aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveVariables.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/LiveVariables.cpp')
-rw-r--r--lib/CodeGen/LiveVariables.cpp394
1 files changed, 394 insertions, 0 deletions
diff --git a/lib/CodeGen/LiveVariables.cpp b/lib/CodeGen/LiveVariables.cpp
new file mode 100644
index 0000000000..cb034c017a
--- /dev/null
+++ b/lib/CodeGen/LiveVariables.cpp
@@ -0,0 +1,394 @@
+//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveVariable analysis pass. For each machine
+// instruction in the function, this pass calculates the set of registers that
+// are immediately dead after the instruction (i.e., the instruction calculates
+// the value, but it is never used) and the set of registers that are used by
+// the instruction, but are never used after the instruction (i.e., they are
+// killed).
+//
+// This class computes live variables using are sparse implementation based on
+// the machine code SSA form. This class computes live variable information for
+// each virtual and _register allocatable_ physical register in a function. It
+// uses the dominance properties of SSA form to efficiently compute live
+// variables for virtual registers, and assumes that physical registers are only
+// live within a single basic block (allowing it to do a single local analysis
+// to resolve physical register lifetimes in each basic block). If a physical
+// register is not register allocatable, it is not tracked. This is useful for
+// things like the stack pointer and condition codes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Config/alloca.h"
+#include <algorithm>
+using namespace llvm;
+
+static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
+
+LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
+ assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
+ "getVarInfo: not a virtual register!");
+ RegIdx -= MRegisterInfo::FirstVirtualRegister;
+ if (RegIdx >= VirtRegInfo.size()) {
+ if (RegIdx >= 2*VirtRegInfo.size())
+ VirtRegInfo.resize(RegIdx*2);
+ else
+ VirtRegInfo.resize(2*VirtRegInfo.size());
+ }
+ return VirtRegInfo[RegIdx];
+}
+
+bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
+ std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
+ RegistersKilled.find(MI);
+ if (I == RegistersKilled.end()) return false;
+
+ // Do a binary search, as these lists can grow pretty big, particularly for
+ // call instructions on targets with lots of call-clobbered registers.
+ return std::binary_search(I->second.begin(), I->second.end(), Reg);
+}
+
+bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
+ std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
+ RegistersDead.find(MI);
+ if (I == RegistersDead.end()) return false;
+
+ // Do a binary search, as these lists can grow pretty big, particularly for
+ // call instructions on targets with lots of call-clobbered registers.
+ return std::binary_search(I->second.begin(), I->second.end(), Reg);
+}
+
+
+void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
+ MachineBasicBlock *MBB) {
+ unsigned BBNum = MBB->getNumber();
+
+ // Check to see if this basic block is one of the killing blocks. If so,
+ // remove it...
+ for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
+ if (VRInfo.Kills[i]->getParent() == MBB) {
+ VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
+ break;
+ }
+
+ if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion
+
+ if (VRInfo.AliveBlocks.size() <= BBNum)
+ VRInfo.AliveBlocks.resize(BBNum+1); // Make space...
+
+ if (VRInfo.AliveBlocks[BBNum])
+ return; // We already know the block is live
+
+ // Mark the variable known alive in this bb
+ VRInfo.AliveBlocks[BBNum] = true;
+
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ E = MBB->pred_end(); PI != E; ++PI)
+ MarkVirtRegAliveInBlock(VRInfo, *PI);
+}
+
+void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
+ MachineInstr *MI) {
+ assert(VRInfo.DefInst && "Register use before def!");
+
+ // Check to see if this basic block is already a kill block...
+ if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
+ // Yes, this register is killed in this basic block already. Increase the
+ // live range by updating the kill instruction.
+ VRInfo.Kills.back() = MI;
+ return;
+ }
+
+#ifndef NDEBUG
+ for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
+ assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
+#endif
+
+ assert(MBB != VRInfo.DefInst->getParent() &&
+ "Should have kill for defblock!");
+
+ // Add a new kill entry for this basic block.
+ VRInfo.Kills.push_back(MI);
+
+ // Update all dominating blocks to mark them known live.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ E = MBB->pred_end(); PI != E; ++PI)
+ MarkVirtRegAliveInBlock(VRInfo, *PI);
+}
+
+void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
+ PhysRegInfo[Reg] = MI;
+ PhysRegUsed[Reg] = true;
+
+ for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+ unsigned Alias = *AliasSet; ++AliasSet) {
+ PhysRegInfo[Alias] = MI;
+ PhysRegUsed[Alias] = true;
+ }
+}
+
+void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
+ // Does this kill a previous version of this register?
+ if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
+ if (PhysRegUsed[Reg])
+ RegistersKilled[LastUse].push_back(Reg);
+ else
+ RegistersDead[LastUse].push_back(Reg);
+ }
+ PhysRegInfo[Reg] = MI;
+ PhysRegUsed[Reg] = false;
+
+ for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+ unsigned Alias = *AliasSet; ++AliasSet) {
+ if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
+ if (PhysRegUsed[Alias])
+ RegistersKilled[LastUse].push_back(Alias);
+ else
+ RegistersDead[LastUse].push_back(Alias);
+ }
+ PhysRegInfo[Alias] = MI;
+ PhysRegUsed[Alias] = false;
+ }
+}
+
+bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ RegInfo = MF.getTarget().getRegisterInfo();
+ assert(RegInfo && "Target doesn't have register information?");
+
+ AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF);
+
+ // PhysRegInfo - Keep track of which instruction was the last use of a
+ // physical register. This is a purely local property, because all physical
+ // register references as presumed dead across basic blocks.
+ //
+ PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
+ RegInfo->getNumRegs());
+ PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
+ std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);
+
+ /// Get some space for a respectable number of registers...
+ VirtRegInfo.resize(64);
+
+ // Mark live-in registers as live-in.
+ for (MachineFunction::livein_iterator I = MF.livein_begin(),
+ E = MF.livein_end(); I != E; ++I) {
+ assert(MRegisterInfo::isPhysicalRegister(I->first) &&
+ "Cannot have a live-in virtual register!");
+ HandlePhysRegDef(I->first, 0);
+ }
+
+ // Calculate live variable information in depth first order on the CFG of the
+ // function. This guarantees that we will see the definition of a virtual
+ // register before its uses due to dominance properties of SSA (except for PHI
+ // nodes, which are treated as a special case).
+ //
+ MachineBasicBlock *Entry = MF.begin();
+ std::set<MachineBasicBlock*> Visited;
+ for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
+ E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
+ MachineBasicBlock *MBB = *DFI;
+ unsigned BBNum = MBB->getNumber();
+
+ // Loop over all of the instructions, processing them.
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ MachineInstr *MI = I;
+ const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
+
+ // Process all of the operands of the instruction...
+ unsigned NumOperandsToProcess = MI->getNumOperands();
+
+ // Unless it is a PHI node. In this case, ONLY process the DEF, not any
+ // of the uses. They will be handled in other basic blocks.
+ if (MI->getOpcode() == TargetInstrInfo::PHI)
+ NumOperandsToProcess = 1;
+
+ // Loop over implicit uses, using them.
+ for (const unsigned *ImplicitUses = MID.ImplicitUses;
+ *ImplicitUses; ++ImplicitUses)
+ HandlePhysRegUse(*ImplicitUses, MI);
+
+ // Process all explicit uses...
+ for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isUse() && MO.isRegister() && MO.getReg()) {
+ if (MRegisterInfo::isVirtualRegister(MO.getReg())){
+ HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
+ } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ AllocatablePhysicalRegisters[MO.getReg()]) {
+ HandlePhysRegUse(MO.getReg(), MI);
+ }
+ }
+ }
+
+ // Loop over implicit defs, defining them.
+ for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
+ *ImplicitDefs; ++ImplicitDefs)
+ HandlePhysRegDef(*ImplicitDefs, MI);
+
+ // Process all explicit defs...
+ for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isDef() && MO.isRegister() && MO.getReg()) {
+ if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
+ VarInfo &VRInfo = getVarInfo(MO.getReg());
+
+ assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
+ VRInfo.DefInst = MI;
+ // Defaults to dead
+ VRInfo.Kills.push_back(MI);
+ } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ AllocatablePhysicalRegisters[MO.getReg()]) {
+ HandlePhysRegDef(MO.getReg(), MI);
+ }
+ }
+ }
+ }
+
+ // Handle any virtual assignments from PHI nodes which might be at the
+ // bottom of this basic block. We check all of our successor blocks to see
+ // if they have PHI nodes, and if so, we simulate an assignment at the end
+ // of the current block.
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ E = MBB->succ_end(); SI != E; ++SI) {
+ MachineBasicBlock *Succ = *SI;
+
+ // PHI nodes are guaranteed to be at the top of the block...
+ for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
+ MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
+ for (unsigned i = 1; ; i += 2) {
+ assert(MI->getNumOperands() > i+1 &&
+ "Didn't find an entry for our predecessor??");
+ if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.getVRegValueOrNull()) {
+ VarInfo &VRInfo = getVarInfo(MO.getReg());
+
+ // Only mark it alive only in the block we are representing...
+ MarkVirtRegAliveInBlock(VRInfo, MBB);
+ break; // Found the PHI entry for this block...
+ }
+ }
+ }
+ }
+ }
+
+ // Finally, if the last block in the function is a return, make sure to mark
+ // it as using all of the live-out values in the function.
+ if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
+ MachineInstr *Ret = &MBB->back();
+ for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
+ E = MF.liveout_end(); I != E; ++I) {
+ assert(MRegisterInfo::isPhysicalRegister(*I) &&
+ "Cannot have a live-in virtual register!");
+ HandlePhysRegUse(*I, Ret);
+ }
+ }
+
+ // Loop over PhysRegInfo, killing any registers that are available at the
+ // end of the basic block. This also resets the PhysRegInfo map.
+ for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
+ if (PhysRegInfo[i])
+ HandlePhysRegDef(i, 0);
+ }
+
+ // Convert the information we have gathered into VirtRegInfo and transform it
+ // into a form usable by RegistersKilled.
+ //
+ for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
+ for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
+ if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
+ RegistersDead[VirtRegInfo[i].Kills[j]].push_back(
+ i + MRegisterInfo::FirstVirtualRegister);
+
+ else
+ RegistersKilled[VirtRegInfo[i].Kills[j]].push_back(
+ i + MRegisterInfo::FirstVirtualRegister);
+ }
+
+ // Walk through the RegistersKilled/Dead sets, and sort the registers killed
+ // or dead. This allows us to use efficient binary search for membership
+ // testing.
+ for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
+ I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I)
+ std::sort(I->second.begin(), I->second.end());
+ for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
+ I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I)
+ std::sort(I->second.begin(), I->second.end());
+
+ // Check to make sure there are no unreachable blocks in the MC CFG for the
+ // function. If so, it is due to a bug in the instruction selector or some
+ // other part of the code generator if this happens.
+#ifndef NDEBUG
+ for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
+ assert(Visited.count(&*i) != 0 && "unreachable basic block found");
+#endif
+
+ return false;
+}
+
+/// instructionChanged - When the address of an instruction changes, this
+/// method should be called so that live variables can update its internal
+/// data structures. This removes the records for OldMI, transfering them to
+/// the records for NewMI.
+void LiveVariables::instructionChanged(MachineInstr *OldMI,
+ MachineInstr *NewMI) {
+ // If the instruction defines any virtual registers, update the VarInfo for
+ // the instruction.
+ for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = OldMI->getOperand(i);
+ if (MO.isRegister() && MO.getReg() &&
+ MRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned Reg = MO.getReg();
+ VarInfo &VI = getVarInfo(Reg);
+ if (MO.isDef()) {
+ // Update the defining instruction.
+ if (VI.DefInst == OldMI)
+ VI.DefInst = NewMI;
+ }
+ if (MO.isUse()) {
+ // If this is a kill of the value, update the VI kills list.
+ if (VI.removeKill(OldMI))
+ VI.Kills.push_back(NewMI); // Yes, there was a kill of it
+ }
+ }
+ }
+
+ // Move the killed information over...
+ killed_iterator I, E;
+ tie(I, E) = killed_range(OldMI);
+ if (I != E) {
+ std::vector<unsigned> &V = RegistersKilled[NewMI];
+ bool WasEmpty = V.empty();
+ V.insert(V.end(), I, E);
+ if (!WasEmpty)
+ std::sort(V.begin(), V.end()); // Keep the reg list sorted.
+ RegistersKilled.erase(OldMI);
+ }
+
+ // Move the dead information over...
+ tie(I, E) = dead_range(OldMI);
+ if (I != E) {
+ std::vector<unsigned> &V = RegistersDead[NewMI];
+ bool WasEmpty = V.empty();
+ V.insert(V.end(), I, E);
+ if (!WasEmpty)
+ std::sort(V.begin(), V.end()); // Keep the reg list sorted.
+ RegistersDead.erase(OldMI);
+ }
+}