diff options
Diffstat (limited to 'lib/CodeGen/SelectionDAG/ScheduleDAG.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/ScheduleDAG.cpp | 1151 |
1 files changed, 24 insertions, 1127 deletions
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp index 3ad59d77ee..9c1f1a8d63 100644 --- a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp +++ b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp @@ -1,4 +1,4 @@ -//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===// +//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// // // The LLVM Compiler Infrastructure // @@ -16,1002 +16,21 @@ #define DEBUG_TYPE "sched" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SelectionDAGISel.h" -#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetInstrItineraries.h" #include "llvm/Target/TargetLowering.h" -#include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include <iostream> -#include <ios> -#include <algorithm> using namespace llvm; -namespace { - // Style of scheduling to use. - enum ScheduleChoices { - noScheduling, - simpleScheduling, - simpleNoItinScheduling - }; -} // namespace - -cl::opt<ScheduleChoices> ScheduleStyle("sched", - cl::desc("Choose scheduling style"), - cl::init(noScheduling), - cl::values( - clEnumValN(noScheduling, "none", - "Trivial emission with no analysis"), - clEnumValN(simpleScheduling, "simple", - "Minimize critical path and maximize processor utilization"), - clEnumValN(simpleNoItinScheduling, "simple-noitin", - "Same as simple except using generic latency"), - clEnumValEnd)); - - -#ifndef NDEBUG -static cl::opt<bool> -ViewDAGs("view-sched-dags", cl::Hidden, - cl::desc("Pop up a window to show sched dags as they are processed")); -#else -static const bool ViewDAGs = 0; -#endif - -namespace { -//===----------------------------------------------------------------------===// -/// -/// BitsIterator - Provides iteration through individual bits in a bit vector. -/// -template<class T> -class BitsIterator { -private: - T Bits; // Bits left to iterate through - -public: - /// Ctor. - BitsIterator(T Initial) : Bits(Initial) {} - - /// Next - Returns the next bit set or zero if exhausted. - inline T Next() { - // Get the rightmost bit set - T Result = Bits & -Bits; - // Remove from rest - Bits &= ~Result; - // Return single bit or zero - return Result; - } -}; - -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -/// -/// ResourceTally - Manages the use of resources over time intervals. Each -/// item (slot) in the tally vector represents the resources used at a given -/// moment. A bit set to 1 indicates that a resource is in use, otherwise -/// available. An assumption is made that the tally is large enough to schedule -/// all current instructions (asserts otherwise.) -/// -template<class T> -class ResourceTally { -private: - std::vector<T> Tally; // Resources used per slot - typedef typename std::vector<T>::iterator Iter; - // Tally iterator - - /// SlotsAvailable - Returns true if all units are available. - /// - bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet, - unsigned &Resource) { - assert(N && "Must check availability with N != 0"); - // Determine end of interval - Iter End = Begin + N; - assert(End <= Tally.end() && "Tally is not large enough for schedule"); - - // Iterate thru each resource - BitsIterator<T> Resources(ResourceSet & ~*Begin); - while (unsigned Res = Resources.Next()) { - // Check if resource is available for next N slots - Iter Interval = End; - do { - Interval--; - if (*Interval & Res) break; - } while (Interval != Begin); - - // If available for N - if (Interval == Begin) { - // Success - Resource = Res; - return true; - } - } - - // No luck - Resource = 0; - return false; - } - - /// RetrySlot - Finds a good candidate slot to retry search. - Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) { - assert(N && "Must check availability with N != 0"); - // Determine end of interval - Iter End = Begin + N; - assert(End <= Tally.end() && "Tally is not large enough for schedule"); - - while (Begin != End--) { - // Clear units in use - ResourceSet &= ~*End; - // If no units left then we should go no further - if (!ResourceSet) return End + 1; - } - // Made it all the way through - return Begin; - } - - /// FindAndReserveStages - Return true if the stages can be completed. If - /// so mark as busy. - bool FindAndReserveStages(Iter Begin, - InstrStage *Stage, InstrStage *StageEnd) { - // If at last stage then we're done - if (Stage == StageEnd) return true; - // Get number of cycles for current stage - unsigned N = Stage->Cycles; - // Check to see if N slots are available, if not fail - unsigned Resource; - if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false; - // Check to see if remaining stages are available, if not fail - if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false; - // Reserve resource - Reserve(Begin, N, Resource); - // Success - return true; - } - - /// Reserve - Mark busy (set) the specified N slots. - void Reserve(Iter Begin, unsigned N, unsigned Resource) { - // Determine end of interval - Iter End = Begin + N; - assert(End <= Tally.end() && "Tally is not large enough for schedule"); - - // Set resource bit in each slot - for (; Begin < End; Begin++) - *Begin |= Resource; - } - - /// FindSlots - Starting from Begin, locate consecutive slots where all stages - /// can be completed. Returns the address of first slot. - Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) { - // Track position - Iter Cursor = Begin; - - // Try all possible slots forward - while (true) { - // Try at cursor, if successful return position. - if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor; - // Locate a better position - Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units); - } - } - -public: - /// Initialize - Resize and zero the tally to the specified number of time - /// slots. - inline void Initialize(unsigned N) { - Tally.assign(N, 0); // Initialize tally to all zeros. - } - - // FindAndReserve - Locate an ideal slot for the specified stages and mark - // as busy. - unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin, - InstrStage *StageEnd) { - // Where to begin - Iter Begin = Tally.begin() + Slot; - // Find a free slot - Iter Where = FindSlots(Begin, StageBegin, StageEnd); - // Distance is slot number - unsigned Final = Where - Tally.begin(); - return Final; - } - -}; -//===----------------------------------------------------------------------===// - -// Forward -class NodeInfo; -typedef NodeInfo *NodeInfoPtr; -typedef std::vector<NodeInfoPtr> NIVector; -typedef std::vector<NodeInfoPtr>::iterator NIIterator; - -//===----------------------------------------------------------------------===// -/// -/// Node group - This struct is used to manage flagged node groups. -/// -class NodeGroup { -private: - NIVector Members; // Group member nodes - NodeInfo *Dominator; // Node with highest latency - unsigned Latency; // Total latency of the group - int Pending; // Number of visits pending before - // adding to order - -public: - // Ctor. - NodeGroup() : Dominator(NULL), Pending(0) {} - - // Accessors - inline void setDominator(NodeInfo *D) { Dominator = D; } - inline NodeInfo *getDominator() { return Dominator; } - inline void setLatency(unsigned L) { Latency = L; } - inline unsigned getLatency() { return Latency; } - inline int getPending() const { return Pending; } - inline void setPending(int P) { Pending = P; } - inline int addPending(int I) { return Pending += I; } - - // Pass thru - inline bool group_empty() { return Members.empty(); } - inline NIIterator group_begin() { return Members.begin(); } - inline NIIterator group_end() { return Members.end(); } - inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); } - inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) { - return Members.insert(Pos, NI); - } - inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) { - Members.insert(Pos, First, Last); - } - - static void Add(NodeInfo *D, NodeInfo *U); - static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U); -}; -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -/// -/// NodeInfo - This struct tracks information used to schedule the a node. -/// -class NodeInfo { -private: - int Pending; // Number of visits pending before - // adding to order -public: - SDNode *Node; // DAG node - InstrStage *StageBegin; // First stage in itinerary - InstrStage *StageEnd; // Last+1 stage in itinerary - unsigned Latency; // Total cycles to complete instruction - bool IsCall : 1; // Is function call - bool IsLoad : 1; // Is memory load - bool IsStore : 1; // Is memory store - unsigned Slot; // Node's time slot - NodeGroup *Group; // Grouping information - unsigned VRBase; // Virtual register base -#ifndef NDEBUG - unsigned Preorder; // Index before scheduling -#endif - - // Ctor. - NodeInfo(SDNode *N = NULL) - : Pending(0) - , Node(N) - , StageBegin(NULL) - , StageEnd(NULL) - , Latency(0) - , IsCall(false) - , Slot(0) - , Group(NULL) - , VRBase(0) -#ifndef NDEBUG - , Preorder(0) -#endif - {} - - // Accessors - inline bool isInGroup() const { - assert(!Group || !Group->group_empty() && "Group with no members"); - return Group != NULL; - } - inline bool isGroupDominator() const { - return isInGroup() && Group->getDominator() == this; - } - inline int getPending() const { - return Group ? Group->getPending() : Pending; - } - inline void setPending(int P) { - if (Group) Group->setPending(P); - else Pending = P; - } - inline int addPending(int I) { - if (Group) return Group->addPending(I); - else return Pending += I; - } -}; -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -/// -/// NodeGroupIterator - Iterates over all the nodes indicated by the node info. -/// If the node is in a group then iterate over the members of the group, -/// otherwise just the node info. -/// -class NodeGroupIterator { -private: - NodeInfo *NI; // Node info - NIIterator NGI; // Node group iterator - NIIterator NGE; // Node group iterator end - -public: - // Ctor. - NodeGroupIterator(NodeInfo *N) : NI(N) { - // If the node is in a group then set up the group iterator. Otherwise - // the group iterators will trip first time out. - if (N->isInGroup()) { - // get Group - NodeGroup *Group = NI->Group; - NGI = Group->group_begin(); - NGE = Group->group_end(); - // Prevent this node from being used (will be in members list - NI = NULL; - } - } - - /// next - Return the next node info, otherwise NULL. - /// - NodeInfo *next() { - // If members list - if (NGI != NGE) return *NGI++; - // Use node as the result (may be NULL) - NodeInfo *Result = NI; - // Only use once - NI = NULL; - // Return node or NULL - return Result; - } -}; -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -/// -/// NodeGroupOpIterator - Iterates over all the operands of a node. If the node -/// is a member of a group, this iterates over all the operands of all the -/// members of the group. -/// -class NodeGroupOpIterator { -private: - NodeInfo *NI; // Node containing operands - NodeGroupIterator GI; // Node group iterator - SDNode::op_iterator OI; // Operand iterator - SDNode::op_iterator OE; // Operand iterator end - - /// CheckNode - Test if node has more operands. If not get the next node - /// skipping over nodes that have no operands. - void CheckNode() { - // Only if operands are exhausted first - while (OI == OE) { - // Get next node info - NodeInfo *NI = GI.next(); - // Exit if nodes are exhausted - if (!NI) return; - // Get node itself - SDNode *Node = NI->Node; - // Set up the operand iterators - OI = Node->op_begin(); - OE = Node->op_end(); - } - } - -public: - // Ctor. - NodeGroupOpIterator(NodeInfo *N) - : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {} - - /// isEnd - Returns true when not more operands are available. - /// - inline bool isEnd() { CheckNode(); return OI == OE; } - - /// next - Returns the next available operand. - /// - inline SDOperand next() { - assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly"); - return *OI++; - } -}; -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -/// -/// SimpleSched - Simple two pass scheduler. -/// -class SimpleSched { -private: - MachineBasicBlock *BB; // Current basic block - SelectionDAG &DAG; // DAG of the current basic block - const TargetMachine &TM; // Target processor - const TargetInstrInfo &TII; // Target instruction information - const MRegisterInfo &MRI; // Target processor register information - SSARegMap *RegMap; // Virtual/real register map - MachineConstantPool *ConstPool; // Target constant pool - unsigned NodeCount; // Number of nodes in DAG - bool HasGroups; // True if there are any groups - NodeInfo *Info; // Info for nodes being scheduled - std::map<SDNode *, NodeInfo *> Map; // Map nodes to info - NIVector Ordering; // Emit ordering of nodes - ResourceTally<unsigned> Tally; // Resource usage tally - unsigned NSlots; // Total latency - static const unsigned NotFound = ~0U; // Search marker - -public: - - // Ctor. - SimpleSched(SelectionDAG &D, MachineBasicBlock *bb) - : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()), - MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()), - ConstPool(BB->getParent()->getConstantPool()), - NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) { - assert(&TII && "Target doesn't provide instr info?"); - assert(&MRI && "Target doesn't provide register info?"); - } - - // Run - perform scheduling. - MachineBasicBlock *Run() { - Schedule(); - return BB; - } - -private: - /// getNI - Returns the node info for the specified node. - /// - inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; } - - /// getVR - Returns the virtual register number of the node. - /// - inline unsigned getVR(SDOperand Op) { - NodeInfo *NI = getNI(Op.Val); - assert(NI->VRBase != 0 && "Node emitted out of order - late"); - return NI->VRBase + Op.ResNo; - } - - static bool isFlagDefiner(SDNode *A); - static bool isFlagUser(SDNode *A); - static bool isDefiner(NodeInfo *A, NodeInfo *B); - static bool isPassiveNode(SDNode *Node); - void IncludeNode(NodeInfo *NI); - void VisitAll(); - void Schedule(); - void IdentifyGroups(); - void GatherSchedulingInfo(); - void FakeGroupDominators(); - void PrepareNodeInfo(); - bool isStrongDependency(NodeInfo *A, NodeInfo *B); - bool isWeakDependency(NodeInfo *A, NodeInfo *B); - void ScheduleBackward(); - void ScheduleForward(); - void EmitAll(); - void EmitNode(NodeInfo *NI); - static unsigned CountResults(SDNode *Node); - static unsigned CountOperands(SDNode *Node); - unsigned CreateVirtualRegisters(MachineInstr *MI, - unsigned NumResults, - const TargetInstrDescriptor &II); - - void printChanges(unsigned Index); - void printSI(std::ostream &O, NodeInfo *NI) const; - void print(std::ostream &O) const; - inline void dump(const char *tag) const { std::cerr << tag; dump(); } - void dump() const; -}; - - -//===----------------------------------------------------------------------===// -/// Special case itineraries. -/// -enum { - CallLatency = 40, // To push calls back in time - - RSInteger = 0xC0000000, // Two integer units - RSFloat = 0x30000000, // Two float units - RSLoadStore = 0x0C000000, // Two load store units - RSBranch = 0x02000000 // One branch unit -}; -static InstrStage CallStage = { CallLatency, RSBranch }; -static InstrStage LoadStage = { 5, RSLoadStore }; -static InstrStage StoreStage = { 2, RSLoadStore }; -static InstrStage IntStage = { 2, RSInteger }; -static InstrStage FloatStage = { 3, RSFloat }; -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// - -} // namespace - -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -/// Add - Adds a definer and user pair to a node group. -/// -void NodeGroup::Add(NodeInfo *D, NodeInfo *U) { - // Get current groups - NodeGroup *DGroup = D->Group; - NodeGroup *UGroup = U->Group; - // If both are members of groups - if (DGroup && UGroup) { - // There may have been another edge connecting - if (DGroup == UGroup) return; - // Add the pending users count - DGroup->addPending(UGroup->getPending()); - // For each member of the users group - NodeGroupIterator UNGI(U); - while (NodeInfo *UNI = UNGI.next() ) { - // Change the group - UNI->Group = DGroup; - // For each member of the definers group - NodeGroupIterator DNGI(D); - while (NodeInfo *DNI = DNGI.next() ) { - // Remove internal edges - DGroup->addPending(-CountInternalUses(DNI, UNI)); - } - } - // Merge the two lists - DGroup->group_insert(DGroup->group_end(), - UGroup->group_begin(), UGroup->group_end()); - } else if (DGroup) { - // Make user member of definers group - U->Group = DGroup; - // Add users uses to definers group pending - DGroup->addPending(U->Node->use_size()); - // For each member of the definers group - NodeGroupIterator DNGI(D); - while (NodeInfo *DNI = DNGI.next() ) { - // Remove internal edges - DGroup->addPending(-CountInternalUses(DNI, U)); - } - DGroup->group_push_back(U); - } else if (UGroup) { - // Make definer member of users group - D->Group = UGroup; - // Add definers uses to users group pending - UGroup->addPending(D->Node->use_size()); - // For each member of the users group - NodeGroupIterator UNGI(U); - while (NodeInfo *UNI = UNGI.next() ) { - // Remove internal edges - UGroup->addPending(-CountInternalUses(D, UNI)); - } - UGroup->group_insert(UGroup->group_begin(), D); - } else { - D->Group = U->Group = DGroup = new NodeGroup(); - DGroup->addPending(D->Node->use_size() + U->Node->use_size() - - CountInternalUses(D, U)); - DGroup->group_push_back(D); - DGroup->group_push_back(U); - } -} - -/// CountInternalUses - Returns the number of edges between the two nodes. -/// -unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) { - unsigned N = 0; - for (unsigned M = U->Node->getNumOperands(); 0 < M--;) { - SDOperand Op = U->Node->getOperand(M); - if (Op.Val == D->Node) N++; - } - - return N; -} -//===----------------------------------------------------------------------===// - - -//===----------------------------------------------------------------------===// -/// isFlagDefiner - Returns true if the node defines a flag result. -bool SimpleSched::isFlagDefiner(SDNode *A) { - unsigned N = A->getNumValues(); - return N && A->getValueType(N - 1) == MVT::Flag; -} - -/// isFlagUser - Returns true if the node uses a flag result. -/// -bool SimpleSched::isFlagUser(SDNode *A) { - unsigned N = A->getNumOperands(); - return N && A->getOperand(N - 1).getValueType() == MVT::Flag; -} - -/// isDefiner - Return true if node A is a definer for B. -/// -bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) { - // While there are A nodes - NodeGroupIterator NII(A); - while (NodeInfo *NI = NII.next()) { - // Extract node - SDNode *Node = NI->Node; - // While there operands in nodes of B - NodeGroupOpIterator NGOI(B); - while (!NGOI.isEnd()) { - SDOperand Op = NGOI.next(); - // If node from A defines a node in B - if (Node == Op.Val) return true; - } - } - return false; -} - -/// isPassiveNode - Return true if the node is a non-scheduled leaf. -/// -bool SimpleSched::isPassiveNode(SDNode *Node) { - if (isa<ConstantSDNode>(Node)) return true; - if (isa<RegisterSDNode>(Node)) return true; - if (isa<GlobalAddressSDNode>(Node)) return true; - if (isa<BasicBlockSDNode>(Node)) return true; - if (isa<FrameIndexSDNode>(Node)) return true; - if (isa<ConstantPoolSDNode>(Node)) return true; - if (isa<ExternalSymbolSDNode>(Node)) return true; - return false; -} - -/// IncludeNode - Add node to NodeInfo vector. -/// -void SimpleSched::IncludeNode(NodeInfo *NI) { - // Get node - SDNode *Node = NI->Node; - // Ignore entry node - if (Node->getOpcode() == ISD::EntryToken) return; - // Check current count for node - int Count = NI->getPending(); - // If the node is already in list - if (Count < 0) return; - // Decrement count to indicate a visit - Count--; - // If count has gone to zero then add node to list - if (!Count) { - // Add node - if (NI->isInGroup()) { - Ordering.push_back(NI->Group->getDominator()); - } else { - Ordering.push_back(NI); - } - // indicate node has been added - Count--; - } - // Mark as visited with new count - NI->setPending(Count); -} - -/// VisitAll - Visit each node breadth-wise to produce an initial ordering. -/// Note that the ordering in the Nodes vector is reversed. -void SimpleSched::VisitAll() { - // Add first element to list - NodeInfo *NI = getNI(DAG.getRoot().Val); - if (NI->isInGroup()) { - Ordering.push_back(NI->Group->getDominator()); - } else { - Ordering.push_back(NI); - } - - // Iterate through all nodes that have been added - for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies - // Visit all operands - NodeGroupOpIterator NGI(Ordering[i]); - while (!NGI.isEnd()) { - // Get next operand - SDOperand Op = NGI.next(); - // Get node - SDNode *Node = Op.Val; - // Ignore passive nodes - if (isPassiveNode(Node)) continue; - // Check out node - IncludeNode(getNI(Node)); - } - } - - // Add entry node last (IncludeNode filters entry nodes) - if (DAG.getEntryNode().Val != DAG.getRoot().Val) - Ordering.push_back(getNI(DAG.getEntryNode().Val)); - - // Reverse the order - std::reverse(Ordering.begin(), Ordering.end()); -} - -/// IdentifyGroups - Put flagged nodes into groups. -/// -void SimpleSched::IdentifyGroups() { - for (unsigned i = 0, N = NodeCount; i < N; i++) { - NodeInfo* NI = &Info[i]; - SDNode *Node = NI->Node; - - // For each operand (in reverse to only look at flags) - for (unsigned N = Node->getNumOperands(); 0 < N--;) { - // Get operand - SDOperand Op = Node->getOperand(N); - // No more flags to walk - if (Op.getValueType() != MVT::Flag) break; - // Add to node group - NodeGroup::Add(getNI(Op.Val), NI); - // Let evryone else know - HasGroups = true; - } - } -} - -/// GatherSchedulingInfo - Get latency and resource information about each node. -/// -void SimpleSched::GatherSchedulingInfo() { - // Get instruction itineraries for the target - const InstrItineraryData InstrItins = TM.getInstrItineraryData(); - - // For each node - for (unsigned i = 0, N = NodeCount; i < N; i++) { - // Get node info - NodeInfo* NI = &Info[i]; - SDNode *Node = NI->Node; - - // If there are itineraries and it is a machine instruction - if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) { - // If machine opcode - if (Node->isTargetOpcode()) { - // Get return type to guess which processing unit - MVT::ValueType VT = Node->getValueType(0); - // Get machine opcode - MachineOpCode TOpc = Node->getTargetOpcode(); - NI->IsCall = TII.isCall(TOpc); - NI->IsLoad = TII.isLoad(TOpc); - NI->IsStore = TII.isStore(TOpc); - - if (TII.isLoad(TOpc)) NI->StageBegin = &LoadStage; - else if (TII.isStore(TOpc)) NI->StageBegin = &StoreStage; - else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage; - else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage; - if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1; - } - } else if (Node->isTargetOpcode()) { - // get machine opcode - MachineOpCode TOpc = Node->getTargetOpcode(); - // Check to see if it is a call - NI->IsCall = TII.isCall(TOpc); - // Get itinerary stages for instruction - unsigned II = TII.getSchedClass(TOpc); - NI->StageBegin = InstrItins.begin(II); - NI->StageEnd = InstrItins.end(II); - } - - // One slot for the instruction itself - NI->Latency = 1; - - // Add long latency for a call to push it back in time - if (NI->IsCall) NI->Latency += CallLatency; - - // Sum up all the latencies - for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd; - Stage != E; Stage++) { - NI->Latency += Stage->Cycles; - } - - // Sum up all the latencies for max tally size - NSlots += NI->Latency; - } - - // Unify metrics if in a group - if (HasGroups) { - for (unsigned i = 0, N = NodeCount; i < N; i++) { - NodeInfo* NI = &Info[i]; - - if (NI->isInGroup()) { - NodeGroup *Group = NI->Group; - - if (!Group->getDominator()) { - NIIterator NGI = Group->group_begin(), NGE = Group->group_end(); - NodeInfo *Dominator = *NGI; - unsigned Latency = 0; - - for (NGI++; NGI != NGE; NGI++) { - NodeInfo* NGNI = *NGI; - Latency += NGNI->Latency; - if (Dominator->Latency < NGNI->Latency) Dominator = NGNI; - } - - Dominator->Latency = Latency; - Group->setDominator(Dominator); - } - } - } - } -} - -/// FakeGroupDominators - Set dominators for non-scheduling. -/// -void SimpleSched::FakeGroupDominators() { - for (unsigned i = 0, N = NodeCount; i < N; i++) { - NodeInfo* NI = &Info[i]; - - if (NI->isInGroup()) { - NodeGroup *Group = NI->Group; - - if (!Group->getDominator()) { - Group->setDominator(NI); - } - } - } -} - -/// PrepareNodeInfo - Set up the basic minimum node info for scheduling. -/// -void SimpleSched::PrepareNodeInfo() { - // Allocate node information - Info = new NodeInfo[NodeCount]; - - unsigned i = 0; - for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), - E = DAG.allnodes_end(); I != E; ++I, ++i) { - // Fast reference to node schedule info - NodeInfo* NI = &Info[i]; - // Set up map - Map[I] = NI; - // Set node - NI->Node = I; - // Set pending visit count - NI->setPending(I->use_size()); - } -} - -/// isStrongDependency - Return true if node A has results used by node B. -/// I.E., B must wait for latency of A. -bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) { - // If A defines for B then it's a strong dependency or - // if a load follows a store (may be dependent but why take a chance.) - return isDefiner(A, B) || (A->IsStore && B->IsLoad); -} - -/// isWeakDependency Return true if node A produces a result that will -/// conflict with operands of B. It is assumed that we have called -/// isStrongDependency prior. -bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) { - // TODO check for conflicting real registers and aliases -#if 0 // FIXME - Since we are in SSA form and not checking register aliasing - return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A); -#else - return A->Node->getOpcode() == ISD::EntryToken; -#endif -} - -/// ScheduleBackward - Schedule instructions so that any long latency -/// instructions and the critical path get pushed back in time. Time is run in -/// reverse to allow code reuse of the Tally and eliminate the overhead of -/// biasing every slot indices against NSlots. -void SimpleSched::ScheduleBackward() { - // Size and clear the resource tally - Tally.Initialize(NSlots); - // Get number of nodes to schedule - unsigned N = Ordering.size(); - - // For each node being scheduled - for (unsigned i = N; 0 < i--;) { - NodeInfo *NI = Ordering[i]; - // Track insertion - unsigned Slot = NotFound; - - // Compare against those previously scheduled nodes - unsigned j = i + 1; - for (; j < N; j++) { - // Get following instruction - NodeInfo *Other = Ordering[j]; - - // Check dependency against previously inserted nodes - if (isStrongDependency(NI, Other)) { - Slot = Other->Slot + Other->Latency; - break; - } else if (isWeakDependency(NI, Other)) { - Slot = Other->Slot; - break; - } - } - - // If independent of others (or first entry) - if (Slot == NotFound) Slot = 0; - -#if 0 // FIXME - measure later - // Find a slot where the needed resources are available - if (NI->StageBegin != NI->StageEnd) - Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); -#endif - - // Set node slot - NI->Slot = Slot; - - // Insert sort based on slot - j = i + 1; - for (; j < N; j++) { - // Get following instruction - NodeInfo *Other = Ordering[j]; - // Should we look further (remember slots are in reverse time) - if (Slot >= Other->Slot) break; - // Shuffle other into ordering - Ordering[j - 1] = Other; - } - // Insert node in proper slot - if (j != i + 1) Ordering[j - 1] = NI; - } -} - -/// ScheduleForward - Schedule instructions to maximize packing. -/// -void SimpleSched::ScheduleForward() { - // Size and clear the resource tally - Tally.Initialize(NSlots); - // Get number of nodes to schedule - unsigned N = Ordering.size(); - - // For each node being scheduled - for (unsigned i = 0; i < N; i++) { - NodeInfo *NI = Ordering[i]; - // Track insertion - unsigned Slot = NotFound; - - // Compare against those previously scheduled nodes - unsigned j = i; - for (; 0 < j--;) { - // Get following instruction - NodeInfo *Other = Ordering[j]; - - // Check dependency against previously inserted nodes - if (isStrongDependency(Other, NI)) { - Slot = Other->Slot + Other->Latency; - break; - } else if (Other->IsCall || isWeakDependency(Other, NI)) { - Slot = Other->Slot; - break; - } - } - - // If independent of others (or first entry) - if (Slot == NotFound) Slot = 0; - - // Find a slot where the needed resources are available - if (NI->StageBegin != NI->StageEnd) - Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); - - // Set node slot - NI->Slot = Slot; - - // Insert sort based on slot - j = i; - for (; 0 < j--;) { - // Get prior instruction - NodeInfo *Other = Ordering[j]; - // Should we look further - if (Slot >= Other->Slot) break; - // Shuffle other into ordering - Ordering[j + 1] = Other; - } - // Insert node in proper slot - if (j != i) Ordering[j + 1] = NI; - } -} - -/// EmitAll - Emit all nodes in schedule sorted order. -/// -void SimpleSched::EmitAll() { - // For each node in the ordering - for (unsigned i = 0, N = Ordering.size(); i < N; i++) { - // Get the scheduling info - NodeInfo *NI = Ordering[i]; - if (NI->isInGroup()) { - NodeGroupIterator NGI(Ordering[i]); - while (NodeInfo *NI = NGI.next()) EmitNode(NI); - } else { - EmitNode(NI); - } - } -} /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the machine instrs.) -unsigned SimpleSched::CountResults(SDNode *Node) { +static unsigned CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; @@ -1023,7 +42,7 @@ unsigned SimpleSched::CountResults(SDNode *Node) { /// CountOperands The inputs to target nodes have any actual inputs first, /// followed by an optional chain operand, then flag operands. Compute the /// number of actual operands that will go into the machine instr. -unsigned SimpleSched::CountOperands(SDNode *Node) { +static unsigned CountOperands(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; @@ -1034,7 +53,7 @@ unsigned SimpleSched::CountOperan |