diff options
Diffstat (limited to 'lib/Bytecode/Writer/SlotCalculator.cpp')
-rw-r--r-- | lib/Bytecode/Writer/SlotCalculator.cpp | 390 |
1 files changed, 0 insertions, 390 deletions
diff --git a/lib/Bytecode/Writer/SlotCalculator.cpp b/lib/Bytecode/Writer/SlotCalculator.cpp deleted file mode 100644 index 3a038cd449..0000000000 --- a/lib/Bytecode/Writer/SlotCalculator.cpp +++ /dev/null @@ -1,390 +0,0 @@ -//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements a useful analysis step to figure out what numbered slots -// values in a program will land in (keeping track of per plane information). -// -// This is used when writing a file to disk, either in bytecode or assembly. -// -//===----------------------------------------------------------------------===// - -#include "SlotCalculator.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/InlineAsm.h" -#include "llvm/Instructions.h" -#include "llvm/Module.h" -#include "llvm/TypeSymbolTable.h" -#include "llvm/Type.h" -#include "llvm/ValueSymbolTable.h" -#include "llvm/ADT/STLExtras.h" -#include <algorithm> -#include <functional> -using namespace llvm; - -#ifndef NDEBUG -#include "llvm/Support/Streams.h" -#include "llvm/Support/CommandLine.h" -static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false), - cl::desc("Enable SlotCalculator debug output"), cl::Hidden); -#define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X -#else -#define SC_DEBUG(X) -#endif - -void SlotCalculator::insertPrimitives() { - // Preload the table with the built-in types. These built-in types are - // inserted first to ensure that they have low integer indices which helps to - // keep bytecode sizes small. Note that the first group of indices must match - // the Type::TypeIDs for the primitive types. After that the integer types are - // added, but the order and value is not critical. What is critical is that - // the indices of these "well known" slot numbers be properly maintained in - // Reader.h which uses them directly to extract values of these types. - SC_DEBUG("Inserting primitive types:\n"); - // See WellKnownTypeSlots in Reader.h - getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot - getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot - getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot - getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot - assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert"); - // Above here *must* correspond 1:1 with the primitive types. - getOrCreateTypeSlot(Type::Int1Ty ); // 4: Int1TySlot - getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot - getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot - getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot - getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot -} - -SlotCalculator::SlotCalculator(const Module *M) { - assert(M); - TheModule = M; - - insertPrimitives(); - processModule(); -} - -// processModule - Process all of the module level function declarations and -// types that are available. -// -void SlotCalculator::processModule() { - SC_DEBUG("begin processModule!\n"); - - // Add all of the global variables to the value table... - // - for (Module::const_global_iterator I = TheModule->global_begin(), - E = TheModule->global_end(); I != E; ++I) - CreateSlotIfNeeded(I); - - // Scavenge the types out of the functions, then add the functions themselves - // to the value table... - // - for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); - I != E; ++I) - CreateSlotIfNeeded(I); - - // Add all of the global aliases to the value table... - // - for (Module::const_alias_iterator I = TheModule->alias_begin(), - E = TheModule->alias_end(); I != E; ++I) - CreateSlotIfNeeded(I); - - // Add all of the module level constants used as initializers - // - for (Module::const_global_iterator I = TheModule->global_begin(), - E = TheModule->global_end(); I != E; ++I) - if (I->hasInitializer()) - CreateSlotIfNeeded(I->getInitializer()); - - // Add all of the module level constants used as aliasees - // - for (Module::const_alias_iterator I = TheModule->alias_begin(), - E = TheModule->alias_end(); I != E; ++I) - if (I->getAliasee()) - CreateSlotIfNeeded(I->getAliasee()); - - // Now that all global constants have been added, rearrange constant planes - // that contain constant strings so that the strings occur at the start of the - // plane, not somewhere in the middle. - // - for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { - if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane])) - if (AT->getElementType() == Type::Int8Ty) { - TypePlane &Plane = Table[plane]; - unsigned FirstNonStringID = 0; - for (unsigned i = 0, e = Plane.size(); i != e; ++i) - if (isa<ConstantAggregateZero>(Plane[i]) || - (isa<ConstantArray>(Plane[i]) && - cast<ConstantArray>(Plane[i])->isString())) { - // Check to see if we have to shuffle this string around. If not, - // don't do anything. - if (i != FirstNonStringID) { - // Swap the plane entries.... - std::swap(Plane[i], Plane[FirstNonStringID]); - - // Keep the NodeMap up to date. - NodeMap[Plane[i]] = i; - NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; - } - ++FirstNonStringID; - } - } - } - - // Scan all of the functions for their constants, which allows us to emit - // more compact modules. - SC_DEBUG("Inserting function constants:\n"); - for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); - F != E; ++F) { - for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ - for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); - OI != E; ++OI) { - if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || - isa<InlineAsm>(*OI)) - CreateSlotIfNeeded(*OI); - } - getOrCreateTypeSlot(I->getType()); - } - } - - // Insert constants that are named at module level into the slot pool so that - // the module symbol table can refer to them... - SC_DEBUG("Inserting SymbolTable values:\n"); - processTypeSymbolTable(&TheModule->getTypeSymbolTable()); - processValueSymbolTable(&TheModule->getValueSymbolTable()); - - // Now that we have collected together all of the information relevant to the - // module, compactify the type table if it is particularly big and outputting - // a bytecode file. The basic problem we run into is that some programs have - // a large number of types, which causes the type field to overflow its size, - // which causes instructions to explode in size (particularly call - // instructions). To avoid this behavior, we "sort" the type table so that - // all non-value types are pushed to the end of the type table, giving nice - // low numbers to the types that can be used by instructions, thus reducing - // the amount of explodage we suffer. - if (Types.size() >= 64) { - unsigned FirstNonValueTypeID = 0; - for (unsigned i = 0, e = Types.size(); i != e; ++i) - if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) { - // Check to see if we have to shuffle this type around. If not, don't - // do anything. - if (i != FirstNonValueTypeID) { - // Swap the type ID's. - std::swap(Types[i], Types[FirstNonValueTypeID]); - - // Keep the TypeMap up to date. - TypeMap[Types[i]] = i; - TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID; - - // When we move a type, make sure to move its value plane as needed. - if (Table.size() > FirstNonValueTypeID) { - if (Table.size() <= i) Table.resize(i+1); - std::swap(Table[i], Table[FirstNonValueTypeID]); - } - } - ++FirstNonValueTypeID; - } - } - - NumModuleTypes = getNumPlanes(); - - SC_DEBUG("end processModule!\n"); -} - -// processTypeSymbolTable - Insert all of the type sin the specified symbol -// table. -void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) { - for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end(); - TI != TE; ++TI ) - getOrCreateTypeSlot(TI->second); -} - -// processSymbolTable - Insert all of the values in the specified symbol table -// into the values table... -// -void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) { - for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end(); - VI != VE; ++VI) - CreateSlotIfNeeded(VI->getValue()); -} - -void SlotCalculator::CreateSlotIfNeeded(const Value *V) { - // Check to see if it's already in! - if (NodeMap.count(V)) return; - - const Type *Ty = V->getType(); - assert(Ty != Type::VoidTy && "Can't insert void values!"); - - if (const Constant *C = dyn_cast<Constant>(V)) { - if (isa<GlobalValue>(C)) { - // Initializers for globals are handled explicitly elsewhere. - } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { - // Do not index the characters that make up constant strings. We emit - // constant strings as special entities that don't require their - // individual characters to be emitted. - if (!C->isNullValue()) - ConstantStrings.push_back(cast<ConstantArray>(C)); - } else { - // This makes sure that if a constant has uses (for example an array of - // const ints), that they are inserted also. - for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); - I != E; ++I) - CreateSlotIfNeeded(*I); - } - } - - unsigned TyPlane = getOrCreateTypeSlot(Ty); - if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. - Table.resize(TyPlane+1, TypePlane()); - - // If this is the first value to get inserted into the type plane, make sure - // to insert the implicit null value. - if (Table[TyPlane].empty()) { - // Label's and opaque types can't have a null value. - if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) { - Value *ZeroInitializer = Constant::getNullValue(Ty); - - // If we are pushing zeroinit, it will be handled below. - if (V != ZeroInitializer) { - Table[TyPlane].push_back(ZeroInitializer); - NodeMap[ZeroInitializer] = 0; - } - } - } - - // Insert node into table and NodeMap... - NodeMap[V] = Table[TyPlane].size(); - Table[TyPlane].push_back(V); - - SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << - NodeMap[V] << "\n"); -} - - -unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) { - TypeMapType::iterator TyIt = TypeMap.find(Ty); - if (TyIt != TypeMap.end()) return TyIt->second; - - // Insert into TypeMap. - unsigned ResultSlot = TypeMap[Ty] = Types.size(); - Types.push_back(Ty); - SC_DEBUG(" Inserting type [" << ResultSlot << "] = " << *Ty << "\n" ); - - // Loop over any contained types in the definition, ensuring they are also - // inserted. - for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); - I != E; ++I) - getOrCreateTypeSlot(*I); - - return ResultSlot; -} - - - -void SlotCalculator::incorporateFunction(const Function *F) { - SC_DEBUG("begin processFunction!\n"); - - // Iterate over function arguments, adding them to the value table... - for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); - I != E; ++I) - CreateFunctionValueSlot(I); - - SC_DEBUG("Inserting Instructions:\n"); - - // Add all of the instructions to the type planes... - for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { - CreateFunctionValueSlot(BB); - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { - if (I->getType() != Type::VoidTy) - CreateFunctionValueSlot(I); - } - } - - SC_DEBUG("end processFunction!\n"); -} - -void SlotCalculator::purgeFunction() { - SC_DEBUG("begin purgeFunction!\n"); - - // Next, remove values from existing type planes - for (DenseMap<unsigned,unsigned, - ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(), - E = ModuleLevel.end(); I != E; ++I) { - unsigned PlaneNo = I->first; - unsigned ModuleLev = I->second; - - // Pop all function-local values in this type-plane off of Table. - TypePlane &Plane = getPlane(PlaneNo); - assert(ModuleLev < Plane.size() && "module levels higher than elements?"); - for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) { - NodeMap.erase(Plane.back()); // Erase from nodemap - Plane.pop_back(); // Shrink plane - } - } - - ModuleLevel.clear(); - - // Finally, remove any type planes defined by the function... - while (Table.size() > NumModuleTypes) { - TypePlane &Plane = Table.back(); - SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " - << Plane.size() << "\n"); - for (unsigned i = 0, e = Plane.size(); i != e; ++i) - NodeMap.erase(Plane[i]); // Erase from nodemap - - Table.pop_back(); // Nuke the plane, we don't like it. - } - - SC_DEBUG("end purgeFunction!\n"); -} - -inline static bool hasImplicitNull(const Type* Ty) { - return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty); -} - -void SlotCalculator::CreateFunctionValueSlot(const Value *V) { - assert(!NodeMap.count(V) && "Function-local value can't be inserted!"); - - const Type *Ty = V->getType(); - assert(Ty != Type::VoidTy && "Can't insert void values!"); - assert(!isa<Constant>(V) && "Not a function-local value!"); - - unsigned TyPlane = getOrCreateTypeSlot(Ty); - if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. - Table.resize(TyPlane+1, TypePlane()); - - // If this is the first value noticed of this type within this function, - // remember the module level for this type plane in ModuleLevel. This reminds - // us to remove the values in purgeFunction and tells us how many to remove. - if (TyPlane < NumModuleTypes) - ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size())); - - // If this is the first value to get inserted into the type plane, make sure - // to insert the implicit null value. - if (Table[TyPlane].empty()) { - // Label's and opaque types can't have a null value. - if (hasImplicitNull(Ty)) { - Value *ZeroInitializer = Constant::getNullValue(Ty); - - // If we are pushing zeroinit, it will be handled below. - if (V != ZeroInitializer) { - Table[TyPlane].push_back(ZeroInitializer); - NodeMap[ZeroInitializer] = 0; - } - } - } - - // Insert node into table and NodeMap... - NodeMap[V] = Table[TyPlane].size(); - Table[TyPlane].push_back(V); - - SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << - NodeMap[V] << "\n"); -} |