else if (isInteger(SrcTy)) { + if (isInteger(DestTy)) { // Int -> Int cast + if (DestTy < SrcTy) // Truncating cast? + setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N)); + else if (I.getOperand(0)->getType()->isSigned()) + setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N)); + else + setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N)); + } else { // Int -> FP cast + if (I.getOperand(0)->getType()->isSigned()) + setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N)); + else + setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N)); + } + } else { + assert(isFloatingPoint(SrcTy) && "Unknown value type!"); + if (isFloatingPoint(DestTy)) { // FP -> FP cast + if (DestTy < SrcTy) // Rounding cast? + setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N)); + else + setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N)); + } else { // FP -> Int cast. + if (I.getType()->isSigned()) + setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N)); + else + setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N)); + } + } +} + +void SelectionDAGLowering::visitGetElementPtr(User &I) { + SDOperand N = getValue(I.getOperand(0)); + const Type *Ty = I.getOperand(0)->getType(); + const Type *UIntPtrTy = TD.getIntPtrType(); + + for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); + OI != E; ++OI) { + Value *Idx = *OI; + if (const StructType *StTy = dyn_cast<StructType> (Ty)) { + unsigned Field = cast<ConstantUInt>(Idx)->getValue(); + if (Field) { + // N = N + Offset + uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field]; + N = DAG.getNode(ISD::ADD, N.getValueType(), N, + getIntPtrConstant(Offset)); + } + Ty = StTy->getElementType(Field); + } else { + Ty = cast<SequentialType>(Ty)->getElementType(); + if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) { + // N = N + Idx * ElementSize; + uint64_t ElementSize = TD.getTypeSize(Ty); + SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize); + + // If the index is smaller or larger than intptr_t, truncate or extend + // it. + if (IdxN.getValueType() < Scale.getValueType()) { + if (Idx->getType()->isSigned()) + IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN); + else + IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN); + } else if (IdxN.getValueType() > Scale.getValueType()) + IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN); + + IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); + N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); + } + } + } + setValue(&I, N); +} + +void SelectionDAGLowering::visitAlloca(AllocaInst &I) { + // If this is a fixed sized alloca in the entry block of the function, + // allocate it statically on the stack. + if (FuncInfo.StaticAllocaMap.count(&I)) + return; // getValue will auto-populate this. + + const Type *Ty = I.getAllocatedType(); + uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); + unsigned Align = TLI.getTargetData().getTypeAlignment(Ty); + + SDOperand AllocSize = getValue(I.getArraySize()); + MVT::ValueType IntPtr = TLI.getPointerTy(); + if (IntPtr < AllocSize.getValueType()) + AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); + else if (IntPtr > AllocSize.getValueType()) + AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); + + AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, + getIntPtrConstant(TySize)); + + // Handle alignment. If the requested alignment is less than or equal to the + // stack alignment, ignore it and round the size of the allocation up to the + // stack alignment size. If the size is greater than the stack alignment, we + // note this in the DYNAMIC_STACKALLOC node. + unsigned StackAlign = + TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); + if (Align <= StackAlign) { + Align = 0; + // Add SA-1 to the size. + AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, + getIntPtrConstant(StackAlign-1)); + // Mask out the low bits for alignment purposes. + AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, + getIntPtrConstant(~(uint64_t)(StackAlign-1))); + } + + std::vector<MVT::ValueType> VTs; + VTs.push_back(AllocSize.getValueType()); + VTs.push_back(MVT::Other); + std::vector<SDOperand> Ops; + Ops.push_back(getRoot()); + Ops.push_back(AllocSize); + Ops.push_back(getIntPtrConstant(Align)); + SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops); + DAG.setRoot(setValue(&I, DSA).getValue(1)); + + // Inform the Frame Information that we have just allocated a variable-sized + // object. + CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); +} + + +void SelectionDAGLowering::visitLoad(LoadInst &I) { + SDOperand Ptr = getValue(I.getOperand(0)); + + SDOperand Root; + if (I.isVolatile()) + Root = getRoot(); + else { + // Do not serialize non-volatile loads against each other. + Root = DAG.getRoot(); + } + + SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr, + DAG.getSrcValue(I.getOperand(0))); + setValue(&I, L); + + if (I.isVolatile()) + DAG.setRoot(L.getValue(1)); + else + PendingLoads.push_back(L.getValue(1)); +} + + +void SelectionDAGLowering::visitStore(StoreInst &I) { + Value *SrcV = I.getOperand(0); + SDOperand Src = getValue(SrcV); + SDOperand Ptr = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr, + DAG.getSrcValue(I.getOperand(1)))); +} + +void SelectionDAGLowering::visitCall(CallInst &I) { + const char *RenameFn = 0; + SDOperand Tmp; + if (Function *F = I.getCalledFunction()) + if (F->isExternal()) + switch (F->getIntrinsicID()) { + case 0: // Not an LLVM intrinsic. + if (F->getName() == "fabs" || F->getName() == "fabsf") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); + return; + } + } + else if (F->getName() == "sin" || F->getName() == "sinf") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); + return; + } + } + else if (F->getName() == "cos" || F->getName() == "cosf") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); + return; + } + } + break; + case Intrinsic::vastart: visitVAStart(I); return; + case Intrinsic::vaend: visitVAEnd(I); return; + case Intrinsic::vacopy: visitVACopy(I); return; + case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return; + case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return; + + case Intrinsic::setjmp: + RenameFn = "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); + break; + case Intrinsic::longjmp: + RenameFn = "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); + break; + case Intrinsic::memcpy: visitMemIntrinsic(I, ISD::MEMCPY); return; + case Intrinsic::memset: visitMemIntrinsic(I, ISD::MEMSET); return; + case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return; + + case Intrinsic::readport: + case Intrinsic::readio: { + std::vector<MVT::ValueType> VTs; + VTs.push_back(TLI.getValueType(I.getType())); + VTs.push_back(MVT::Other); + std::vector<SDOperand> Ops; + Ops.push_back(getRoot()); + Ops.push_back(getValue(I.getOperand(1))); + Tmp = DAG.getNode(F->getIntrinsicID() == Intrinsic::readport ? + ISD::READPORT : ISD::READIO, VTs, Ops); + + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return; + } + case Intrinsic::writeport: + case Intrinsic::writeio: + DAG.setRoot(DAG.getNode(F->getIntrinsicID() == Intrinsic::writeport ? + ISD::WRITEPORT : ISD::WRITEIO, MVT::Other, + getRoot(), getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + return; + case Intrinsic::dbg_stoppoint: + case Intrinsic::dbg_region_start: + case Intrinsic::dbg_region_end: + case Intrinsic::dbg_func_start: + case Intrinsic::dbg_declare: + if (I.getType() != Type::VoidTy) + setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); + return; + + case Intrinsic::isunordered: + setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)), + getValue(I.getOperand(2)), ISD::SETUO)); + return; + + case Intrinsic::sqrt: + setValue(&I, DAG.getNode(ISD::FSQRT, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return; + + case Intrinsic::pcmarker: + Tmp = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); + return; + case Intrinsic::cttz: + setValue(&I, DAG.getNode(ISD::CTTZ, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return; + case Intrinsic::ctlz: + setValue(&I, DAG.getNode(ISD::CTLZ, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return; + case Intrinsic::ctpop: + setValue(&I, DAG.getNode(ISD::CTPOP, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return; + default: + std::cerr << I; + assert(0 && "This intrinsic is not implemented yet!"); + return; + } + + SDOperand Callee; + if (!RenameFn) + Callee = getValue(I.getOperand(0)); + else + Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); + std::vector<std::pair<SDOperand, const Type*> > Args; + + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { + Value *Arg = I.getOperand(i); + SDOperand ArgNode = getValue(Arg); + Args.push_back(std::make_pair(ArgNode, Arg->getType())); + } + + const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType()); + const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); + + std::pair<SDOperand,SDOperand> Result = + TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(), + I.isTailCall(), Callee, Args, DAG); + if (I.getType() != Type::VoidTy) + setValue(&I, Result.first); + DAG.setRoot(Result.second); +} + +void SelectionDAGLowering::visitMalloc(MallocInst &I) { + SDOperand Src = getValue(I.getOperand(0)); + + MVT::ValueType IntPtr = TLI.getPointerTy(); + + if (IntPtr < Src.getValueType()) + Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); + else if (IntPtr > Src.getValueType()) + Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); + + // Scale the source by the type size. + uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType()); + Src = DAG.getNode(ISD::MUL, Src.getValueType(), + Src, getIntPtrConstant(ElementSize)); + + std::vector<std::pair<SDOperand, const Type*> > Args; + Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType())); + + std::pair<SDOperand,SDOperand> Result = + TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true, + DAG.getExternalSymbol("malloc", IntPtr), + Args, DAG); + setValue(&I, Result.first); // Pointers always fit in registers + DAG.setRoot(Result.second); +} + +void SelectionDAGLowering::visitFree(FreeInst &I) { + std::vector<std::pair<SDOperand, const Type*> > Args; + Args.push_back(std::make_pair(getValue(I.getOperand(0)), + TLI.getTargetData().getIntPtrType())); + MVT::ValueType IntPtr = TLI.getPointerTy(); + std::pair<SDOperand,SDOperand> Result = + TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true, + DAG.getExternalSymbol("free", IntPtr), Args, DAG); + DAG.setRoot(Result.second); +} + +// InsertAtEndOfBasicBlock - This method should be implemented by targets that +// mark instructions with the 'usesCustomDAGSchedInserter' flag. These +// instructions are special in various ways, which require special support to +// insert. The specified MachineInstr is created but not inserted into any +// basic blocks, and the scheduler passes ownership of it to this method. +MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, + MachineBasicBlock *MBB) { + std::cerr << "If a target marks an instruction with " + "'usesCustomDAGSchedInserter', it must implement " + "TargetLowering::InsertAtEndOfBasicBlock!\n"; + abort(); + return 0; +} + +SDOperand TargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op, + SelectionDAG &DAG) { + return DAG.getNode(ISD::RET, MVT::Other, Chain, Op); +} + +SDOperand TargetLowering::LowerVAStart(SDOperand Chain, + SDOperand VAListP, Value *VAListV, + SelectionDAG &DAG) { + // We have no sane default behavior, just emit a useful error message and bail + // out. + std::cerr << "Variable arguments handling not implemented on this target!\n"; + abort(); + return SDOperand(); +} + +SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV, + SelectionDAG &DAG) { + // Default to a noop. + return Chain; +} + +SDOperand TargetLowering::LowerVACopy(SDOperand Chain, + SDOperand SrcP, Value *SrcV, + SDOperand DestP, Value *DestV, + SelectionDAG &DAG) { + // Default to copying the input list. + SDOperand Val = DAG.getLoad(getPointerTy(), Chain, + SrcP, DAG.getSrcValue(SrcV)); + SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1), + Val, DestP, DAG.getSrcValue(DestV)); + return Result; +} + +std::pair<SDOperand,SDOperand> +TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, + const Type *ArgTy, SelectionDAG &DAG) { + // We have no sane default behavior, just emit a useful error message and bail + // out. + std::cerr << "Variable arguments handling not implemented on this target!\n"; + abort(); + return std::make_pair(SDOperand(), SDOperand()); +} + + +void SelectionDAGLowering::visitVAStart(CallInst &I) { + DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)), + I.getOperand(1), DAG)); +} + +void SelectionDAGLowering::visitVAArg(VAArgInst &I) { + std::pair<SDOperand,SDOperand> Result = + TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0), + I.getType(), DAG); + setValue(&I, Result.first); + DAG.setRoot(Result.second); +} + +void SelectionDAGLowering::visitVAEnd(CallInst &I) { + DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)), + I.getOperand(1), DAG)); +} + +void SelectionDAGLowering::visitVACopy(CallInst &I) { + SDOperand Result = + TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2), + getValue(I.getOperand(1)), I.getOperand(1), DAG); + DAG.setRoot(Result); +} + + +// It is always conservatively correct for llvm.returnaddress and +// llvm.frameaddress to return 0. +std::pair<SDOperand, SDOperand> +TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, + unsigned Depth, SelectionDAG &DAG) { + return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain); +} + +SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { + assert(0 && "LowerOperation not implemented for this target!"); + abort(); + return SDOperand(); +} + +void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) { + unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue(); + std::pair<SDOperand,SDOperand> Result = + TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG); + setValue(&I, Result.first); + DAG.setRoot(Result.second); +} + +void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { + std::vector<SDOperand> Ops; + Ops.push_back(getRoot()); + Ops.push_back(getValue(I.getOperand(1))); + Ops.push_back(getValue(I.getOperand(2))); + Ops.push_back(getValue(I.getOperand(3))); + Ops.push_back(getValue(I.getOperand(4))); + DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops)); +} + +//===----------------------------------------------------------------------===// +// SelectionDAGISel code +//===----------------------------------------------------------------------===// + +unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { + return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); +} + +void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { + // FIXME: we only modify the CFG to split critical edges. This + // updates dom and loop info. +} + + +bool SelectionDAGISel::runOnFunction(Function &Fn) { + MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); + RegMap = MF.getSSARegMap(); + DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n"); + + // First pass, split all critical edges for PHI nodes with incoming values + // that are constants, this way the load of the constant into a vreg will not + // be placed into MBBs that are used some other way. + for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { + PHINode *PN; + for (BasicBlock::iterator BBI = BB->begin(); + (PN = dyn_cast<PHINode>(BBI)); ++BBI) + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + if (isa<Constant>(PN->getIncomingValue(i))) + SplitCriticalEdge(PN->getIncomingBlock(i), BB); + } + + FunctionLoweringInfo FuncInfo(TLI, Fn, MF); + + for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) + SelectBasicBlock(I, MF, FuncInfo); + + return true; +} + + +SDOperand SelectionDAGISel:: +CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) { + SDOperand Op = SDL.getValue(V); + assert((Op.getOpcode() != ISD::CopyFromReg || + cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && + "Copy from a reg to the same reg!"); + + // If this type is not legal, we must make sure to not create an invalid + // register use. + MVT::ValueType SrcVT = Op.getValueType(); + MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT); + SelectionDAG &DAG = SDL.DAG; + if (SrcVT == DestVT) { + return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); + } else if (SrcVT < DestVT) { + // The src value is promoted to the register. + if (MVT::isFloatingPoint(SrcVT)) + Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op); + else + Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op); + return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); + } else { + // The src value is expanded into multiple registers. + SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, + Op, DAG.getConstant(0, MVT::i32)); + SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, + Op, DAG.getConstant(1, MVT::i32)); + Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo); + return DAG.getCopyToReg(Op, Reg+1, Hi); + } +} + +void SelectionDAGISel:: +LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL, + std::vector<SDOperand> &UnorderedChains) { + // If this is the entry block, emit arguments. + Function &F = *BB->getParent(); + FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; + SDOperand OldRoot = SDL.DAG.getRoot(); + std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG); + + unsigned a = 0; + for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); + AI != E; ++AI, ++a) + if (!AI->use_empty()) { + SDL.setValue(AI, Args[a]); + + // If this argument is live outside of the entry block, insert a copy from + // whereever we got it to the vreg that other BB's will reference it as. + if (FuncInfo.ValueMap.count(AI)) { + SDOperand Copy = + CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]); + UnorderedChains.push_back(Copy); + } + } + + // Next, if the function has live ins that need to be copied into vregs, + // emit the copies now, into the top of the block. + MachineFunction &MF = SDL.DAG.getMachineFunction(); + if (MF.livein_begin() != MF.livein_end()) { + SSARegMap *RegMap = MF.getSSARegMap(); + const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo(); + for (MachineFunction::livein_iterator LI = MF.livein_begin(), + E = MF.livein_end(); LI != E; ++LI) + if (LI->second) + MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second, + LI->first, RegMap->getRegClass(LI->second)); + } + + // Finally, if the target has anything special to do, allow it to do so. + EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); +} + + +void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, + std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate, + FunctionLoweringInfo &FuncInfo) { + SelectionDAGLowering SDL(DAG, TLI, FuncInfo); + + std::vector<SDOperand> UnorderedChains; + + // Lower any arguments needed in this block if this is the entry block. + if (LLVMBB == &LLVMBB->getParent()->front()) + LowerArguments(LLVMBB, SDL, UnorderedChains); + + BB = FuncInfo.MBBMap[LLVMBB]; + SDL.setCurrentBasicBlock(BB); + + // Lower all of the non-terminator instructions. + for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); + I != E; ++I) + SDL.visit(*I); + + // Ensure that all instructions which are used outside of their defining + // blocks are available as virtual registers. + for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) + if (!I->use_empty() && !isa<PHINode>(I)) { + std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I); + if (VMI != FuncInfo.ValueMap.end()) + UnorderedChains.push_back( + CopyValueToVirtualRegister(SDL, I, VMI->second)); + } + + // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to + // ensure constants are generated when needed. Remember the virtual registers + // that need to be added to the Machine PHI nodes as input. We cannot just + // directly add them, because expansion might result in multiple MBB's for one + // BB. As such, the start of the BB might correspond to a different MBB than + // the end. + // + + // Emit constants only once even if used by multiple PHI nodes. + std::map<Constant*, unsigned> ConstantsOut; + + // Check successor nodes PHI nodes that expect a constant to be available from + // this block. + TerminatorInst *TI = LLVMBB->getTerminator(); + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + BasicBlock *SuccBB = TI->getSuccessor(succ); + MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin(); + PHINode *PN; + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::iterator I = SuccBB->begin(); + (PN = dyn_cast<PHINode>(I)); ++I) + if (!PN->use_empty()) { + unsigned Reg; + Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + if (Constant *C = dyn_cast<Constant>(PHIOp)) { + unsigned &RegOut = ConstantsOut[C]; + if (RegOut == 0) { + RegOut = FuncInfo.CreateRegForValue(C); + UnorderedChains.push_back( + CopyValueToVirtualRegister(SDL, C, RegOut)); + } + Reg = RegOut; + } else { + Reg = FuncInfo.ValueMap[PHIOp]; + if (Reg == 0) { + assert(isa<AllocaInst>(PHIOp) && + FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && + "Didn't codegen value into a register!??"); + Reg = FuncInfo.CreateRegForValue(PHIOp); + UnorderedChains.push_back( + CopyValueToVirtualRegister(SDL, PHIOp, Reg)); + } + } + + // Remember that this register needs to added to the machine PHI node as + // the input for this MBB. + unsigned NumElements = + TLI.getNumElements(TLI.getValueType(PN->getType())); + for (unsigned i = 0, e = NumElements; i != e; ++i) + PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); + } + } + ConstantsOut.clear(); + + // Turn all of the unordered chains into one factored node. + if (!UnorderedChains.empty()) { + UnorderedChains.push_back(SDL.getRoot()); + DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains)); + } + + // Lower the terminator after the copies are emitted. + SDL.visit(*LLVMBB->getTerminator()); + + // Make sure the root of the DAG is up-to-date. + DAG.setRoot(SDL.getRoot()); +} + +void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, + FunctionLoweringInfo &FuncInfo) { + SelectionDAG DAG(TLI, MF); + CurDAG = &DAG; + std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate; + + // First step, lower LLVM code to some DAG. This DAG may use operations and + // types that are not supported by the target. + BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); + + // Run the DAG combiner in pre-legalize mode. + DAG.Combine(false); + + DEBUG(std::cerr << "Lowered selection DAG:\n"); + DEBUG(DAG.dump()); + + // Second step, hack on the DAG until it only uses operations and types that + // the target supports. + DAG.Legalize(); + + DEBUG(std::cerr << "Legalized selection DAG:\n"); + DEBUG(DAG.dump()); + + // Run the DAG combiner in post-legalize mode. + DAG.Combine(true); + + if (ViewDAGs) DAG.viewGraph(); + + // Third, instruction select all of the operations to machine code, adding the + // code to the MachineBasicBlock. + InstructionSelectBasicBlock(DAG); + + DEBUG(std::cerr << "Selected machine code:\n"); + DEBUG(BB->dump()); + + // Next, now that we know what the last MBB the LLVM BB expanded is, update + // PHI nodes in successors. + for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { + MachineInstr *PHI = PHINodesToUpdate[i].first; + assert(PHI->getOpcode() == TargetInstrInfo::PHI && + "This is not a machine PHI node that we are updating!"); + PHI->addRegOperand(PHINodesToUpdate[i].second); + PHI->addMachineBasicBlockOperand(BB); + } + + // Finally, add the CFG edges from the last selected MBB to the successor + // MBBs. + TerminatorInst *TI = LLVMBB->getTerminator(); + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { + MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)]; + BB->addSuccessor(Succ0MBB); + } +} |