diff options
Diffstat (limited to 'lib/CodeGen/PHIElimination.cpp')
-rw-r--r-- | lib/CodeGen/PHIElimination.cpp | 278 |
1 files changed, 278 insertions, 0 deletions
diff --git a/lib/CodeGen/PHIElimination.cpp b/lib/CodeGen/PHIElimination.cpp new file mode 100644 index 0000000000..91805a93ed --- /dev/null +++ b/lib/CodeGen/PHIElimination.cpp @@ -0,0 +1,278 @@ +//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass eliminates machine instruction PHI nodes by inserting copy +// instructions. This destroys SSA information, but is the desired input for +// some register allocators. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include <set> +#include <algorithm> +using namespace llvm; + +namespace { + Statistic<> NumAtomic("phielim", "Number of atomic phis lowered"); + Statistic<> NumSimple("phielim", "Number of simple phis lowered"); + + struct PNE : public MachineFunctionPass { + bool runOnMachineFunction(MachineFunction &Fn) { + bool Changed = false; + + // Eliminate PHI instructions by inserting copies into predecessor blocks. + for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) + Changed |= EliminatePHINodes(Fn, *I); + + return Changed; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addPreserved<LiveVariables>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions + /// in predecessor basic blocks. + /// + bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); + void LowerAtomicPHINode(MachineBasicBlock &MBB, + MachineBasicBlock::iterator AfterPHIsIt, + DenseMap<unsigned, VirtReg2IndexFunctor> &VUC); + }; + + RegisterPass<PNE> X("phi-node-elimination", + "Eliminate PHI nodes for register allocation"); +} + + +const PassInfo *llvm::PHIEliminationID = X.getPassInfo(); + +/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in +/// predecessor basic blocks. +/// +bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { + if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) + return false; // Quick exit for basic blocks without PHIs. + + // VRegPHIUseCount - Keep track of the number of times each virtual register + // is used by PHI nodes in successors of this block. + DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount; + VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg()); + + for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(), + E = MBB.pred_end(); PI != E; ++PI) + for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(), + E = (*PI)->succ_end(); SI != E; ++SI) + for (MachineBasicBlock::iterator BBI = (*SI)->begin(), E = (*SI)->end(); + BBI != E && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) + for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) + VRegPHIUseCount[BBI->getOperand(i).getReg()]++; + + // Get an iterator to the first instruction after the last PHI node (this may + // also be the end of the basic block). + MachineBasicBlock::iterator AfterPHIsIt = MBB.begin(); + while (AfterPHIsIt != MBB.end() && + AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI) + ++AfterPHIsIt; // Skip over all of the PHI nodes... + + while (MBB.front().getOpcode() == TargetInstrInfo::PHI) { + LowerAtomicPHINode(MBB, AfterPHIsIt, VRegPHIUseCount); + } + return true; +} + +/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, +/// under the assuption that it needs to be lowered in a way that supports +/// atomic execution of PHIs. This lowering method is always correct all of the +/// time. +void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB, + MachineBasicBlock::iterator AfterPHIsIt, + DenseMap<unsigned, VirtReg2IndexFunctor> &VRegPHIUseCount) { + // Unlink the PHI node from the basic block, but don't delete the PHI yet. + MachineInstr *MPhi = MBB.remove(MBB.begin()); + + unsigned DestReg = MPhi->getOperand(0).getReg(); + + // Create a new register for the incoming PHI arguments/ + MachineFunction &MF = *MBB.getParent(); + const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg); + unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC); + + // Insert a register to register copy in the top of the current block (but + // after any remaining phi nodes) which copies the new incoming register + // into the phi node destination. + // + const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); + RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC); + + // Update live variable information if there is any... + LiveVariables *LV = getAnalysisToUpdate<LiveVariables>(); + if (LV) { + MachineInstr *PHICopy = prior(AfterPHIsIt); + + // Add information to LiveVariables to know that the incoming value is + // killed. Note that because the value is defined in several places (once + // each for each incoming block), the "def" block and instruction fields + // for the VarInfo is not filled in. + // + LV->addVirtualRegisterKilled(IncomingReg, PHICopy); + + // Since we are going to be deleting the PHI node, if it is the last use + // of any registers, or if the value itself is dead, we need to move this + // information over to the new copy we just inserted. + // + LV->removeVirtualRegistersKilled(MPhi); + + // If the result is dead, update LV. + if (LV->RegisterDefIsDead(MPhi, DestReg)) { + LV->addVirtualRegisterDead(DestReg, PHICopy); + LV->removeVirtualRegistersDead(MPhi); + } + } + + // Adjust the VRegPHIUseCount map to account for the removal of this PHI + // node. + unsigned NumPreds = (MPhi->getNumOperands()-1)/2; + for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) + VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= NumPreds; + + // Now loop over all of the incoming arguments, changing them to copy into + // the IncomingReg register in the corresponding predecessor basic block. + // + std::set<MachineBasicBlock*> MBBsInsertedInto; + for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) { + unsigned SrcReg = MPhi->getOperand(i-1).getReg(); + assert(MRegisterInfo::isVirtualRegister(SrcReg) && + "Machine PHI Operands must all be virtual registers!"); + + // Get the MachineBasicBlock equivalent of the BasicBlock that is the + // source path the PHI. + MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock(); + + // Check to make sure we haven't already emitted the copy for this block. + // This can happen because PHI nodes may have multiple entries for the + // same basic block. + if (!MBBsInsertedInto.insert(&opBlock).second) + continue; // If the copy has already been emitted, we're done. + + // Get an iterator pointing to the first terminator in the block (or end()). + // This is the point where we can insert a copy if we'd like to. + MachineBasicBlock::iterator I = opBlock.getFirstTerminator(); + + // Insert the copy. + RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC); + + // Now update live variable information if we have it. Otherwise we're done + if (!LV) continue; + + // We want to be able to insert a kill of the register if this PHI + // (aka, the copy we just inserted) is the last use of the source + // value. Live variable analysis conservatively handles this by + // saying that the value is live until the end of the block the PHI + // entry lives in. If the value really is dead at the PHI copy, there + // will be no successor blocks which have the value live-in. + // + // Check to see if the copy is the last use, and if so, update the + // live variables information so that it knows the copy source + // instruction kills the incoming value. + // + LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg); + + // Loop over all of the successors of the basic block, checking to see + // if the value is either live in the block, or if it is killed in the + // block. Also check to see if this register is in use by another PHI + // node which has not yet been eliminated. If so, it will be killed + // at an appropriate point later. + // + + // Is it used by any PHI instructions in this block? + bool ValueIsLive = VRegPHIUseCount[SrcReg] != 0; + + std::vector<MachineBasicBlock*> OpSuccBlocks; + + // Otherwise, scan successors, including the BB the PHI node lives in. + for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), + E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) { + MachineBasicBlock *SuccMBB = *SI; + + // Is it alive in this successor? + unsigned SuccIdx = SuccMBB->getNumber(); + if (SuccIdx < InRegVI.AliveBlocks.size() && + InRegVI.AliveBlocks[SuccIdx]) { + ValueIsLive = true; + break; + } + + OpSuccBlocks.push_back(SuccMBB); + } + + // Check to see if this value is live because there is a use in a successor + // that kills it. + if (!ValueIsLive) { + switch (OpSuccBlocks.size()) { + case 1: { + MachineBasicBlock *MBB = OpSuccBlocks[0]; + for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) + if (InRegVI.Kills[i]->getParent() == MBB) { + ValueIsLive = true; + break; + } + break; + } + case 2: { + MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1]; + for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) + if (InRegVI.Kills[i]->getParent() == MBB1 || + InRegVI.Kills[i]->getParent() == MBB2) { + ValueIsLive = true; + break; + } + break; + } + default: + std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); + for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) + if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), + InRegVI.Kills[i]->getParent())) { + ValueIsLive = true; + break; + } + } + } + + // Okay, if we now know that the value is not live out of the block, + // we can add a kill marker to the copy we inserted saying that it + // kills the incoming value! + // + if (!ValueIsLive) { + MachineBasicBlock::iterator Prev = prior(I); + LV->addVirtualRegisterKilled(SrcReg, Prev); + + // This vreg no longer lives all of the way through opBlock. + unsigned opBlockNum = opBlock.getNumber(); + if (opBlockNum < InRegVI.AliveBlocks.size()) + InRegVI.AliveBlocks[opBlockNum] = false; + } + } + + // Really delete the PHI instruction now! + delete MPhi; + ++NumAtomic; +} |