aboutsummaryrefslogtreecommitdiff
path: root/lib/Bytecode/Writer/SlotCalculator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Bytecode/Writer/SlotCalculator.cpp')
-rw-r--r--lib/Bytecode/Writer/SlotCalculator.cpp390
1 files changed, 0 insertions, 390 deletions
diff --git a/lib/Bytecode/Writer/SlotCalculator.cpp b/lib/Bytecode/Writer/SlotCalculator.cpp
deleted file mode 100644
index 3a038cd449..0000000000
--- a/lib/Bytecode/Writer/SlotCalculator.cpp
+++ /dev/null
@@ -1,390 +0,0 @@
-//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a useful analysis step to figure out what numbered slots
-// values in a program will land in (keeping track of per plane information).
-//
-// This is used when writing a file to disk, either in bytecode or assembly.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SlotCalculator.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/TypeSymbolTable.h"
-#include "llvm/Type.h"
-#include "llvm/ValueSymbolTable.h"
-#include "llvm/ADT/STLExtras.h"
-#include <algorithm>
-#include <functional>
-using namespace llvm;
-
-#ifndef NDEBUG
-#include "llvm/Support/Streams.h"
-#include "llvm/Support/CommandLine.h"
-static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false),
- cl::desc("Enable SlotCalculator debug output"), cl::Hidden);
-#define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X
-#else
-#define SC_DEBUG(X)
-#endif
-
-void SlotCalculator::insertPrimitives() {
- // Preload the table with the built-in types. These built-in types are
- // inserted first to ensure that they have low integer indices which helps to
- // keep bytecode sizes small. Note that the first group of indices must match
- // the Type::TypeIDs for the primitive types. After that the integer types are
- // added, but the order and value is not critical. What is critical is that
- // the indices of these "well known" slot numbers be properly maintained in
- // Reader.h which uses them directly to extract values of these types.
- SC_DEBUG("Inserting primitive types:\n");
- // See WellKnownTypeSlots in Reader.h
- getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot
- getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot
- getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot
- getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot
- assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert");
- // Above here *must* correspond 1:1 with the primitive types.
- getOrCreateTypeSlot(Type::Int1Ty ); // 4: Int1TySlot
- getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot
- getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot
- getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot
- getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot
-}
-
-SlotCalculator::SlotCalculator(const Module *M) {
- assert(M);
- TheModule = M;
-
- insertPrimitives();
- processModule();
-}
-
-// processModule - Process all of the module level function declarations and
-// types that are available.
-//
-void SlotCalculator::processModule() {
- SC_DEBUG("begin processModule!\n");
-
- // Add all of the global variables to the value table...
- //
- for (Module::const_global_iterator I = TheModule->global_begin(),
- E = TheModule->global_end(); I != E; ++I)
- CreateSlotIfNeeded(I);
-
- // Scavenge the types out of the functions, then add the functions themselves
- // to the value table...
- //
- for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
- I != E; ++I)
- CreateSlotIfNeeded(I);
-
- // Add all of the global aliases to the value table...
- //
- for (Module::const_alias_iterator I = TheModule->alias_begin(),
- E = TheModule->alias_end(); I != E; ++I)
- CreateSlotIfNeeded(I);
-
- // Add all of the module level constants used as initializers
- //
- for (Module::const_global_iterator I = TheModule->global_begin(),
- E = TheModule->global_end(); I != E; ++I)
- if (I->hasInitializer())
- CreateSlotIfNeeded(I->getInitializer());
-
- // Add all of the module level constants used as aliasees
- //
- for (Module::const_alias_iterator I = TheModule->alias_begin(),
- E = TheModule->alias_end(); I != E; ++I)
- if (I->getAliasee())
- CreateSlotIfNeeded(I->getAliasee());
-
- // Now that all global constants have been added, rearrange constant planes
- // that contain constant strings so that the strings occur at the start of the
- // plane, not somewhere in the middle.
- //
- for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
- if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
- if (AT->getElementType() == Type::Int8Ty) {
- TypePlane &Plane = Table[plane];
- unsigned FirstNonStringID = 0;
- for (unsigned i = 0, e = Plane.size(); i != e; ++i)
- if (isa<ConstantAggregateZero>(Plane[i]) ||
- (isa<ConstantArray>(Plane[i]) &&
- cast<ConstantArray>(Plane[i])->isString())) {
- // Check to see if we have to shuffle this string around. If not,
- // don't do anything.
- if (i != FirstNonStringID) {
- // Swap the plane entries....
- std::swap(Plane[i], Plane[FirstNonStringID]);
-
- // Keep the NodeMap up to date.
- NodeMap[Plane[i]] = i;
- NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
- }
- ++FirstNonStringID;
- }
- }
- }
-
- // Scan all of the functions for their constants, which allows us to emit
- // more compact modules.
- SC_DEBUG("Inserting function constants:\n");
- for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
- F != E; ++F) {
- for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
- for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
- OI != E; ++OI) {
- if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
- isa<InlineAsm>(*OI))
- CreateSlotIfNeeded(*OI);
- }
- getOrCreateTypeSlot(I->getType());
- }
- }
-
- // Insert constants that are named at module level into the slot pool so that
- // the module symbol table can refer to them...
- SC_DEBUG("Inserting SymbolTable values:\n");
- processTypeSymbolTable(&TheModule->getTypeSymbolTable());
- processValueSymbolTable(&TheModule->getValueSymbolTable());
-
- // Now that we have collected together all of the information relevant to the
- // module, compactify the type table if it is particularly big and outputting
- // a bytecode file. The basic problem we run into is that some programs have
- // a large number of types, which causes the type field to overflow its size,
- // which causes instructions to explode in size (particularly call
- // instructions). To avoid this behavior, we "sort" the type table so that
- // all non-value types are pushed to the end of the type table, giving nice
- // low numbers to the types that can be used by instructions, thus reducing
- // the amount of explodage we suffer.
- if (Types.size() >= 64) {
- unsigned FirstNonValueTypeID = 0;
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
- // Check to see if we have to shuffle this type around. If not, don't
- // do anything.
- if (i != FirstNonValueTypeID) {
- // Swap the type ID's.
- std::swap(Types[i], Types[FirstNonValueTypeID]);
-
- // Keep the TypeMap up to date.
- TypeMap[Types[i]] = i;
- TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
-
- // When we move a type, make sure to move its value plane as needed.
- if (Table.size() > FirstNonValueTypeID) {
- if (Table.size() <= i) Table.resize(i+1);
- std::swap(Table[i], Table[FirstNonValueTypeID]);
- }
- }
- ++FirstNonValueTypeID;
- }
- }
-
- NumModuleTypes = getNumPlanes();
-
- SC_DEBUG("end processModule!\n");
-}
-
-// processTypeSymbolTable - Insert all of the type sin the specified symbol
-// table.
-void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) {
- for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end();
- TI != TE; ++TI )
- getOrCreateTypeSlot(TI->second);
-}
-
-// processSymbolTable - Insert all of the values in the specified symbol table
-// into the values table...
-//
-void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) {
- for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end();
- VI != VE; ++VI)
- CreateSlotIfNeeded(VI->getValue());
-}
-
-void SlotCalculator::CreateSlotIfNeeded(const Value *V) {
- // Check to see if it's already in!
- if (NodeMap.count(V)) return;
-
- const Type *Ty = V->getType();
- assert(Ty != Type::VoidTy && "Can't insert void values!");
-
- if (const Constant *C = dyn_cast<Constant>(V)) {
- if (isa<GlobalValue>(C)) {
- // Initializers for globals are handled explicitly elsewhere.
- } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
- // Do not index the characters that make up constant strings. We emit
- // constant strings as special entities that don't require their
- // individual characters to be emitted.
- if (!C->isNullValue())
- ConstantStrings.push_back(cast<ConstantArray>(C));
- } else {
- // This makes sure that if a constant has uses (for example an array of
- // const ints), that they are inserted also.
- for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
- I != E; ++I)
- CreateSlotIfNeeded(*I);
- }
- }
-
- unsigned TyPlane = getOrCreateTypeSlot(Ty);
- if (Table.size() <= TyPlane) // Make sure we have the type plane allocated.
- Table.resize(TyPlane+1, TypePlane());
-
- // If this is the first value to get inserted into the type plane, make sure
- // to insert the implicit null value.
- if (Table[TyPlane].empty()) {
- // Label's and opaque types can't have a null value.
- if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) {
- Value *ZeroInitializer = Constant::getNullValue(Ty);
-
- // If we are pushing zeroinit, it will be handled below.
- if (V != ZeroInitializer) {
- Table[TyPlane].push_back(ZeroInitializer);
- NodeMap[ZeroInitializer] = 0;
- }
- }
- }
-
- // Insert node into table and NodeMap...
- NodeMap[V] = Table[TyPlane].size();
- Table[TyPlane].push_back(V);
-
- SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
- NodeMap[V] << "\n");
-}
-
-
-unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) {
- TypeMapType::iterator TyIt = TypeMap.find(Ty);
- if (TyIt != TypeMap.end()) return TyIt->second;
-
- // Insert into TypeMap.
- unsigned ResultSlot = TypeMap[Ty] = Types.size();
- Types.push_back(Ty);
- SC_DEBUG(" Inserting type [" << ResultSlot << "] = " << *Ty << "\n" );
-
- // Loop over any contained types in the definition, ensuring they are also
- // inserted.
- for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
- I != E; ++I)
- getOrCreateTypeSlot(*I);
-
- return ResultSlot;
-}
-
-
-
-void SlotCalculator::incorporateFunction(const Function *F) {
- SC_DEBUG("begin processFunction!\n");
-
- // Iterate over function arguments, adding them to the value table...
- for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
- I != E; ++I)
- CreateFunctionValueSlot(I);
-
- SC_DEBUG("Inserting Instructions:\n");
-
- // Add all of the instructions to the type planes...
- for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
- CreateFunctionValueSlot(BB);
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
- if (I->getType() != Type::VoidTy)
- CreateFunctionValueSlot(I);
- }
- }
-
- SC_DEBUG("end processFunction!\n");
-}
-
-void SlotCalculator::purgeFunction() {
- SC_DEBUG("begin purgeFunction!\n");
-
- // Next, remove values from existing type planes
- for (DenseMap<unsigned,unsigned,
- ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(),
- E = ModuleLevel.end(); I != E; ++I) {
- unsigned PlaneNo = I->first;
- unsigned ModuleLev = I->second;
-
- // Pop all function-local values in this type-plane off of Table.
- TypePlane &Plane = getPlane(PlaneNo);
- assert(ModuleLev < Plane.size() && "module levels higher than elements?");
- for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) {
- NodeMap.erase(Plane.back()); // Erase from nodemap
- Plane.pop_back(); // Shrink plane
- }
- }
-
- ModuleLevel.clear();
-
- // Finally, remove any type planes defined by the function...
- while (Table.size() > NumModuleTypes) {
- TypePlane &Plane = Table.back();
- SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
- << Plane.size() << "\n");
- for (unsigned i = 0, e = Plane.size(); i != e; ++i)
- NodeMap.erase(Plane[i]); // Erase from nodemap
-
- Table.pop_back(); // Nuke the plane, we don't like it.
- }
-
- SC_DEBUG("end purgeFunction!\n");
-}
-
-inline static bool hasImplicitNull(const Type* Ty) {
- return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty);
-}
-
-void SlotCalculator::CreateFunctionValueSlot(const Value *V) {
- assert(!NodeMap.count(V) && "Function-local value can't be inserted!");
-
- const Type *Ty = V->getType();
- assert(Ty != Type::VoidTy && "Can't insert void values!");
- assert(!isa<Constant>(V) && "Not a function-local value!");
-
- unsigned TyPlane = getOrCreateTypeSlot(Ty);
- if (Table.size() <= TyPlane) // Make sure we have the type plane allocated.
- Table.resize(TyPlane+1, TypePlane());
-
- // If this is the first value noticed of this type within this function,
- // remember the module level for this type plane in ModuleLevel. This reminds
- // us to remove the values in purgeFunction and tells us how many to remove.
- if (TyPlane < NumModuleTypes)
- ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size()));
-
- // If this is the first value to get inserted into the type plane, make sure
- // to insert the implicit null value.
- if (Table[TyPlane].empty()) {
- // Label's and opaque types can't have a null value.
- if (hasImplicitNull(Ty)) {
- Value *ZeroInitializer = Constant::getNullValue(Ty);
-
- // If we are pushing zeroinit, it will be handled below.
- if (V != ZeroInitializer) {
- Table[TyPlane].push_back(ZeroInitializer);
- NodeMap[ZeroInitializer] = 0;
- }
- }
- }
-
- // Insert node into table and NodeMap...
- NodeMap[V] = Table[TyPlane].size();
- Table[TyPlane].push_back(V);
-
- SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
- NodeMap[V] << "\n");
-}