diff options
Diffstat (limited to 'lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r-- | lib/CodeGen/LiveIntervalAnalysis.cpp | 848 |
1 files changed, 848 insertions, 0 deletions
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp new file mode 100644 index 0000000000..974ac1c547 --- /dev/null +++ b/lib/CodeGen/LiveIntervalAnalysis.cpp @@ -0,0 +1,848 @@ +//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveInterval analysis pass which is used +// by the Linear Scan Register allocator. This pass linearizes the +// basic blocks of the function in DFS order and uses the +// LiveVariables pass to conservatively compute live intervals for +// each virtual and physical register. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "liveintervals" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "VirtRegMap.h" +#include "llvm/Value.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +#include <cmath> +using namespace llvm; + +namespace { + RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis"); + + Statistic<> numIntervals + ("liveintervals", "Number of original intervals"); + + Statistic<> numIntervalsAfter + ("liveintervals", "Number of intervals after coalescing"); + + Statistic<> numJoins + ("liveintervals", "Number of interval joins performed"); + + Statistic<> numPeep + ("liveintervals", "Number of identity moves eliminated after coalescing"); + + Statistic<> numFolded + ("liveintervals", "Number of loads/stores folded into instructions"); + + cl::opt<bool> + EnableJoining("join-liveintervals", + cl::desc("Join compatible live intervals"), + cl::init(true)); +}; + +void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const +{ + AU.addRequired<LiveVariables>(); + AU.addPreservedID(PHIEliminationID); + AU.addRequiredID(PHIEliminationID); + AU.addRequiredID(TwoAddressInstructionPassID); + AU.addRequired<LoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +void LiveIntervals::releaseMemory() +{ + mi2iMap_.clear(); + i2miMap_.clear(); + r2iMap_.clear(); + r2rMap_.clear(); +} + + +/// runOnMachineFunction - Register allocate the whole function +/// +bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { + mf_ = &fn; + tm_ = &fn.getTarget(); + mri_ = tm_->getRegisterInfo(); + tii_ = tm_->getInstrInfo(); + lv_ = &getAnalysis<LiveVariables>(); + allocatableRegs_ = mri_->getAllocatableSet(fn); + r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg()); + + // If this function has any live ins, insert a dummy instruction at the + // beginning of the function that we will pretend "defines" the values. This + // is to make the interval analysis simpler by providing a number. + if (fn.livein_begin() != fn.livein_end()) { + unsigned FirstLiveIn = fn.livein_begin()->first; + + // Find a reg class that contains this live in. + const TargetRegisterClass *RC = 0; + for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(), + E = mri_->regclass_end(); RCI != E; ++RCI) + if ((*RCI)->contains(FirstLiveIn)) { + RC = *RCI; + break; + } + + MachineInstr *OldFirstMI = fn.begin()->begin(); + mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(), + FirstLiveIn, FirstLiveIn, RC); + assert(OldFirstMI != fn.begin()->begin() && + "copyRetToReg didn't insert anything!"); + } + + // number MachineInstrs + unsigned miIndex = 0; + for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end(); + mbb != mbbEnd; ++mbb) + for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); + mi != miEnd; ++mi) { + bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second; + assert(inserted && "multiple MachineInstr -> index mappings"); + i2miMap_.push_back(mi); + miIndex += InstrSlots::NUM; + } + + // Note intervals due to live-in values. + if (fn.livein_begin() != fn.livein_end()) { + MachineBasicBlock *Entry = fn.begin(); + for (MachineFunction::livein_iterator I = fn.livein_begin(), + E = fn.livein_end(); I != E; ++I) { + handlePhysicalRegisterDef(Entry, Entry->begin(), + getOrCreateInterval(I->first), 0, 0, true); + for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS) + handlePhysicalRegisterDef(Entry, Entry->begin(), + getOrCreateInterval(*AS), 0, 0, true); + } + } + + computeIntervals(); + + numIntervals += getNumIntervals(); + + DEBUG(std::cerr << "********** INTERVALS **********\n"; + for (iterator I = begin(), E = end(); I != E; ++I) { + I->second.print(std::cerr, mri_); + std::cerr << "\n"; + }); + + // join intervals if requested + if (EnableJoining) joinIntervals(); + + numIntervalsAfter += getNumIntervals(); + + // perform a final pass over the instructions and compute spill + // weights, coalesce virtual registers and remove identity moves + const LoopInfo& loopInfo = getAnalysis<LoopInfo>(); + + for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); + mbbi != mbbe; ++mbbi) { + MachineBasicBlock* mbb = mbbi; + unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); + + for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); + mii != mie; ) { + // if the move will be an identity move delete it + unsigned srcReg, dstReg, RegRep; + if (tii_->isMoveInstr(*mii, srcReg, dstReg) && + (RegRep = rep(srcReg)) == rep(dstReg)) { + // remove from def list + LiveInterval &interval = getOrCreateInterval(RegRep); + // remove index -> MachineInstr and + // MachineInstr -> index mappings + Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii); + if (mi2i != mi2iMap_.end()) { + i2miMap_[mi2i->second/InstrSlots::NUM] = 0; + mi2iMap_.erase(mi2i); + } + mii = mbbi->erase(mii); + ++numPeep; + } + else { + for (unsigned i = 0; i < mii->getNumOperands(); ++i) { + const MachineOperand& mop = mii->getOperand(i); + if (mop.isRegister() && mop.getReg() && + MRegisterInfo::isVirtualRegister(mop.getReg())) { + // replace register with representative register + unsigned reg = rep(mop.getReg()); + mii->SetMachineOperandReg(i, reg); + + LiveInterval &RegInt = getInterval(reg); + RegInt.weight += + (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth); + } + } + ++mii; + } + } + } + + DEBUG(dump()); + return true; +} + +/// print - Implement the dump method. +void LiveIntervals::print(std::ostream &O, const Module* ) const { + O << "********** INTERVALS **********\n"; + for (const_iterator I = begin(), E = end(); I != E; ++I) { + I->second.print(std::cerr, mri_); + std::cerr << "\n"; + } + + O << "********** MACHINEINSTRS **********\n"; + for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); + mbbi != mbbe; ++mbbi) { + O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; + for (MachineBasicBlock::iterator mii = mbbi->begin(), + mie = mbbi->end(); mii != mie; ++mii) { + O << getInstructionIndex(mii) << '\t' << *mii; + } + } +} + +std::vector<LiveInterval*> LiveIntervals:: +addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { + // since this is called after the analysis is done we don't know if + // LiveVariables is available + lv_ = getAnalysisToUpdate<LiveVariables>(); + + std::vector<LiveInterval*> added; + + assert(li.weight != HUGE_VAL && + "attempt to spill already spilled interval!"); + + DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: " + << li << '\n'); + + const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg); + + for (LiveInterval::Ranges::const_iterator + i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { + unsigned index = getBaseIndex(i->start); + unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM; + for (; index != end; index += InstrSlots::NUM) { + // skip deleted instructions + while (index != end && !getInstructionFromIndex(index)) + index += InstrSlots::NUM; + if (index == end) break; + + MachineBasicBlock::iterator mi = getInstructionFromIndex(index); + + // NewRegLiveIn - This instruction might have multiple uses of the spilled + // register. In this case, for the first use, keep track of the new vreg + // that we reload it into. If we see a second use, reuse this vreg + // instead of creating live ranges for two reloads. + unsigned NewRegLiveIn = 0; + + for_operand: + for (unsigned i = 0; i != mi->getNumOperands(); ++i) { + MachineOperand& mop = mi->getOperand(i); + if (mop.isRegister() && mop.getReg() == li.reg) { + if (NewRegLiveIn && mop.isUse()) { + // We already emitted a reload of this value, reuse it for + // subsequent operands. + mi->SetMachineOperandReg(i, NewRegLiveIn); + DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn + << " for operand #" << i << '\n'); + } else if (MachineInstr* fmi = mri_->foldMemoryOperand(mi, i, slot)) { + // Attempt to fold the memory reference into the instruction. If we + // can do this, we don't need to insert spill code. + if (lv_) + lv_->instructionChanged(mi, fmi); + vrm.virtFolded(li.reg, mi, i, fmi); + mi2iMap_.erase(mi); + i2miMap_[index/InstrSlots::NUM] = fmi; + mi2iMap_[fmi] = index; + MachineBasicBlock &MBB = *mi->getParent(); + mi = MBB.insert(MBB.erase(mi), fmi); + ++numFolded; + + // Folding the load/store can completely change the instruction in + // unpredictable ways, rescan it from the beginning. + goto for_operand; + } else { + // This is tricky. We need to add information in the interval about + // the spill code so we have to use our extra load/store slots. + // + // If we have a use we are going to have a load so we start the + // interval from the load slot onwards. Otherwise we start from the + // def slot. + unsigned start = (mop.isUse() ? + getLoadIndex(index) : + getDefIndex(index)); + // If we have a def we are going to have a store right after it so + // we end the interval after the use of the next + // instruction. Otherwise we end after the use of this instruction. + unsigned end = 1 + (mop.isDef() ? + getStoreIndex(index) : + getUseIndex(index)); + + // create a new register for this spill + NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc); + mi->SetMachineOperandReg(i, NewRegLiveIn); + vrm.grow(); + vrm.assignVirt2StackSlot(NewRegLiveIn, slot); + LiveInterval& nI = getOrCreateInterval(NewRegLiveIn); + assert(nI.empty()); + + // the spill weight is now infinity as it + // cannot be spilled again + nI.weight = float(HUGE_VAL); + LiveRange LR(start, end, nI.getNextValue()); + DEBUG(std::cerr << " +" << LR); + nI.addRange(LR); + added.push_back(&nI); + + // update live variables if it is available + if (lv_) + lv_->addVirtualRegisterKilled(NewRegLiveIn, mi); + + // If this is a live in, reuse it for subsequent live-ins. If it's + // a def, we can't do this. + if (!mop.isUse()) NewRegLiveIn = 0; + + DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n'); + } + } + } + } + } + + return added; +} + +void LiveIntervals::printRegName(unsigned reg) const +{ + if (MRegisterInfo::isPhysicalRegister(reg)) + std::cerr << mri_->getName(reg); + else + std::cerr << "%reg" << reg; +} + +void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb, + MachineBasicBlock::iterator mi, + LiveInterval& interval) +{ + DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); + LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); + + // Virtual registers may be defined multiple times (due to phi + // elimination and 2-addr elimination). Much of what we do only has to be + // done once for the vreg. We use an empty interval to detect the first + // time we see a vreg. + if (interval.empty()) { + // Get the Idx of the defining instructions. + unsigned defIndex = getDefIndex(getInstructionIndex(mi)); + + unsigned ValNum = interval.getNextValue(); + assert(ValNum == 0 && "First value in interval is not 0?"); + ValNum = 0; // Clue in the optimizer. + + // Loop over all of the blocks that the vreg is defined in. There are + // two cases we have to handle here. The most common case is a vreg + // whose lifetime is contained within a basic block. In this case there + // will be a single kill, in MBB, which comes after the definition. + if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { + // FIXME: what about dead vars? + unsigned killIdx; + if (vi.Kills[0] != mi) + killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; + else + killIdx = defIndex+1; + + // If the kill happens after the definition, we have an intra-block + // live range. + if (killIdx > defIndex) { + assert(vi.AliveBlocks.empty() && + "Shouldn't be alive across any blocks!"); + LiveRange LR(defIndex, killIdx, ValNum); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR << "\n"); + return; + } + } + + // The other case we handle is when a virtual register lives to the end + // of the defining block, potentially live across some blocks, then is + // live into some number of blocks, but gets killed. Start by adding a + // range that goes from this definition to the end of the defining block. + LiveRange NewLR(defIndex, + getInstructionIndex(&mbb->back()) + InstrSlots::NUM, + ValNum); + DEBUG(std::cerr << " +" << NewLR); + interval.addRange(NewLR); + + // Iterate over all of the blocks that the variable is completely + // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the + // live interval. + for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { + if (vi.AliveBlocks[i]) { + MachineBasicBlock* mbb = mf_->getBlockNumbered(i); + if (!mbb->empty()) { + LiveRange LR(getInstructionIndex(&mbb->front()), + getInstructionIndex(&mbb->back()) + InstrSlots::NUM, + ValNum); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR); + } + } + } + + // Finally, this virtual register is live from the start of any killing + // block to the 'use' slot of the killing instruction. + for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { + MachineInstr *Kill = vi.Kills[i]; + LiveRange LR(getInstructionIndex(Kill->getParent()->begin()), + getUseIndex(getInstructionIndex(Kill))+1, + ValNum); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR); + } + + } else { + // If this is the second time we see a virtual register definition, it + // must be due to phi elimination or two addr elimination. If this is + // the result of two address elimination, then the vreg is the first + // operand, and is a def-and-use. + if (mi->getOperand(0).isRegister() && + mi->getOperand(0).getReg() == interval.reg && + mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) { + // If this is a two-address definition, then we have already processed + // the live range. The only problem is that we didn't realize there + // are actually two values in the live interval. Because of this we + // need to take the LiveRegion that defines this register and split it + // into two values. + unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst)); + unsigned RedefIndex = getDefIndex(getInstructionIndex(mi)); + + // Delete the initial value, which should be short and continuous, + // becuase the 2-addr copy must be in the same MBB as the redef. + interval.removeRange(DefIndex, RedefIndex); + + LiveRange LR(DefIndex, RedefIndex, interval.getNextValue()); + DEBUG(std::cerr << " replace range with " << LR); + interval.addRange(LR); + + // If this redefinition is dead, we need to add a dummy unit live + // range covering the def slot. + if (lv_->RegisterDefIsDead(mi, interval.reg)) + interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0)); + + DEBUG(std::cerr << "RESULT: " << interval); + + } else { + // Otherwise, this must be because of phi elimination. If this is the + // first redefinition of the vreg that we have seen, go back and change + // the live range in the PHI block to be a different value number. + if (interval.containsOneValue()) { + assert(vi.Kills.size() == 1 && + "PHI elimination vreg should have one kill, the PHI itself!"); + + // Remove the old range that we now know has an incorrect number. + MachineInstr *Killer = vi.Kills[0]; + unsigned Start = getInstructionIndex(Killer->getParent()->begin()); + unsigned End = getUseIndex(getInstructionIndex(Killer))+1; + DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: " + << interval << "\n"); + interval.removeRange(Start, End); + DEBUG(std::cerr << "RESULT: " << interval); + + // Replace the interval with one of a NEW value number. + LiveRange LR(Start, End, interval.getNextValue()); + DEBUG(std::cerr << " replace range with " << LR); + interval.addRange(LR); + DEBUG(std::cerr << "RESULT: " << interval); + } + + // In the case of PHI elimination, each variable definition is only + // live until the end of the block. We've already taken care of the + // rest of the live range. + unsigned defIndex = getDefIndex(getInstructionIndex(mi)); + LiveRange LR(defIndex, + getInstructionIndex(&mbb->back()) + InstrSlots::NUM, + interval.getNextValue()); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR); + } + } + + DEBUG(std::cerr << '\n'); +} + +void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, + MachineBasicBlock::iterator mi, + LiveInterval& interval, + unsigned SrcReg, unsigned DestReg, + bool isLiveIn) +{ + // A physical register cannot be live across basic block, so its + // lifetime must end somewhere in its defining basic block. + DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); + typedef LiveVariables::killed_iterator KillIter; + + unsigned baseIndex = getInstructionIndex(mi); + unsigned start = getDefIndex(baseIndex); + unsigned end = start; + + // If it is not used after definition, it is considered dead at + // the instruction defining it. Hence its interval is: + // [defSlot(def), defSlot(def)+1) + if (lv_->RegisterDefIsDead(mi, interval.reg)) { + DEBUG(std::cerr << " dead"); + end = getDefIndex(start) + 1; + goto exit; + } + + // If it is not dead on definition, it must be killed by a + // subsequent instruction. Hence its interval is: + // [defSlot(def), useSlot(kill)+1) + while (++mi != MBB->end()) { + baseIndex += InstrSlots::NUM; + if (lv_->KillsRegister(mi, interval.reg)) { + DEBUG(std::cerr << " killed"); + end = getUseIndex(baseIndex) + 1; + goto exit; + } + } + + // The only case we should have a dead physreg here without a killing or + // instruction where we know it's dead is if it is live-in to the function + // and never used. + assert(isLiveIn && "physreg was not killed in defining block!"); + end = getDefIndex(start) + 1; // It's dead. + +exit: + assert(start < end && "did not find end of interval?"); + + // Finally, if this is defining a new range for the physical register, and if + // that physreg is just a copy from a vreg, and if THAT vreg was a copy from + // the physreg, then the new fragment has the same value as the one copied + // into the vreg. + if (interval.reg == DestReg && !interval.empty() && + MRegisterInfo::isVirtualRegister(SrcReg)) { + + // Get the live interval for the vreg, see if it is defined by a copy. + LiveInterval &SrcInterval = getOrCreateInterval(SrcReg); + + if (SrcInterval.containsOneValue()) { + assert(!SrcInterval.empty() && "Can't contain a value and be empty!"); + + // Get the first index of the first range. Though the interval may have + // multiple liveranges in it, we only check the first. + unsigned StartIdx = SrcInterval.begin()->start; + MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx); + + // Check to see if the vreg was defined by a copy instruction, and that + // the source was this physreg. + unsigned VRegSrcSrc, VRegSrcDest; + if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) && + SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) { + // Okay, now we know that the vreg was defined by a copy from this + // physreg. Find the value number being copied and use it as the value + // for this range. + const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1); + if (DefRange) { + LiveRange LR(start, end, DefRange->ValId); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR << '\n'); + return; + } + } + } + } + + + LiveRange LR(start, end, interval.getNextValue()); + interval.addRange(LR); + DEBUG(std::cerr << " +" << LR << '\n'); +} + +void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, + MachineBasicBlock::iterator MI, + unsigned reg) { + if (MRegisterInfo::isVirtualRegister(reg)) + handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg)); + else if (allocatableRegs_[reg]) { + unsigned SrcReg = 0, DestReg = 0; + bool IsMove = tii_->isMoveInstr(*MI, SrcReg, DestReg); + + handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg), + SrcReg, DestReg); + for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS) + handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS), + SrcReg, DestReg); + } +} + +/// computeIntervals - computes the live intervals for virtual +/// registers. for some ordering of the machine instructions [1,N] a +/// live interval is an interval [i, j) where 1 <= i <= j < N for +/// which a variable is live +void LiveIntervals::computeIntervals() +{ + DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n"); + DEBUG(std::cerr << "********** Function: " + << ((Value*)mf_->getFunction())->getName() << '\n'); + bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end(); + + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); + I != E; ++I) { + MachineBasicBlock* mbb = I; + DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n"); + + MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); + if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; } + for (; mi != miEnd; ++mi) { + const TargetInstrDescriptor& tid = + tm_->getInstrInfo()->get(mi->getOpcode()); + DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi); + + // handle implicit defs + for (const unsigned* id = tid.ImplicitDefs; *id; ++id) + handleRegisterDef(mbb, mi, *id); + + // handle explicit defs + for (int i = mi->getNumOperands() - 1; i >= 0; --i) { + MachineOperand& mop = mi->getOperand(i); + // handle register defs - build intervals + if (mop.isRegister() && mop.getReg() && mop.isDef()) + handleRegisterDef(mbb, mi, mop.getReg()); + } + } + } +} + +/// IntA is defined as a copy from IntB and we know it only has one value +/// number. If all of the places that IntA and IntB overlap are defined by +/// copies from IntA to IntB, we know that these two ranges can really be +/// merged if we adjust the value numbers. If it is safe, adjust the value +/// numbers and return true, allowing coalescing to occur. +bool LiveIntervals:: +AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA, + LiveInterval &IntB, + unsigned CopyIdx) { + std::vector<LiveRange*> Ranges; + IntA.getOverlapingRanges(IntB, CopyIdx, Ranges); + + assert(!Ranges.empty() && "Why didn't we do a simple join of this?"); + + unsigned IntBRep = rep(IntB.reg); + + // Check to see if all of the overlaps (entries in Ranges) are defined by a + // copy from IntA. If not, exit. + for (unsigned i = 0, e = Ranges.size(); i != e; ++i) { + unsigned Idx = Ranges[i]->start; + MachineInstr *MI = getInstructionFromIndex(Idx); + unsigned SrcReg, DestReg; + if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false; + + // If this copy isn't actually defining this range, it must be a live + // range spanning basic blocks or something. + if (rep(DestReg) != rep(IntA.reg)) return false; + + // Check to see if this is coming from IntB. If not, bail out. + if (rep(SrcReg) != IntBRep) return false; + } + + // Okay, we can change this one. Get the IntB value number that IntA is + // copied from. + unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId; + + // Change all of the value numbers to the same as what we IntA is copied from. + for (unsigned i = 0, e = Ranges.size(); i != e; ++i) + Ranges[i]->ValId = ActualValNo; + + return true; +} + +void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) { + DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n"); + + for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end(); + mi != mie; ++mi) { + DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi); + + // we only join virtual registers with allocatable + // physical registers since we do not have liveness information + // on not allocatable physical registers + unsigned SrcReg, DestReg; + if (tii_->isMoveInstr(*mi, SrcReg, DestReg) && + (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&& + (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){ + + // Get representative registers. + SrcReg = rep(SrcReg); + DestReg = rep(DestReg); + + // If they are already joined we continue. + if (SrcReg == DestReg) + continue; + + // If they are both physical registers, we cannot join them. + if (MRegisterInfo::isPhysicalRegister(SrcReg) && + MRegisterInfo::isPhysicalRegister(DestReg)) + continue; + + // If they are not of the same register class, we cannot join them. + if (differingRegisterClasses(SrcReg, DestReg)) + continue; + + LiveInterval &SrcInt = getInterval(SrcReg); + LiveInterval &DestInt = getInterval(DestReg); + assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg && + "Register mapping is horribly broken!"); + + DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt + << ": "); + + // If two intervals contain a single value and are joined by a copy, it + // does not matter if the intervals overlap, they can always be joined. + bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue(); + + unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi)); + + // If the intervals think that this is joinable, do so now. + if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx)) + Joinable = true; + + // If DestInt is actually a copy from SrcInt (which we know) that is used + // to define another value of SrcInt, we can change the other range of + // SrcInt to be the value of the range that defines DestInt, allowing a + // coalesce. + if (!Joinable && DestInt.containsOneValue() && + AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx)) + Joinable = true; + + if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) { + DEBUG(std::cerr << "Interference!\n"); + } else { + DestInt.join(SrcInt, MIDefIdx); + DEBUG(std::cerr << "Joined. Result = " << DestInt << "\n"); + + if (!MRegisterInfo::isPhysicalRegister(SrcReg)) { + r2iMap_.erase(SrcReg); + r2rMap_[SrcReg] = DestReg; + } else { + // Otherwise merge the data structures the other way so we don't lose + // the physreg information. + r2rMap_[DestReg] = SrcReg; + DestInt.reg = SrcReg; + SrcInt.swap(DestInt); + r2iMap_.erase(DestReg); + } + ++numJoins; + } + } + } +} + +namespace { + // DepthMBBCompare - Comparison predicate that sort first based on the loop + // depth of the basic block (the unsigned), and then on the MBB number. + struct DepthMBBCompare { + typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair; + bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { + if (LHS.first > RHS.first) return true; // Deeper loops first + return LHS.first == RHS.first && + LHS.second->getNumber() < RHS.second->getNumber(); + } + }; +} + +void LiveIntervals::joinIntervals() { + DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n"); + + const LoopInfo &LI = getAnalysis<LoopInfo>(); + if (LI.begin() == LI.end()) { + // If there are no loops in the function, join intervals in function order. + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); + I != E; ++I) + joinIntervalsInMachineBB(I); + } else { + // Otherwise, join intervals in inner loops before other intervals. + // Unfortunately we can't just iterate over loop hierarchy here because + // there may be more MBB's than BB's. Collect MBB's for sorting. + std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs; + for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); + I != E; ++I) + MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); + + // Sort by loop depth. + std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); + + // Finally, join intervals in loop nest order. + for (unsigned i = 0, e = MBBs.size(); i != e; ++i) + joinIntervalsInMachineBB(MBBs[i].second); + } + + DEBUG(std::cerr << "*** Register mapping ***\n"); + DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i) + if (r2rMap_[i]) + std::cerr << " reg " << i << " -> reg " << r2rMap_[i] << "\n"); +} + +/// Return true if the two specified registers belong to different register +/// classes. The registers may be either phys or virt regs. +bool LiveIntervals::differingRegisterClasses(unsigned RegA, + unsigned RegB) const { + + // Get the register classes for the first reg. + if (MRegisterInfo::isPhysicalRegister(RegA)) { + assert(MRegisterInfo::isVirtualRegister(RegB) && + "Shouldn't consider two physregs!"); + return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA); + } + + // Compare against the regclass for the second reg. + const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA); + if (MRegisterInfo::isVirtualRegister(RegB)) + return RegClass != mf_->getSSARegMap()->getRegClass(RegB); + else + return !RegClass->contains(RegB); +} + +bool LiveIntervals::overlapsAliases(const LiveInterval *LHS, + const LiveInterval *RHS) const { + if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) { + if (!MRegisterInfo::isPhysicalRegister(RHS->reg)) + return false; // vreg-vreg merge has no aliases! + std::swap(LHS, RHS); + } + + assert(MRegisterInfo::isPhysicalRegister(LHS->reg) && + MRegisterInfo::isVirtualRegister(RHS->reg) && + "first interval must describe a physical register"); + + for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS) + if (RHS->overlaps(getInterval(*AS))) + return true; + + return false; +} + +LiveInterval LiveIntervals::createInterval(unsigned reg) { + float Weight = MRegisterInfo::isPhysicalRegister(reg) ? + (float)HUGE_VAL :0.0F; + return LiveInterval(reg, Weight); +} |