aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAG.cpp1813
1 files changed, 1813 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
new file mode 100644
index 0000000000..7d3cddb656
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -0,0 +1,1813 @@
+//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the SelectionDAG class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Constants.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include <iostream>
+#include <set>
+#include <cmath>
+#include <algorithm>
+using namespace llvm;
+
+static bool isCommutativeBinOp(unsigned Opcode) {
+ switch (Opcode) {
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::FADD:
+ case ISD::FMUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: return true;
+ default: return false; // FIXME: Need commutative info for user ops!
+ }
+}
+
+static bool isAssociativeBinOp(unsigned Opcode) {
+ switch (Opcode) {
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: return true;
+ default: return false; // FIXME: Need associative info for user ops!
+ }
+}
+
+// isInvertibleForFree - Return true if there is no cost to emitting the logical
+// inverse of this node.
+static bool isInvertibleForFree(SDOperand N) {
+ if (isa<ConstantSDNode>(N.Val)) return true;
+ if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
+ return true;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// ConstantFPSDNode Class
+//===----------------------------------------------------------------------===//
+
+/// isExactlyValue - We don't rely on operator== working on double values, as
+/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+/// As such, this method can be used to do an exact bit-for-bit comparison of
+/// two floating point values.
+bool ConstantFPSDNode::isExactlyValue(double V) const {
+ return DoubleToBits(V) == DoubleToBits(Value);
+}
+
+//===----------------------------------------------------------------------===//
+// ISD Class
+//===----------------------------------------------------------------------===//
+
+/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
+/// when given the operation for (X op Y).
+ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
+ // To perform this operation, we just need to swap the L and G bits of the
+ // operation.
+ unsigned OldL = (Operation >> 2) & 1;
+ unsigned OldG = (Operation >> 1) & 1;
+ return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
+ (OldL << 1) | // New G bit
+ (OldG << 2)); // New L bit.
+}
+
+/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
+/// 'op' is a valid SetCC operation.
+ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
+ unsigned Operation = Op;
+ if (isInteger)
+ Operation ^= 7; // Flip L, G, E bits, but not U.
+ else
+ Operation ^= 15; // Flip all of the condition bits.
+ if (Operation > ISD::SETTRUE2)
+ Operation &= ~8; // Don't let N and U bits get set.
+ return ISD::CondCode(Operation);
+}
+
+
+/// isSignedOp - For an integer comparison, return 1 if the comparison is a
+/// signed operation and 2 if the result is an unsigned comparison. Return zero
+/// if the operation does not depend on the sign of the input (setne and seteq).
+static int isSignedOp(ISD::CondCode Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Illegal integer setcc operation!");
+ case ISD::SETEQ:
+ case ISD::SETNE: return 0;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETGT:
+ case ISD::SETGE: return 1;
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ case ISD::SETUGE: return 2;
+ }
+}
+
+/// getSetCCOrOperation - Return the result of a logical OR between different
+/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
+/// returns SETCC_INVALID if it is not possible to represent the resultant
+/// comparison.
+ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+ bool isInteger) {
+ if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+ // Cannot fold a signed integer setcc with an unsigned integer setcc.
+ return ISD::SETCC_INVALID;
+
+ unsigned Op = Op1 | Op2; // Combine all of the condition bits.
+
+ // If the N and U bits get set then the resultant comparison DOES suddenly
+ // care about orderedness, and is true when ordered.
+ if (Op > ISD::SETTRUE2)
+ Op &= ~16; // Clear the N bit.
+ return ISD::CondCode(Op);
+}
+
+/// getSetCCAndOperation - Return the result of a logical AND between different
+/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
+/// function returns zero if it is not possible to represent the resultant
+/// comparison.
+ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+ bool isInteger) {
+ if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+ // Cannot fold a signed setcc with an unsigned setcc.
+ return ISD::SETCC_INVALID;
+
+ // Combine all of the condition bits.
+ return ISD::CondCode(Op1 & Op2);
+}
+
+const TargetMachine &SelectionDAG::getTarget() const {
+ return TLI.getTargetMachine();
+}
+
+//===----------------------------------------------------------------------===//
+// SelectionDAG Class
+//===----------------------------------------------------------------------===//
+
+/// RemoveDeadNodes - This method deletes all unreachable nodes in the
+/// SelectionDAG, including nodes (like loads) that have uses of their token
+/// chain but no other uses and no side effect. If a node is passed in as an
+/// argument, it is used as the seed for node deletion.
+void SelectionDAG::RemoveDeadNodes(SDNode *N) {
+ std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
+
+ // Create a dummy node (which is not added to allnodes), that adds a reference
+ // to the root node, preventing it from being deleted.
+ HandleSDNode Dummy(getRoot());
+
+ // If we have a hint to start from, use it.
+ if (N) DeleteNodeIfDead(N, &AllNodeSet);
+
+ Restart:
+ unsigned NumNodes = AllNodeSet.size();
+ for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
+ I != E; ++I) {
+ // Try to delete this node.
+ DeleteNodeIfDead(*I, &AllNodeSet);
+
+ // If we actually deleted any nodes, do not use invalid iterators in
+ // AllNodeSet.
+ if (AllNodeSet.size() != NumNodes)
+ goto Restart;
+ }
+
+ // Restore AllNodes.
+ if (AllNodes.size() != NumNodes)
+ AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
+
+ // If the root changed (e.g. it was a dead load, update the root).
+ setRoot(Dummy.getValue());
+}
+
+
+void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
+ if (!N->use_empty())
+ return;
+
+ // Okay, we really are going to delete this node. First take this out of the
+ // appropriate CSE map.
+ RemoveNodeFromCSEMaps(N);
+
+ // Next, brutally remove the operand list. This is safe to do, as there are
+ // no cycles in the graph.
+ while (!N->Operands.empty()) {
+ SDNode *O = N->Operands.back().Val;
+ N->Operands.pop_back();
+ O->removeUser(N);
+
+ // Now that we removed this operand, see if there are no uses of it left.
+ DeleteNodeIfDead(O, NodeSet);
+ }
+
+ // Remove the node from the nodes set and delete it.
+ std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
+ AllNodeSet.erase(N);
+
+ // Now that the node is gone, check to see if any of the operands of this node
+ // are dead now.
+ delete N;
+}
+
+void SelectionDAG::DeleteNode(SDNode *N) {
+ assert(N->use_empty() && "Cannot delete a node that is not dead!");
+
+ // First take this out of the appropriate CSE map.
+ RemoveNodeFromCSEMaps(N);
+
+ // Finally, remove uses due to operands of this node, remove from the
+ // AllNodes list, and delete the node.
+ DeleteNodeNotInCSEMaps(N);
+}
+
+void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
+
+ // Remove it from the AllNodes list.
+ for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
+ assert(I != AllNodes.end() && "Node not in AllNodes list??");
+ if (*I == N) {
+ // Erase from the vector, which is not ordered.
+ std::swap(*I, AllNodes.back());
+ AllNodes.pop_back();
+ break;
+ }
+ }
+
+ // Drop all of the operands and decrement used nodes use counts.
+ while (!N->Operands.empty()) {
+ SDNode *O = N->Operands.back().Val;
+ N->Operands.pop_back();
+ O->removeUser(N);
+ }
+
+ delete N;
+}
+
+/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
+/// correspond to it. This is useful when we're about to delete or repurpose
+/// the node. We don't want future request for structurally identical nodes
+/// to return N anymore.
+void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
+ bool Erased = false;
+ switch (N->getOpcode()) {
+ case ISD::HANDLENODE: return; // noop.
+ case ISD::Constant:
+ Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
+ N->getValueType(0)));
+ break;
+ case ISD::TargetConstant:
+ Erased = TargetConstants.erase(std::make_pair(
+ cast<ConstantSDNode>(N)->getValue(),
+ N->getValueType(0)));
+ break;
+ case ISD::ConstantFP: {
+ uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
+ Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
+ break;
+ }
+ case ISD::CONDCODE:
+ assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
+ "Cond code doesn't exist!");
+ Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
+ CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
+ break;
+ case ISD::GlobalAddress:
+ Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
+ break;
+ case ISD::TargetGlobalAddress:
+ Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
+ break;
+ case ISD::FrameIndex:
+ Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
+ break;
+ case ISD::TargetFrameIndex:
+ Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
+ break;
+ case ISD::ConstantPool:
+ Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
+ break;
+ case ISD::TargetConstantPool:
+ Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
+ break;
+ case ISD::BasicBlock:
+ Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
+ break;
+ case ISD::ExternalSymbol:
+ Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
+ break;
+ case ISD::TargetExternalSymbol:
+ Erased = TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
+ break;
+ case ISD::VALUETYPE:
+ Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
+ ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
+ break;
+ case ISD::Register:
+ Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
+ N->getValueType(0)));
+ break;
+ case ISD::SRCVALUE: {
+ SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
+ Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
+ break;
+ }
+ case ISD::LOAD:
+ Erased = Loads.erase(std::make_pair(N->getOperand(1),
+ std::make_pair(N->getOperand(0),
+ N->getValueType(0))));
+ break;
+ default:
+ if (N->getNumValues() == 1) {
+ if (N->getNumOperands() == 0) {
+ Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
+ N->getValueType(0)));
+ } else if (N->getNumOperands() == 1) {
+ Erased =
+ UnaryOps.erase(std::make_pair(N->getOpcode(),
+ std::make_pair(N->getOperand(0),
+ N->getValueType(0))));
+ } else if (N->getNumOperands() == 2) {
+ Erased =
+ BinaryOps.erase(std::make_pair(N->getOpcode(),
+ std::make_pair(N->getOperand(0),
+ N->getOperand(1))));
+ } else {
+ std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
+ Erased =
+ OneResultNodes.erase(std::make_pair(N->getOpcode(),
+ std::make_pair(N->getValueType(0),
+ Ops)));
+ }
+ } else {
+ // Remove the node from the ArbitraryNodes map.
+ std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
+ std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
+ Erased =
+ ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
+ std::make_pair(RV, Ops)));
+ }
+ break;
+ }
+#ifndef NDEBUG
+ // Verify that the node was actually in one of the CSE maps, unless it has a
+ // flag result (which cannot be CSE'd) or is one of the special cases that are
+ // not subject to CSE.
+ if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
+ N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
+ N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
+
+ N->dump();
+ assert(0 && "Node is not in map!");
+ }
+#endif
+}
+
+/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
+/// has been taken out and modified in some way. If the specified node already
+/// exists in the CSE maps, do not modify the maps, but return the existing node
+/// instead. If it doesn't exist, add it and return null.
+///
+SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
+ assert(N->getNumOperands() && "This is a leaf node!");
+ if (N->getOpcode() == ISD::LOAD) {
+ SDNode *&L = Loads[std::make_pair(N->getOperand(1),
+ std::make_pair(N->getOperand(0),
+ N->getValueType(0)))];
+ if (L) return L;
+ L = N;
+ } else if (N->getOpcode() == ISD::HANDLENODE) {
+ return 0; // never add it.
+ } else if (N->getNumOperands() == 1) {
+ SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
+ std::make_pair(N->getOperand(0),
+ N->getValueType(0)))];
+ if (U) return U;
+ U = N;
+ } else if (N->getNumOperands() == 2) {
+ SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
+ std::make_pair(N->getOperand(0),
+ N->getOperand(1)))];
+ if (B) return B;
+ B = N;
+ } else if (N->getNumValues() == 1) {
+ std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
+ SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
+ std::make_pair(N->getValueType(0), Ops))];
+ if (ORN) return ORN;
+ ORN = N;
+ } else {
+ // Remove the node from the ArbitraryNodes map.
+ std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
+ std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
+ SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
+ std::make_pair(RV, Ops))];
+ if (AN) return AN;
+ AN = N;
+ }
+ return 0;
+
+}
+
+
+
+SelectionDAG::~SelectionDAG() {
+ for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
+ delete AllNodes[i];
+}
+
+SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
+ if (Op.getValueType() == VT) return Op;
+ int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
+ return getNode(ISD::AND, Op.getValueType(), Op,
+ getConstant(Imm, Op.getValueType()));
+}
+
+SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
+ assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
+ // Mask out any bits that are not valid for this constant.
+ if (VT != MVT::i64)
+ Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
+
+ SDNode *&N = Constants[std::make_pair(Val, VT)];
+ if (N) return SDOperand(N, 0);
+ N = new ConstantSDNode(false, Val, VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
+ assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
+ // Mask out any bits that are not valid for this constant.
+ if (VT != MVT::i64)
+ Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
+
+ SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
+ if (N) return SDOperand(N, 0);
+ N = new ConstantSDNode(true, Val, VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
+ assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
+ if (VT == MVT::f32)
+ Val = (float)Val; // Mask out extra precision.
+
+ // Do the map lookup using the actual bit pattern for the floating point
+ // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
+ // we don't have issues with SNANs.
+ SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
+ if (N) return SDOperand(N, 0);
+ N = new ConstantFPSDNode(Val, VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+
+
+SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
+ MVT::ValueType VT) {
+ SDNode *&N = GlobalValues[GV];
+ if (N) return SDOperand(N, 0);
+ N = new GlobalAddressSDNode(false, GV, VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
+ MVT::ValueType VT) {
+ SDNode *&N = TargetGlobalValues[GV];
+ if (N) return SDOperand(N, 0);
+ N = new GlobalAddressSDNode(true, GV, VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
+ SDNode *&N = FrameIndices[FI];
+ if (N) return SDOperand(N, 0);
+ N = new FrameIndexSDNode(FI, VT, false);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
+ SDNode *&N = TargetFrameIndices[FI];
+ if (N) return SDOperand(N, 0);
+ N = new FrameIndexSDNode(FI, VT, true);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
+ SDNode *&N = ConstantPoolIndices[C];
+ if (N) return SDOperand(N, 0);
+ N = new ConstantPoolSDNode(C, VT, false);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
+ SDNode *&N = TargetConstantPoolIndices[C];
+ if (N) return SDOperand(N, 0);
+ N = new ConstantPoolSDNode(C, VT, true);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
+ SDNode *&N = BBNodes[MBB];
+ if (N) return SDOperand(N, 0);
+ N = new BasicBlockSDNode(MBB);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
+ if ((unsigned)VT >= ValueTypeNodes.size())
+ ValueTypeNodes.resize(VT+1);
+ if (ValueTypeNodes[VT] == 0) {
+ ValueTypeNodes[VT] = new VTSDNode(VT);
+ AllNodes.push_back(ValueTypeNodes[VT]);
+ }
+
+ return SDOperand(ValueTypeNodes[VT], 0);
+}
+
+SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
+ SDNode *&N = ExternalSymbols[Sym];
+ if (N) return SDOperand(N, 0);
+ N = new ExternalSymbolSDNode(false, Sym, VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT::ValueType VT) {
+ SDNode *&N = TargetExternalSymbols[Sym];
+ if (N) return SDOperand(N, 0);
+ N = new ExternalSymbolSDNode(true, Sym, VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
+ if ((unsigned)Cond >= CondCodeNodes.size())
+ CondCodeNodes.resize(Cond+1);
+
+ if (CondCodeNodes[Cond] == 0) {
+ CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
+ AllNodes.push_back(CondCodeNodes[Cond]);
+ }
+ return SDOperand(CondCodeNodes[Cond], 0);
+}
+
+SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
+ RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
+ if (!Reg) {
+ Reg = new RegisterSDNode(RegNo, VT);
+ AllNodes.push_back(Reg);
+ }
+ return SDOperand(Reg, 0);
+}
+
+SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
+ SDOperand N2, ISD::CondCode Cond) {
+ // These setcc operations always fold.
+ switch (Cond) {
+ default: break;
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2: return getConstant(0, VT);
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2: return getConstant(1, VT);
+ }
+
+ if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
+ uint64_t C2 = N2C->getValue();
+ if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
+ uint64_t C1 = N1C->getValue();
+
+ // Sign extend the operands if required
+ if (ISD::isSignedIntSetCC(Cond)) {
+ C1 = N1C->getSignExtended();
+ C2 = N2C->getSignExtended();
+ }
+
+ switch (Cond) {
+ default: assert(0 && "Unknown integer setcc!");
+ case ISD::SETEQ: return getConstant(C1 == C2, VT);
+ case ISD::SETNE: return getConstant(C1 != C2, VT);
+ case ISD::SETULT: return getConstant(C1 < C2, VT);
+ case ISD::SETUGT: return getConstant(C1 > C2, VT);
+ case ISD::SETULE: return getConstant(C1 <= C2, VT);
+ case ISD::SETUGE: return getConstant(C1 >= C2, VT);
+ case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
+ case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
+ case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
+ case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
+ }
+ } else {
+ // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
+ if (N1.getOpcode() == ISD::ZERO_EXTEND) {
+ unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
+
+ // If the comparison constant has bits in the upper part, the
+ // zero-extended value could never match.
+ if (C2 & (~0ULL << InSize)) {
+ unsigned VSize = MVT::getSizeInBits(N1.getValueType());
+ switch (Cond) {
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETEQ: return getConstant(0, VT);
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETNE: return getConstant(1, VT);
+ case ISD::SETGT:
+ case ISD::SETGE:
+ // True if the sign bit of C2 is set.
+ return getConstant((C2 & (1ULL << VSize)) != 0, VT);
+ case ISD::SETLT:
+ case ISD::SETLE:
+ // True if the sign bit of C2 isn't set.
+ return getConstant((C2 & (1ULL << VSize)) == 0, VT);
+ default:
+ break;
+ }
+ }
+
+ // Otherwise, we can perform the comparison with the low bits.
+ switch (Cond) {
+ case ISD::SETEQ:
+ case ISD::SETNE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ return getSetCC(VT, N1.getOperand(0),
+ getConstant(C2, N1.getOperand(0).getValueType()),
+ Cond);
+ default:
+ break; // todo, be more careful with signed comparisons
+ }
+ } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
+ unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
+ MVT::ValueType ExtDstTy = N1.getValueType();
+ unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
+
+ // If the extended part has any inconsistent bits, it cannot ever
+ // compare equal. In other words, they have to be all ones or all
+ // zeros.
+ uint64_t ExtBits =
+ (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
+ if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
+ return getConstant(Cond == ISD::SETNE, VT);
+
+ // Otherwise, make this a use of a zext.
+ return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
+ getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
+ Cond);
+ }
+
+ uint64_t MinVal, MaxVal;
+ unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
+ if (ISD::isSignedIntSetCC(Cond)) {
+ MinVal = 1ULL << (OperandBitSize-1);
+ if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
+ MaxVal = ~0ULL >> (65-OperandBitSize);
+ else
+ MaxVal = 0;
+ } else {
+ MinVal = 0;
+ MaxVal = ~0ULL >> (64-OperandBitSize);
+ }
+
+ // Canonicalize GE/LE comparisons to use GT/LT comparisons.
+ if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
+ if (C2 == MinVal) return getConstant(1, VT); // X >= MIN --> true
+ --C2; // X >= C1 --> X > (C1-1)
+ return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
+ (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
+ }
+
+ if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
+ if (C2 == MaxVal) return getConstant(1, VT); // X <= MAX --> true
+ ++C2; // X <= C1 --> X < (C1+1)
+ return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
+ (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
+ }
+
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
+ return getConstant(0, VT); // X < MIN --> false
+
+ // Canonicalize setgt X, Min --> setne X, Min
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
+ return getSetCC(VT, N1, N2, ISD::SETNE);
+
+ // If we have setult X, 1, turn it into seteq X, 0
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
+ return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
+ ISD::SETEQ);
+ // If we have setugt X, Max-1, turn it into seteq X, Max
+ else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
+ return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
+ ISD::SETEQ);
+
+ // If we have "setcc X, C1", check to see if we can shrink the immediate
+ // by changing cc.
+
+ // SETUGT X, SINTMAX -> SETLT X, 0
+ if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
+ C2 == (~0ULL >> (65-OperandBitSize)))
+ return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
+
+ // FIXME: Implement the rest of these.
+
+
+ // Fold bit comparisons when we can.
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS =
+ dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
+ if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
+ // Perform the xform if the AND RHS is a single bit.
+ if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
+ return getNode(ISD::SRL, VT, N1,
+ getConstant(Log2_64(AndRHS->getValue()),
+ TLI.getShiftAmountTy()));
+ }
+ } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
+ // (X & 8) == 8 --> (X & 8) >> 3
+ // Perform the xform if C2 is a single bit.
+ if ((C2 & (C2-1)) == 0) {
+ return getNode(ISD::SRL, VT, N1,
+ getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
+ }
+ }
+ }
+ }
+ } else if (isa<ConstantSDNode>(N1.Val)) {
+ // Ensure that the constant occurs on the RHS.
+ return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
+ }
+
+ if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
+ if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
+ double C1 = N1C->getValue(), C2 = N2C->getValue();
+
+ switch (Cond) {
+ default: break; // FIXME: Implement the rest of these!
+ case ISD::SETEQ: return getConstant(C1 == C2, VT);
+ case ISD::SETNE: return getConstant(C1 != C2, VT);
+ case ISD::SETLT: return getConstant(C1 < C2, VT);
+ case ISD::SETGT: return getConstant(C1 > C2, VT);
+ case ISD::SETLE: return getConstant(C1 <= C2, VT);
+ case ISD::SETGE: return getConstant(C1 >= C2, VT);
+ }
+ } else {
+ // Ensure that the constant occurs on the RHS.
+ return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
+ }
+
+ // Could not fold it.
+ return SDOperand();
+}
+
+/// getNode - Gets or creates the specified node.
+///
+SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
+ SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
+ if (!N) {
+ N = new SDNode(Opcode, VT);
+ AllNodes.push_back(N);
+ }
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
+ SDOperand Operand) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
+ uint64_t Val = C->getValue();
+ switch (Opcode) {
+ default: break;
+ case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND: return getConstant(Val, VT);
+ case ISD::TRUNCATE: return getConstant(Val, VT);
+ case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
+ case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
+ }
+ }
+
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
+ switch (Opcode) {
+ case ISD::FNEG:
+ return getConstantFP(-C->getValue(), VT);
+ case ISD::FP_ROUND:
+ case ISD::FP_EXTEND:
+ return getConstantFP(C->getValue(), VT);
+ case ISD::FP_TO_SINT:
+ return getConstant((int64_t)C->getValue(), VT);
+ case ISD::FP_TO_UINT:
+ return getConstant((uint64_t)C->getValue(), VT);
+ }
+
+ unsigned OpOpcode = Operand.Val->getOpcode();
+ switch (Opcode) {
+ case ISD::TokenFactor:
+ return Operand; // Factor of one node? No factor.
+ case ISD::SIGN_EXTEND:
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
+ return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
+ break;
+ case ISD::ZERO_EXTEND:
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
+ return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
+ break;
+ case ISD::ANY_EXTEND:
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
+ // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
+ return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
+ break;
+ case ISD::TRUNCATE:
+ if (Operand.getValueType() == VT) return Operand; // noop truncate
+ if (OpOpcode == ISD::TRUNCATE)
+ return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
+ else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
+ OpOpcode == ISD::ANY_EXTEND) {
+ // If the source is smaller than the dest, we still need an extend.
+ if (Operand.Val->getOperand(0).getValueType() < VT)
+ return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
+ else if (Operand.Val->getOperand(0).getValueType() > VT)
+ return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
+ else
+ return Operand.Val->getOperand(0);
+ }
+ break;
+ case ISD::FNEG:
+ if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
+ return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
+ Operand.Val->getOperand(0));
+ if (OpOpcode == ISD::FNEG) // --X -> X
+ return Operand.Val->getOperand(0);
+ break;
+ case ISD::FABS:
+ if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
+ return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
+ break;
+ }
+
+ SDNode *N;
+ if (VT != MVT::Flag) { // Don't CSE flag producing nodes
+ SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
+ if (E) return SDOperand(E, 0);
+ E = N = new SDNode(Opcode, Operand);
+ } else {
+ N = new SDNode(Opcode, Operand);
+ }
+ N->setValueTypes(VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+
+
+SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
+ SDOperand N1, SDOperand N2) {
+#ifndef NDEBUG
+ switch (Opcode) {
+ case ISD::TokenFactor:
+ assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
+ N2.getValueType() == MVT::Other && "Invalid token factor!");
+ break;
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::UDIV:
+ case ISD::UREM:
+ case ISD::MULHU:
+ case ISD::MULHS:
+ assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
+ // fall through
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::SDIV:
+ case ISD::SREM:
+ assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
+ // fall through.
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ break;
+
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ assert(VT == N1.getValueType() &&
+ "Shift operators return type must be the same as their first arg");
+ assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
+ VT != MVT::i1 && "Shifts only work on integers");
+ break;
+ case ISD::FP_ROUND_INREG: {
+ MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg round!");
+ assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
+ "Cannot FP_ROUND_INREG integer types");
+ assert(EVT <= VT && "Not rounding down!");
+ break;
+ }
+ case ISD::AssertSext:
+ case ISD::AssertZext:
+ case ISD::SIGN_EXTEND_INREG: {
+ MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg extend!");
+ assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
+ "Cannot *_EXTEND_INREG FP types");
+ assert(EVT <= VT && "Not extending!");
+ }
+
+ default: break;
+ }
+#endif
+
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
+ if (N1C) {
+ if (N2C) {
+ uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
+ switch (Opcode) {
+ case ISD::ADD: return getConstant(C1 + C2, VT);
+ case ISD::SUB: return getConstant(C1 - C2, VT);
+ case ISD::MUL: return getConstant(C1 * C2, VT);
+ case ISD::UDIV:
+ if (C2) return getConstant(C1 / C2, VT);
+ break;
+ case ISD::UREM :
+ if (C2) return getConstant(C1 % C2, VT);
+ break;
+ case ISD::SDIV :
+ if (C2) return getConstant(N1C->getSignExtended() /
+ N2C->getSignExtended(), VT);
+ break;
+ case ISD::SREM :
+ if (C2) return getConstant(N1C->getSignExtended() %
+ N2C->getSignExtended(), VT);
+ break;
+ case ISD::AND : return getConstant(C1 & C2, VT);
+ case ISD::OR : return getConstant(C1 | C2, VT);
+ case ISD::XOR : return getConstant(C1 ^ C2, VT);
+ case ISD::SHL : return getConstant(C1 << C2, VT);
+ case ISD::SRL : return getConstant(C1 >> C2, VT);
+ case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
+ default: break;
+ }
+ } else { // Cannonicalize constant to RHS if commutative
+ if (isCommutativeBinOp(Opcode)) {
+ std::swap(N1C, N2C);
+ std::swap(N1, N2);
+ }
+ }
+ }
+
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
+ ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
+ if (N1CFP) {
+ if (N2CFP) {
+ double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
+ switch (Opcode) {
+ case ISD::FADD: return getConstantFP(C1 + C2, VT);
+ case ISD::FSUB: return getConstantFP(C1 - C2, VT);
+ case ISD::FMUL: return getConstantFP(C1 * C2, VT);
+ case ISD::FDIV:
+ if (C2) return getConstantFP(C1 / C2, VT);
+ break;
+ case ISD::FREM :
+ if (C2) return getConstantFP(fmod(C1, C2), VT);
+ break;
+ default: break;
+ }
+ } else { // Cannonicalize constant to RHS if commutative
+ if (isCommutativeBinOp(Opcode)) {
+ std::swap(N1CFP, N2CFP);
+ std::swap(N1, N2);
+ }
+ }
+ }
+
+ // Finally, fold operations that do not require constants.
+ switch (Opcode) {
+ case ISD::FP_ROUND_INREG:
+ if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
+ break;
+ case ISD::SIGN_EXTEND_INREG: {
+ MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
+ if (EVT == VT) return N1; // Not actually extending
+ break;
+ }
+
+ // FIXME: figure out how to safely handle things like
+ // int foo(int x) { return 1 << (x & 255); }
+ // int bar() { return foo(256); }
+#if 0
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA:
+ if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
+ return getNode(Opcode, VT, N1, N2.getOperand(0));
+ else if (N2.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
+ // If the and is only masking out bits that cannot effect the shift,
+ // eliminate the and.
+ unsigned NumBits = MVT::getSizeInBits(VT);
+ if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
+ return getNode(Opcode, VT, N1, N2.getOperand(0));
+ }
+ break;
+#endif
+ }
+
+ // Memoize this node if possible.
+ SDNode *N;
+ if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
+ VT != MVT::Flag) {
+ SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
+ if (BON) return SDOperand(BON, 0);
+
+ BON = N = new SDNode(Opcode, N1, N2);
+ } else {
+ N = new SDNode(Opcode, N1, N2);
+ }
+
+ N->setValueTypes(VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+// setAdjCallChain - This method changes the token chain of an
+// CALLSEQ_START/END node to be the specified operand.
+void SDNode::setAdjCallChain(SDOperand N) {
+ assert(N.getValueType() == MVT::Other);
+ assert((getOpcode() == ISD::CALLSEQ_START ||
+ getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
+
+ Operands[0].Val->removeUser(this);
+ Operands[0] = N;
+ N.Val->Uses.push_back(this);
+}
+
+
+
+SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
+ SDOperand Chain, SDOperand Ptr,
+ SDOperand SV) {
+ SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
+ if (N) return SDOperand(N, 0);
+ N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
+
+ // Loads have a token chain.
+ N->setValueTypes(VT, MVT::Other);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+
+SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
+ SDOperand Chain, SDOperand Ptr, SDOperand SV,
+ MVT::ValueType EVT) {
+ std::vector<SDOperand> Ops;
+ Ops.reserve(4);
+ Ops.push_back(Chain);
+ Ops.push_back(Ptr);
+ Ops.push_back(SV);
+ Ops.push_back(getValueType(EVT));
+ std::vector<MVT::ValueType> VTs;
+ VTs.reserve(2);
+ VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain.
+ return getNode(Opcode, VTs, Ops);
+}
+
+SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
+ SDOperand N1, SDOperand N2, SDOperand N3) {
+ // Perform various simplifications.
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
+ ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
+ switch (Opcode) {
+ case ISD::SETCC: {
+ // Use SimplifySetCC to simplify SETCC's.
+ SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
+ if (Simp.Val) return Simp;
+ break;
+ }
+ case ISD::SELECT:
+ if (N1C)
+ if (N1C->getValue())
+ return N2; // select true, X, Y -> X
+ else
+ return N3; // select false, X, Y -> Y
+
+ if (N2 == N3) return N2; // select C, X, X -> X
+ break;
+ case ISD::BRCOND:
+ if (N2C)
+ if (N2C->getValue()) // Unconditional branch
+ return getNode(ISD::BR, MVT::Other, N1, N3);
+ else
+ return N1; // Never-taken branch
+ break;
+ }
+
+ std::vector<SDOperand> Ops;
+ Ops.reserve(3);
+ Ops.push_back(N1);
+ Ops.push_back(N2);
+ Ops.push_back(N3);
+
+ // Memoize node if it doesn't produce a flag.
+ SDNode *N;
+ if (VT != MVT::Flag) {
+ SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
+ if (E) return SDOperand(E, 0);
+ E = N = new SDNode(Opcode, N1, N2, N3);
+ } else {
+ N = new SDNode(Opcode, N1, N2, N3);
+ }
+ N->setValueTypes(VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
+ SDOperand N1, SDOperand N2, SDOperand N3,
+ SDOperand N4) {
+ std::vector<SDOperand> Ops;
+ Ops.reserve(4);
+ Ops.push_back(N1);
+ Ops.push_back(N2);
+ Ops.push_back(N3);
+ Ops.push_back(N4);
+ return getNode(Opcode, VT, Ops);
+}
+
+SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
+ SDOperand N1, SDOperand N2, SDOperand N3,
+ SDOperand N4, SDOperand N5) {
+ std::vector<SDOperand> Ops;
+ Ops.reserve(5);
+ Ops.push_back(N1);
+ Ops.push_back(N2);
+ Ops.push_back(N3);
+ Ops.push_back(N4);
+ Ops.push_back(N5);
+ return getNode(Opcode, VT, Ops);
+}
+
+
+SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
+ assert((!V || isa<PointerType>(V->getType())) &&
+ "SrcValue is not a pointer?");
+ SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
+ if (N) return SDOperand(N, 0);
+
+ N = new SrcValueSDNode(V, Offset);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
+ std::vector<SDOperand> &Ops) {
+ switch (Ops.size()) {
+ case 0: return getNode(Opcode, VT);
+ case 1: return getNode(Opcode, VT, Ops[0]);
+ case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
+ case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
+ default: break;
+ }
+
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
+ switch (Opcode) {
+ default: break;
+ case ISD::BRCONDTWOWAY:
+ if (N1C)
+ if (N1C->getValue()) // Unconditional branch to true dest.
+ return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
+ else // Unconditional branch to false dest.
+ return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
+ break;
+ case ISD::BRTWOWAY_CC:
+ assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
+ assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+ "LHS and RHS of comparison must have same type!");
+ break;
+ case ISD::TRUNCSTORE: {
+ assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
+ MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
+#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
+ // If this is a truncating store of a constant, convert to the desired type
+ // and store it instead.
+ if (isa<Constant>(Ops[0])) {
+ SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
+ if (isa<Constant>(Op))
+ N1 = Op;
+ }
+ // Also for ConstantFP?
+#endif
+ if (Ops[0].getValueType() == EVT) // Normal store?
+ return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
+ assert(Ops[1].getValueType() > EVT && "Not a truncation?");
+ assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
+ "Can't do FP-INT conversion!");
+ break;
+ }
+ case ISD::SELECT_CC: {
+ assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
+ assert(Ops[0].getValueType() == Ops[1].getValueType() &&
+ "LHS and RHS of condition must have same type!");
+ assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+ "True and False arms of SelectCC must have same type!");
+ assert(Ops[2].getValueType() == VT &&
+ "select_cc node must be of same type as true and false value!");
+ break;
+ }
+ case ISD::BR_CC: {
+ assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
+ assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+ "LHS/RHS of comparison should match types!");
+ break;
+ }
+ }
+
+ // Memoize nodes.
+ SDNode *N;
+ if (VT != MVT::Flag) {
+ SDNode *&E =
+ OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
+ if (E) return SDOperand(E, 0);
+ E = N = new SDNode(Opcode, Ops);
+ } else {
+ N = new SDNode(Opcode, Ops);
+ }
+ N->setValueTypes(VT);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+SDOperand SelectionDAG::getNode(unsigned Opcode,
+ std::vector<MVT::ValueType> &ResultTys,
+ std::vector<SDOperand> &Ops) {
+ if (ResultTys.size() == 1)
+ return getNode(Opcode, ResultTys[0], Ops);
+
+ switch (Opcode) {
+ case ISD::EXTLOAD:
+ case ISD::SEXTLOAD:
+ case ISD::ZEXTLOAD: {
+ MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
+ assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
+ // If they are asking for an extending load from/to the same thing, return a
+ // normal load.
+ if (ResultTys[0] == EVT)
+ return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
+ assert(EVT < ResultTys[0] &&
+ "Should only be an extending load, not truncating!");
+ assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
+ "Cannot sign/zero extend a FP load!");
+ assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
+ "Cannot convert from FP to Int or Int -> FP!");
+ break;
+ }
+
+ // FIXME: figure out how to safely handle things like
+ // int foo(int x) { return 1 << (x & 255); }
+ // int bar() { return foo(256); }
+#if 0
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS:
+ case ISD::SHL_PARTS:
+ if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
+ return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
+ else if (N3.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
+ // If the and is only masking out bits that cannot effect the shift,
+ // eliminate the and.
+ unsigned NumBits = MVT::getSizeInBits(VT)*2;
+ if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
+ return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
+ }
+ break;
+#endif
+ }
+
+ // Memoize the node unless it returns a flag.
+ SDNode *N;
+ if (ResultTys.back() != MVT::Flag) {
+ SDNode *&E =
+ ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
+ if (E) return SDOperand(E, 0);
+ E = N = new SDNode(Opcode, Ops);
+ } else {
+ N = new SDNode(Opcode, Ops);
+ }
+ N->setValueTypes(ResultTys);
+ AllNodes.push_back(N);
+ return SDOperand(N, 0);
+}
+
+
+/// SelectNodeTo - These are used for target selectors to *mutate* the
+/// specified node to have the specified return type, Target opcode, and
+/// operands. Note that target opcodes are stored as
+/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT);
+}
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT, SDOperand Op1) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT);
+ N->setOperands(Op1);
+}
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT, SDOperand Op1,
+ SDOperand Op2) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT);
+ N->setOperands(Op1, Op2);
+}
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT1, MVT::ValueType VT2,
+ SDOperand Op1, SDOperand Op2) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT1, VT2);
+ N->setOperands(Op1, Op2);
+}
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT, SDOperand Op1,
+ SDOperand Op2, SDOperand Op3) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT);
+ N->setOperands(Op1, Op2, Op3);
+}
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT1, MVT::ValueType VT2,
+ SDOperand Op1, SDOperand Op2, SDOperand Op3) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT1, VT2);
+ N->setOperands(Op1, Op2, Op3);
+}
+
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT, SDOperand Op1,
+ SDOperand Op2, SDOperand Op3, SDOperand Op4) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT);
+ N->setOperands(Op1, Op2, Op3, Op4);
+}
+void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
+ MVT::ValueType VT, SDOperand Op1,
+ SDOperand Op2, SDOperand Op3, SDOperand Op4,
+ SDOperand Op5) {
+ RemoveNodeFromCSEMaps(N);
+ N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
+ N->setValueTypes(VT);
+ N->setOperands(Op1, Op2, Op3, Op4, Op5);
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes From/To have a single result value.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
+ std::vector<SDNode*> *Deleted) {
+ SDNode *From = FromN.Val, *To = ToN.Val;
+ assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
+ "Cannot replace with this method!");
+ assert(From != To && "Cannot replace uses of with self");
+
+ while (!From->use_empty()) {
+ // Process users until they are all gone.
+ SDNode *U = *From->use_begin();
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(U);
+
+ for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
+ if (U->getOperand(i).Val == From) {
+ From->removeUser(U);
+ U->Operands[i].Val = To;
+ To->addUser(U);
+ }
+
+ // Now that we have modified U, add it back to the CSE maps. If it already
+ // exists there, recursively merge the results together.
+ if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
+ ReplaceAllUsesWith(U, Existing, Deleted);
+ // U is now dead.
+ if (Deleted) Deleted->push_back(U);
+ DeleteNodeNotInCSEMaps(U);
+ }
+ }
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes From/To have matching types and numbers of result
+/// values.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
+ std::vector<SDNode*> *Deleted) {
+ assert(From != To && "Cannot replace uses of with self");
+ assert(From->getNumValues() == To->getNumValues() &&
+ "Cannot use this version of ReplaceAllUsesWith!");
+ if (From->getNumValues() == 1) { // If possible, use the faster version.
+ ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
+ return;
+ }
+
+ while (!From->use_empty()) {
+ // Process users until they are all gone.
+ SDNode *U = *From->use_begin();
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(U);
+
+ for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
+ if (U->getOperand(i).Val == From) {
+ From->removeUser(U);
+ U->Operands[i].Val = To;
+ To->addUser(U);
+ }
+
+ // Now that we have modified U, add it back to the CSE maps. If it already
+ // exists there, recursively merge the results together.
+ if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
+ ReplaceAllUsesWith(U, Existing, Deleted);
+ // U is now dead.
+ if (Deleted) Deleted->push_back(U);
+ DeleteNodeNotInCSEMaps(U);
+ }
+ }
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version can replace From with any result values. To must match the
+/// number and types of values returned by From.
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
+ const std::vector<SDOperand> &To,
+ std::vector<SDNode*> *Deleted) {
+ assert(From->getNumValues() == To.size() &&
+ "Incorrect number of values to replace with!");
+ if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
+ // Degenerate case handled above.
+ ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
+ return;
+ }
+
+ while (!From->use_empty()) {
+ // Process users until they are all gone.
+ SDNode *U = *From->use_begin();
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(U);
+
+ for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
+ if (U->getOperand(i).Val == From) {
+ const SDOperand &ToOp = To[U->getOperand(i).ResNo];
+ From->removeUser(U);
+ U->Operands[i] = ToOp;
+ ToOp.Val->addUser(U);
+ }
+
+ // Now that we have modified U, add it back to the CSE maps. If it already
+ // exists there, recursively merge the results together.
+ if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
+ ReplaceAllUsesWith(U, Existing, Deleted);
+ // U is now dead.
+ if (Deleted) Deleted->push_back(U);
+ DeleteNodeNotInCSEMaps(U);
+ }
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// SDNode Class
+//===----------------------------------------------------------------------===//
+
+/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
+/// indicated value. This method ignores uses of other values defined by this
+/// operation.
+bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
+ assert(Value < getNumValues() && "Bad value!");
+
+ // If there is only one value, this is easy.
+ if (getNumValues() == 1)
+ return use_size() == NUses;
+ if (Uses.size() < NUses) return false;
+
+ SDOperand TheValue(this, Value);
+
+ std::set<SDNode*> UsersHandled;
+
+ for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
+ UI != E; ++UI) {
+ SDNode *User = *UI;
+ if (User->getNumOperands() == 1 ||
+ UsersHandled.insert(User).second) // First time we've seen this?
+ for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
+ if (User->getOperand(i) == TheValue) {
+ if (NUses == 0)
+ return false; // too many uses
+ --NUses;
+ }
+ }
+
+ // Found exactly the right number of uses?
+ return NUses == 0;
+}
+
+
+const char *SDNode::getOperationName(const SelectionDAG *G) const {
+ switch (getOpcode()) {
+ default:
+ if (getOpcode() < ISD::BUILTIN_OP_END)
+ return "<<Unknown DAG Node>>";
+ else {
+ if (G)
+ if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
+ if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
+ return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
+ return "<<Unknown Target Node>>";
+ }
+
+ case ISD::PCMARKER: return "PCMarker";
+ case ISD::SRCVALUE: return "SrcValue";
+ case ISD::VALUETYPE: return "ValueType";
+ case ISD::EntryToken: return "EntryToken";
+ case ISD::TokenFactor: return "TokenFactor";
+ case ISD::AssertSext: return "AssertSext";
+ case ISD::AssertZext: return "AssertZext";
+ case ISD::Constant: return "Constant";
+ case ISD::TargetConstant: return "TargetConstant";
+ case ISD::ConstantFP: return "ConstantFP";
+ case ISD::GlobalAddress: return "GlobalAddress";
+ case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
+ case ISD::FrameIndex: return "FrameIndex";
+ case ISD::TargetFrameIndex: return "TargetFrameIndex";
+ case ISD::BasicBlock: return "BasicBlock";
+ case ISD::Register: return "Register";
+ case ISD::ExternalSymbol: return "ExternalSymbol";
+ case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
+ case ISD::ConstantPool: return "ConstantPool";
+ case ISD::TargetConstantPool: return "TargetConstantPool";
+ case ISD::CopyToReg: return "CopyToReg";
+ case ISD::CopyFromReg: return "CopyFromReg";
+ case ISD::ImplicitDef: return "ImplicitDef";
+ case ISD::UNDEF: return "undef";
+
+ // Unary operators
+ case ISD::FABS: return "fabs";
+ case ISD::FNEG: return "fneg";
+ case ISD::FSQRT: return "fsqrt";
+ case ISD::FSIN: return "fsin";
+ case ISD::FCOS: return "fcos";
+
+ // Binary operators
+ case ISD::ADD: return "add";
+ case ISD::SUB: return "sub";
+ case ISD::MUL: return "mul";
+ case ISD::MULHU: return "mulhu";
+ case ISD::MULHS: return "mulhs";
+ case ISD::SDIV: return "sdiv";
+ case ISD::UDIV: return "udiv";
+ case ISD::SREM: return "srem";
+ case ISD::UREM: return "urem";
+ case ISD::AND: return "and";
+ case ISD::OR: return "or";
+ case ISD::XOR: return "xor";
+ case ISD::SHL: return "shl";
+ case ISD::SRA: return "sra";
+ case ISD::SRL: return "srl";
+ case ISD::FADD: return "fadd";
+ case ISD::FSUB: return "fsub";
+ case ISD::FMUL: return "fmul";
+ case ISD::FDIV: return "fdiv";
+ case ISD::FREM: return "frem";
+
+ case ISD::SETCC: return "setcc";
+ case ISD::SELECT: return "select";
+ case ISD::SELECT_CC: return "select_cc";
+ case ISD::ADD_PARTS: return "add_parts";
+ case ISD::SUB_PARTS: return "sub_parts";
+ case ISD::SHL_PARTS: return "shl_parts";
+ case ISD::SRA_PARTS: return "sra_parts";
+ case ISD::SRL_PARTS: return "srl_parts";
+
+ // Conversion operators.
+ case ISD::SIGN_EXTEND: return "sign_extend";
+ case ISD::ZERO_EXTEND: return "zero_extend";
+ case ISD::ANY_EXTEND: return "any_extend";
+ case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
+ case ISD::TRUNCATE: return "truncate";
+ case ISD::FP_ROUND: return "fp_round";
+ case ISD::FP_ROUND_INREG: return "fp_round_inreg";
+ case ISD::FP_EXTEND: return "fp_extend";
+
+ case ISD::SINT_TO_FP: return "sint_to_fp";
+ case ISD::UINT_TO_FP: return "uint_to_fp";
+ case ISD::FP_TO_SINT: return "fp_to_sint";
+ case ISD::FP_TO_UINT: return "fp_to_uint";
+
+ // Control flow instructions
+ case ISD::BR: return "br";
+ case ISD::BRCOND: return "brcond";
+ case ISD::BRCONDTWOWAY: return "brcondtwoway";
+ case ISD::BR_CC: return "br_cc";
+ case ISD::BRTWOWAY_CC: return "brtwoway_cc";
+ case ISD::RET: return "ret";
+ case ISD::CALL: return "call";
+ case ISD::TAILCALL:return "tailcall";
+ case ISD::CALLSEQ_START: return "callseq_start";
+ case ISD::CALLSEQ_END: return "callseq_end";
+
+ // Other operators
+ case ISD::LOAD: return "load";
+ case ISD::STORE: return "store";
+ case ISD::EXTLOAD: return "extload";
+ case ISD::SEXTLOAD: return "sextload";
+ case ISD::ZEXTLOAD: return "zextload";
+ case ISD::TRUNCSTORE: return "truncstore";
+
+ case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
+ case ISD::EXTRACT_ELEMENT: return "extract_element";
+ case ISD::BUILD_PAIR: return "build_pair";
+ case ISD::MEMSET: return "memset";
+ case ISD::MEMCPY: return "memcpy";
+ case ISD::MEMMOVE: return "memmove";
+
+ // Bit counting
+ case ISD::CTPOP: return "ctpop";
+ case ISD::CTTZ: return "cttz";
+ case ISD::CTLZ: return "ctlz";
+
+ // IO Intrinsics
+ case ISD::READPORT: return "readport";
+ case ISD::WRITEPORT: return "writeport";
+ case ISD::READIO: return "readio";
+ case ISD::WRITEIO: return "writeio";
+
+ case ISD::CONDCODE:
+ switch (cast<CondCodeSDNode>(this)->get()) {
+ default: assert(0 && "Unknown setcc condition!");
+ case ISD::SETOEQ: return "setoeq";
+ case ISD::SETOGT: return "setogt";
+ case ISD::SETOGE: return "setoge";
+ case ISD::SETOLT: return "setolt";
+ case ISD::SETOLE: return "setole";
+ case ISD::SETONE: return "setone";
+
+ case ISD::SETO: return "seto";
+ case ISD::SETUO: return "setuo";
+ case ISD::SETUEQ: return "setue";
+ case ISD::SETUGT: return "setugt";
+ case ISD::SETUGE: return "setuge";
+ case ISD::SETULT: return "setult";
+ case ISD::SETULE: return "setule";
+ case ISD::SETUNE: return "setune";
+
+ case ISD::SETEQ: return "seteq";
+ case ISD::SETGT: return "setgt";
+ case ISD::SETGE: return "setge";
+ case ISD::SETLT: return "setlt";
+ case ISD::SETLE: return "setle";
+ case ISD::SETNE: return "setne";
+ }
+ }
+}
+
+void SDNode::dump() const { dump(0); }
+void SDNode::dump(const SelectionDAG *G) const {
+ std::cerr << (void*)this << ": ";
+
+ for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
+ if (i) std::cerr << ",";
+ if (getValueType(i) == MVT::Other)
+ std::cerr << "ch";
+ else
+ std::cerr << MVT::getValueTypeString(getValueType(i));
+ }
+ std::cerr << " = " << getOperationName(G);
+
+ std::cerr << " ";
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ if (i) std::cerr << ", ";
+ std::cerr << (void*)getOperand(i).Val;
+ if (unsigned RN = getOperand(i).ResNo)
+ std::cerr << ":" << RN;
+ }
+
+ if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
+ std::cerr << "<" << CSDN->getValue() << ">";
+ } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
+ std::cerr << "<" << CSDN->getValue() << ">";
+ } else if (const GlobalAddressSDNode *GADN =
+ dyn_cast<GlobalAddressSDNode>(this)) {
+ std::cerr << "<";
+ WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
+ } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
+ std::cerr << "<" << FIDN->getIndex() << ">";
+ } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
+ std::cerr << "<" << *CP->get() << ">";
+ } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
+ std::cerr << "<";
+ const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
+ if (LBB)
+ std::cerr << LBB->getName() << " ";
+ std::cerr << (const void*)BBDN->getBasicBlock() << ">";
+ } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
+ if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
+ std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
+ } else {
+ std::cerr << " #" << R->getReg();
+ }
+ } else if (const ExternalSymbolSDNode *ES =
+ dyn_cast<ExternalSymbolSDNode>(this)) {
+ std::cerr << "'" << ES->getSymbol() << "'";
+ } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
+ if (M->getValue())
+ std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
+ else
+ std::cerr << "<null:" << M->getOffset() << ">";
+ } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
+ std::cerr << ":" << getValueTypeString(N->getVT());
+ }
+}
+
+static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (N->getOperand(i).Val->hasOneUse())
+ DumpNodes(N->getOperand(i).Val, indent+2, G);
+ else
+ std::cerr << "\n" << std::string(indent+2, ' ')
+ << (void*)N->getOperand(i).Val << ": <multiple use>";
+
+
+ std::cerr << "\n" << std::string(indent, ' ');
+ N->dump(G);
+}
+
+void SelectionDAG::dump() const {
+ std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
+ std::vector<SDNode*> Nodes(AllNodes);
+ std::sort(Nodes.begin(), Nodes.end());
+
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
+ if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
+ DumpNodes(Nodes[i], 2, this);
+ }
+
+ DumpNodes(getRoot().Val, 2, this);
+
+ std::cerr << "\n\n";
+}
+