aboutsummaryrefslogtreecommitdiff
path: root/lib/Bytecode/Reader/Reader.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Bytecode/Reader/Reader.cpp')
-rw-r--r--lib/Bytecode/Reader/Reader.cpp2343
1 files changed, 2343 insertions, 0 deletions
diff --git a/lib/Bytecode/Reader/Reader.cpp b/lib/Bytecode/Reader/Reader.cpp
new file mode 100644
index 0000000000..daf7577cf0
--- /dev/null
+++ b/lib/Bytecode/Reader/Reader.cpp
@@ -0,0 +1,2343 @@
+//===- Reader.cpp - Code to read bytecode files ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This library implements the functionality defined in llvm/Bytecode/Reader.h
+//
+// Note that this library should be as fast as possible, reentrant, and
+// threadsafe!!
+//
+// TODO: Allow passing in an option to ignore the symbol table
+//
+//===----------------------------------------------------------------------===//
+
+#include "Reader.h"
+#include "llvm/Bytecode/BytecodeHandler.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/Bytecode/Format.h"
+#include "llvm/Config/alloca.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/Compressor.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include <sstream>
+#include <algorithm>
+using namespace llvm;
+
+namespace {
+ /// @brief A class for maintaining the slot number definition
+ /// as a placeholder for the actual definition for forward constants defs.
+ class ConstantPlaceHolder : public ConstantExpr {
+ ConstantPlaceHolder(); // DO NOT IMPLEMENT
+ void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
+ public:
+ Use Op;
+ ConstantPlaceHolder(const Type *Ty)
+ : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
+ Op(UndefValue::get(Type::IntTy), this) {
+ }
+ };
+}
+
+// Provide some details on error
+inline void BytecodeReader::error(std::string err) {
+ err += " (Vers=" ;
+ err += itostr(RevisionNum) ;
+ err += ", Pos=" ;
+ err += itostr(At-MemStart);
+ err += ")";
+ throw err;
+}
+
+//===----------------------------------------------------------------------===//
+// Bytecode Reading Methods
+//===----------------------------------------------------------------------===//
+
+/// Determine if the current block being read contains any more data.
+inline bool BytecodeReader::moreInBlock() {
+ return At < BlockEnd;
+}
+
+/// Throw an error if we've read past the end of the current block
+inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
+ if (At > BlockEnd)
+ error(std::string("Attempt to read past the end of ") + block_name +
+ " block.");
+}
+
+/// Align the buffer position to a 32 bit boundary
+inline void BytecodeReader::align32() {
+ if (hasAlignment) {
+ BufPtr Save = At;
+ At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
+ if (At > Save)
+ if (Handler) Handler->handleAlignment(At - Save);
+ if (At > BlockEnd)
+ error("Ran out of data while aligning!");
+ }
+}
+
+/// Read a whole unsigned integer
+inline unsigned BytecodeReader::read_uint() {
+ if (At+4 > BlockEnd)
+ error("Ran out of data reading uint!");
+ At += 4;
+ return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
+}
+
+/// Read a variable-bit-rate encoded unsigned integer
+inline unsigned BytecodeReader::read_vbr_uint() {
+ unsigned Shift = 0;
+ unsigned Result = 0;
+ BufPtr Save = At;
+
+ do {
+ if (At == BlockEnd)
+ error("Ran out of data reading vbr_uint!");
+ Result |= (unsigned)((*At++) & 0x7F) << Shift;
+ Shift += 7;
+ } while (At[-1] & 0x80);
+ if (Handler) Handler->handleVBR32(At-Save);
+ return Result;
+}
+
+/// Read a variable-bit-rate encoded unsigned 64-bit integer.
+inline uint64_t BytecodeReader::read_vbr_uint64() {
+ unsigned Shift = 0;
+ uint64_t Result = 0;
+ BufPtr Save = At;
+
+ do {
+ if (At == BlockEnd)
+ error("Ran out of data reading vbr_uint64!");
+ Result |= (uint64_t)((*At++) & 0x7F) << Shift;
+ Shift += 7;
+ } while (At[-1] & 0x80);
+ if (Handler) Handler->handleVBR64(At-Save);
+ return Result;
+}
+
+/// Read a variable-bit-rate encoded signed 64-bit integer.
+inline int64_t BytecodeReader::read_vbr_int64() {
+ uint64_t R = read_vbr_uint64();
+ if (R & 1) {
+ if (R != 1)
+ return -(int64_t)(R >> 1);
+ else // There is no such thing as -0 with integers. "-0" really means
+ // 0x8000000000000000.
+ return 1LL << 63;
+ } else
+ return (int64_t)(R >> 1);
+}
+
+/// Read a pascal-style string (length followed by text)
+inline std::string BytecodeReader::read_str() {
+ unsigned Size = read_vbr_uint();
+ const unsigned char *OldAt = At;
+ At += Size;
+ if (At > BlockEnd) // Size invalid?
+ error("Ran out of data reading a string!");
+ return std::string((char*)OldAt, Size);
+}
+
+/// Read an arbitrary block of data
+inline void BytecodeReader::read_data(void *Ptr, void *End) {
+ unsigned char *Start = (unsigned char *)Ptr;
+ unsigned Amount = (unsigned char *)End - Start;
+ if (At+Amount > BlockEnd)
+ error("Ran out of data!");
+ std::copy(At, At+Amount, Start);
+ At += Amount;
+}
+
+/// Read a float value in little-endian order
+inline void BytecodeReader::read_float(float& FloatVal) {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ FloatVal = BitsToFloat(At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24));
+ At+=sizeof(uint32_t);
+}
+
+/// Read a double value in little-endian order
+inline void BytecodeReader::read_double(double& DoubleVal) {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ DoubleVal = BitsToDouble((uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) |
+ (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
+ (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
+ (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56));
+ At+=sizeof(uint64_t);
+}
+
+/// Read a block header and obtain its type and size
+inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
+ if ( hasLongBlockHeaders ) {
+ Type = read_uint();
+ Size = read_uint();
+ switch (Type) {
+ case BytecodeFormat::Reserved_DoNotUse :
+ error("Reserved_DoNotUse used as Module Type?");
+ Type = BytecodeFormat::ModuleBlockID; break;
+ case BytecodeFormat::Module:
+ Type = BytecodeFormat::ModuleBlockID; break;
+ case BytecodeFormat::Function:
+ Type = BytecodeFormat::FunctionBlockID; break;
+ case BytecodeFormat::ConstantPool:
+ Type = BytecodeFormat::ConstantPoolBlockID; break;
+ case BytecodeFormat::SymbolTable:
+ Type = BytecodeFormat::SymbolTableBlockID; break;
+ case BytecodeFormat::ModuleGlobalInfo:
+ Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
+ case BytecodeFormat::GlobalTypePlane:
+ Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
+ case BytecodeFormat::InstructionList:
+ Type = BytecodeFormat::InstructionListBlockID; break;
+ case BytecodeFormat::CompactionTable:
+ Type = BytecodeFormat::CompactionTableBlockID; break;
+ case BytecodeFormat::BasicBlock:
+ /// This block type isn't used after version 1.1. However, we have to
+ /// still allow the value in case this is an old bc format file.
+ /// We just let its value creep thru.
+ break;
+ default:
+ error("Invalid block id found: " + utostr(Type));
+ break;
+ }
+ } else {
+ Size = read_uint();
+ Type = Size & 0x1F; // mask low order five bits
+ Size >>= 5; // get rid of five low order bits, leaving high 27
+ }
+ BlockStart = At;
+ if (At + Size > BlockEnd)
+ error("Attempt to size a block past end of memory");
+ BlockEnd = At + Size;
+ if (Handler) Handler->handleBlock(Type, BlockStart, Size);
+}
+
+
+/// In LLVM 1.2 and before, Types were derived from Value and so they were
+/// written as part of the type planes along with any other Value. In LLVM
+/// 1.3 this changed so that Type does not derive from Value. Consequently,
+/// the BytecodeReader's containers for Values can't contain Types because
+/// there's no inheritance relationship. This means that the "Type Type"
+/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
+/// whenever a bytecode construct must have both types and values together,
+/// the types are always read/written first and then the Values. Furthermore
+/// since Type::TypeTyID no longer exists, its value (12) now corresponds to
+/// Type::LabelTyID. In order to overcome this we must "sanitize" all the
+/// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
+/// For LLVM 1.2 and before, this function will decrement the type id by
+/// one to account for the missing Type::TypeTyID enumerator if the value is
+/// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
+/// function returns true, otherwise false. This helps detect situations
+/// where the pre 1.3 bytecode is indicating that what follows is a type.
+/// @returns true iff type id corresponds to pre 1.3 "type type"
+inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
+ if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
+ if (TypeId == Type::LabelTyID) {
+ TypeId = Type::VoidTyID; // sanitize it
+ return true; // indicate we got TypeTyID in pre 1.3 bytecode
+ } else if (TypeId > Type::LabelTyID)
+ --TypeId; // shift all planes down because type type plane is missing
+ }
+ return false;
+}
+
+/// Reads a vbr uint to read in a type id and does the necessary
+/// conversion on it by calling sanitizeTypeId.
+/// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
+/// @see sanitizeTypeId
+inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
+ TypeId = read_vbr_uint();
+ if ( !has32BitTypes )
+ if ( TypeId == 0x00FFFFFF )
+ TypeId = read_vbr_uint();
+ return sanitizeTypeId(TypeId);
+}
+
+//===----------------------------------------------------------------------===//
+// IR Lookup Methods
+//===----------------------------------------------------------------------===//
+
+/// Determine if a type id has an implicit null value
+inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
+ if (!hasExplicitPrimitiveZeros)
+ return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
+ return TyID >= Type::FirstDerivedTyID;
+}
+
+/// Obtain a type given a typeid and account for things like compaction tables,
+/// function level vs module level, and the offsetting for the primitive types.
+const Type *BytecodeReader::getType(unsigned ID) {
+ if (ID < Type::FirstDerivedTyID)
+ if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
+ return T; // Asked for a primitive type...
+
+ // Otherwise, derived types need offset...
+ ID -= Type::FirstDerivedTyID;
+
+ if (!CompactionTypes.empty()) {
+ if (ID >= CompactionTypes.size())
+ error("Type ID out of range for compaction table!");
+ return CompactionTypes[ID].first;
+ }
+
+ // Is it a module-level type?
+ if (ID < ModuleTypes.size())
+ return ModuleTypes[ID].get();
+
+ // Nope, is it a function-level type?
+ ID -= ModuleTypes.size();
+ if (ID < FunctionTypes.size())
+ return FunctionTypes[ID].get();
+
+ error("Illegal type reference!");
+ return Type::VoidTy;
+}
+
+/// Get a sanitized type id. This just makes sure that the \p ID
+/// is both sanitized and not the "type type" of pre-1.3 bytecode.
+/// @see sanitizeTypeId
+inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
+ if (sanitizeTypeId(ID))
+ error("Invalid type id encountered");
+ return getType(ID);
+}
+
+/// This method just saves some coding. It uses read_typeid to read
+/// in a sanitized type id, errors that its not the type type, and
+/// then calls getType to return the type value.
+inline const Type* BytecodeReader::readSanitizedType() {
+ unsigned ID;
+ if (read_typeid(ID))
+ error("Invalid type id encountered");
+ return getType(ID);
+}
+
+/// Get the slot number associated with a type accounting for primitive
+/// types, compaction tables, and function level vs module level.
+unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
+ if (Ty->isPrimitiveType())
+ return Ty->getTypeID();
+
+ // Scan the compaction table for the type if needed.
+ if (!CompactionTypes.empty()) {
+ for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
+ if (CompactionTypes[i].first == Ty)
+ return Type::FirstDerivedTyID + i;
+
+ error("Couldn't find type specified in compaction table!");
+ }
+
+ // Check the function level types first...
+ TypeListTy::iterator I = std::find(FunctionTypes.begin(),
+ FunctionTypes.end(), Ty);
+
+ if (I != FunctionTypes.end())
+ return Type::FirstDerivedTyID + ModuleTypes.size() +
+ (&*I - &FunctionTypes[0]);
+
+ // If we don't have our cache yet, build it now.
+ if (ModuleTypeIDCache.empty()) {
+ unsigned N = 0;
+ ModuleTypeIDCache.reserve(ModuleTypes.size());
+ for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
+ I != E; ++I, ++N)
+ ModuleTypeIDCache.push_back(std::make_pair(*I, N));
+
+ std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
+ }
+
+ // Binary search the cache for the entry.
+ std::vector<std::pair<const Type*, unsigned> >::iterator IT =
+ std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
+ std::make_pair(Ty, 0U));
+ if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
+ error("Didn't find type in ModuleTypes.");
+
+ return Type::FirstDerivedTyID + IT->second;
+}
+
+/// This is just like getType, but when a compaction table is in use, it is
+/// ignored. It also ignores function level types.
+/// @see getType
+const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
+ if (Slot < Type::FirstDerivedTyID) {
+ const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
+ if (!Ty)
+ error("Not a primitive type ID?");
+ return Ty;
+ }
+ Slot -= Type::FirstDerivedTyID;
+ if (Slot >= ModuleTypes.size())
+ error("Illegal compaction table type reference!");
+ return ModuleTypes[Slot];
+}
+
+/// This is just like getTypeSlot, but when a compaction table is in use, it
+/// is ignored. It also ignores function level types.
+unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
+ if (Ty->isPrimitiveType())
+ return Ty->getTypeID();
+
+ // If we don't have our cache yet, build it now.
+ if (ModuleTypeIDCache.empty()) {
+ unsigned N = 0;
+ ModuleTypeIDCache.reserve(ModuleTypes.size());
+ for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
+ I != E; ++I, ++N)
+ ModuleTypeIDCache.push_back(std::make_pair(*I, N));
+
+ std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
+ }
+
+ // Binary search the cache for the entry.
+ std::vector<std::pair<const Type*, unsigned> >::iterator IT =
+ std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
+ std::make_pair(Ty, 0U));
+ if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
+ error("Didn't find type in ModuleTypes.");
+
+ return Type::FirstDerivedTyID + IT->second;
+}
+
+/// Retrieve a value of a given type and slot number, possibly creating
+/// it if it doesn't already exist.
+Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
+ assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
+ unsigned Num = oNum;
+
+ // If there is a compaction table active, it defines the low-level numbers.
+ // If not, the module values define the low-level numbers.
+ if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
+ if (Num < CompactionValues[type].size())
+ return CompactionValues[type][Num];
+ Num -= CompactionValues[type].size();
+ } else {
+ // By default, the global type id is the type id passed in
+ unsigned GlobalTyID = type;
+
+ // If the type plane was compactified, figure out the global type ID by
+ // adding the derived type ids and the distance.
+ if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
+ GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;
+
+ if (hasImplicitNull(GlobalTyID)) {
+ const Type *Ty = getType(type);
+ if (!isa<OpaqueType>(Ty)) {
+ if (Num == 0)
+ return Constant::getNullValue(Ty);
+ --Num;
+ }
+ }
+
+ if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
+ if (Num < ModuleValues[GlobalTyID]->size())
+ return ModuleValues[GlobalTyID]->getOperand(Num);
+ Num -= ModuleValues[GlobalTyID]->size();
+ }
+ }
+
+ if (FunctionValues.size() > type &&
+ FunctionValues[type] &&
+ Num < FunctionValues[type]->size())
+ return FunctionValues[type]->getOperand(Num);
+
+ if (!Create) return 0; // Do not create a placeholder?
+
+ // Did we already create a place holder?
+ std::pair<unsigned,unsigned> KeyValue(type, oNum);
+ ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
+ if (I != ForwardReferences.end() && I->first == KeyValue)
+ return I->second; // We have already created this placeholder
+
+ // If the type exists (it should)
+ if (const Type* Ty = getType(type)) {
+ // Create the place holder
+ Value *Val = new Argument(Ty);
+ ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
+ return Val;
+ }
+ throw "Can't create placeholder for value of type slot #" + utostr(type);
+}
+
+/// This is just like getValue, but when a compaction table is in use, it
+/// is ignored. Also, no forward references or other fancy features are
+/// supported.
+Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
+ if (SlotNo == 0)
+ return Constant::getNullValue(getType(TyID));
+
+ if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
+ TyID -= Type::FirstDerivedTyID;
+ if (TyID >= CompactionTypes.size())
+ error("Type ID out of range for compaction table!");
+ TyID = CompactionTypes[TyID].second;
+ }
+
+ --SlotNo;
+
+ if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
+ SlotNo >= ModuleValues[TyID]->size()) {
+ if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
+ error("Corrupt compaction table entry!"
+ + utostr(TyID) + ", " + utostr(SlotNo) + ": "
+ + utostr(ModuleValues.size()));
+ else
+ error("Corrupt compaction table entry!"
+ + utostr(TyID) + ", " + utostr(SlotNo) + ": "
+ + utostr(ModuleValues.size()) + ", "
+ + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
+ + ", "
+ + utostr(ModuleValues[TyID]->size()));
+ }
+ return ModuleValues[TyID]->getOperand(SlotNo);
+}
+
+/// Just like getValue, except that it returns a null pointer
+/// only on error. It always returns a constant (meaning that if the value is
+/// defined, but is not a constant, that is an error). If the specified
+/// constant hasn't been parsed yet, a placeholder is defined and used.
+/// Later, after the real value is parsed, the placeholder is eliminated.
+Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
+ if (Value *V = getValue(TypeSlot, Slot, false))
+ if (Constant *C = dyn_cast<Constant>(V))
+ return C; // If we already have the value parsed, just return it
+ else
+ error("Value for slot " + utostr(Slot) +
+ " is expected to be a constant!");
+
+ std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
+ ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
+
+ if (I != ConstantFwdRefs.end() && I->first == Key) {
+ return I->second;
+ } else {
+ // Create a placeholder for the constant reference and
+ // keep track of the fact that we have a forward ref to recycle it
+ Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
+
+ // Keep track of the fact that we have a forward ref to recycle it
+ ConstantFwdRefs.insert(I, std::make_pair(Key, C));
+ return C;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// IR Construction Methods
+//===----------------------------------------------------------------------===//
+
+/// As values are created, they are inserted into the appropriate place
+/// with this method. The ValueTable argument must be one of ModuleValues
+/// or FunctionValues data members of this class.
+unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
+ ValueTable &ValueTab) {
+ assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
+ !hasImplicitNull(type) &&
+ "Cannot read null values from bytecode!");
+
+ if (ValueTab.size() <= type)
+ ValueTab.resize(type+1);
+
+ if (!ValueTab[type]) ValueTab[type] = new ValueList();
+
+ ValueTab[type]->push_back(Val);
+
+ bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType());
+ return ValueTab[type]->size()-1 + HasOffset;
+}
+
+/// Insert the arguments of a function as new values in the reader.
+void BytecodeReader::insertArguments(Function* F) {
+ const FunctionType *FT = F->getFunctionType();
+ Function::arg_iterator AI = F->arg_begin();
+ for (FunctionType::param_iterator It = FT->param_begin();
+ It != FT->param_end(); ++It, ++AI)
+ insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
+}
+
+//===----------------------------------------------------------------------===//
+// Bytecode Parsing Methods
+//===----------------------------------------------------------------------===//
+
+/// This method parses a single instruction. The instruction is
+/// inserted at the end of the \p BB provided. The arguments of
+/// the instruction are provided in the \p Oprnds vector.
+void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
+ BasicBlock* BB) {
+ BufPtr SaveAt = At;
+
+ // Clear instruction data
+ Oprnds.clear();
+ unsigned iType = 0;
+ unsigned Opcode = 0;
+ unsigned Op = read_uint();
+
+ // bits Instruction format: Common to all formats
+ // --------------------------
+ // 01-00: Opcode type, fixed to 1.
+ // 07-02: Opcode
+ Opcode = (Op >> 2) & 63;
+ Oprnds.resize((Op >> 0) & 03);
+
+ // Extract the operands
+ switch (Oprnds.size()) {
+ case 1:
+ // bits Instruction format:
+ // --------------------------
+ // 19-08: Resulting type plane
+ // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
+ //
+ iType = (Op >> 8) & 4095;
+ Oprnds[0] = (Op >> 20) & 4095;
+ if (Oprnds[0] == 4095) // Handle special encoding for 0 operands...
+ Oprnds.resize(0);
+ break;
+ case 2:
+ // bits Instruction format:
+ // --------------------------
+ // 15-08: Resulting type plane
+ // 23-16: Operand #1
+ // 31-24: Operand #2
+ //
+ iType = (Op >> 8) & 255;
+ Oprnds[0] = (Op >> 16) & 255;
+ Oprnds[1] = (Op >> 24) & 255;
+ break;
+ case 3:
+ // bits Instruction format:
+ // --------------------------
+ // 13-08: Resulting type plane
+ // 19-14: Operand #1
+ // 25-20: Operand #2
+ // 31-26: Operand #3
+ //
+ iType = (Op >> 8) & 63;
+ Oprnds[0] = (Op >> 14) & 63;
+ Oprnds[1] = (Op >> 20) & 63;
+ Oprnds[2] = (Op >> 26) & 63;
+ break;
+ case 0:
+ At -= 4; // Hrm, try this again...
+ Opcode = read_vbr_uint();
+ Opcode >>= 2;
+ iType = read_vbr_uint();
+
+ unsigned NumOprnds = read_vbr_uint();
+ Oprnds.resize(NumOprnds);
+
+ if (NumOprnds == 0)
+ error("Zero-argument instruction found; this is invalid.");
+
+ for (unsigned i = 0; i != NumOprnds; ++i)
+ Oprnds[i] = read_vbr_uint();
+ align32();
+ break;
+ }
+
+ const Type *InstTy = getSanitizedType(iType);
+
+ // We have enough info to inform the handler now.
+ if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
+
+ // Declare the resulting instruction we'll build.
+ Instruction *Result = 0;
+
+ // If this is a bytecode format that did not include the unreachable
+ // instruction, bump up all opcodes numbers to make space.
+ if (hasNoUnreachableInst) {
+ if (Opcode >= Instruction::Unreachable &&
+ Opcode < 62) {
+ ++Opcode;
+ }
+ }
+
+ // Handle binary operators
+ if (Opcode >= Instruction::BinaryOpsBegin &&
+ Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
+ Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
+ getValue(iType, Oprnds[0]),
+ getValue(iType, Oprnds[1]));
+
+ switch (Opcode) {
+ default:
+ if (Result == 0)
+ error("Illegal instruction read!");
+ break;
+ case Instruction::VAArg:
+ Result = new VAArgInst(getValue(iType, Oprnds[0]),
+ getSanitizedType(Oprnds[1]));
+ break;
+ case 32: { //VANext_old
+ const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
+ Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
+ (Type *)0);
+
+ //b = vanext a, t ->
+ //foo = alloca 1 of t
+ //bar = vacopy a
+ //store bar -> foo
+ //tmp = vaarg foo, t
+ //b = load foo
+ AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
+ BB->getInstList().push_back(foo);
+ CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
+ BB->getInstList().push_back(bar);
+ BB->getInstList().push_back(new StoreInst(bar, foo));
+ Instruction* tmp = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
+ BB->getInstList().push_back(tmp);
+ Result = new LoadInst(foo);
+ break;
+ }
+ case 33: { //VAArg_old
+ const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
+ Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
+ (Type *)0);
+
+ //b = vaarg a, t ->
+ //foo = alloca 1 of t
+ //bar = vacopy a
+ //store bar -> foo
+ //b = vaarg foo, t
+ AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
+ BB->getInstList().push_back(foo);
+ CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
+ BB->getInstList().push_back(bar);
+ BB->getInstList().push_back(new StoreInst(bar, foo));
+ Result = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
+ break;
+ }
+ case Instruction::Cast:
+ Result = new CastInst(getValue(iType, Oprnds[0]),
+ getSanitizedType(Oprnds[1]));
+ break;
+ case Instruction::Select:
+ Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
+ getValue(iType, Oprnds[1]),
+ getValue(iType, Oprnds[2]));
+ break;
+ case Instruction::PHI: {
+ if (Oprnds.size() == 0 || (Oprnds.size() & 1))
+ error("Invalid phi node encountered!");
+
+ PHINode *PN = new PHINode(InstTy);
+ PN->reserveOperandSpace(Oprnds.size());
+ for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
+ PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
+ Result = PN;
+ break;
+ }
+
+ case Instruction::Shl:
+ case Instruction::Shr:
+ Result = new ShiftInst((Instruction::OtherOps)Opcode,
+ getValue(iType, Oprnds[0]),
+ getValue(Type::UByteTyID, Oprnds[1]));
+ break;
+ case Instruction::Ret:
+ if (Oprnds.size() == 0)
+ Result = new ReturnInst();
+ else if (Oprnds.size() == 1)
+ Result = new ReturnInst(getValue(iType, Oprnds[0]));
+ else
+ error("Unrecognized instruction!");
+ break;
+
+ case Instruction::Br:
+ if (Oprnds.size() == 1)
+ Result = new BranchInst(getBasicBlock(Oprnds[0]));
+ else if (Oprnds.size() == 3)
+ Result = new BranchInst(getBasicBlock(Oprnds[0]),
+ getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
+ else
+ error("Invalid number of operands for a 'br' instruction!");
+ break;
+ case Instruction::Switch: {
+ if (Oprnds.size() & 1)
+ error("Switch statement with odd number of arguments!");
+
+ SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
+ getBasicBlock(Oprnds[1]),
+ Oprnds.size()/2-1);
+ for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
+ I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
+ getBasicBlock(Oprnds[i+1]));
+ Result = I;
+ break;
+ }
+
+ case 58: // Call with extra operand for calling conv
+ case 59: // tail call, Fast CC
+ case 60: // normal call, Fast CC
+ case 61: // tail call, C Calling Conv
+ case Instruction::Call: { // Normal Call, C Calling Convention
+ if (Oprnds.size() == 0)
+ error("Invalid call instruction encountered!");
+
+ Value *F = getValue(iType, Oprnds[0]);
+
+ unsigned CallingConv = CallingConv::C;
+ bool isTailCall = false;
+
+ if (Opcode == 61 || Opcode == 59)
+ isTailCall = true;
+
+ // Check to make sure we have a pointer to function type
+ const PointerType *PTy = dyn_cast<PointerType>(F->getType());
+ if (PTy == 0) error("Call to non function pointer value!");
+ const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
+ if (FTy == 0) error("Call to non function pointer value!");
+
+ std::vector<Value *> Params;
+ if (!FTy->isVarArg()) {
+ FunctionType::param_iterator It = FTy->param_begin();
+
+ if (Opcode == 58) {
+ isTailCall = Oprnds.back() & 1;
+ CallingConv = Oprnds.back() >> 1;
+ Oprnds.pop_back();
+ } else if (Opcode == 59 || Opcode == 60)
+ CallingConv = CallingConv::Fast;
+
+ for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
+ if (It == FTy->param_end())
+ error("Invalid call instruction!");
+ Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
+ }
+ if (It != FTy->param_end())
+ error("Invalid call instruction!");
+ } else {
+ Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
+
+ unsigned FirstVariableOperand;
+ if (Oprnds.size() < FTy->getNumParams())
+ error("Call instruction missing operands!");
+
+ // Read all of the fixed arguments
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
+
+ FirstVariableOperand = FTy->getNumParams();
+
+ if ((Oprnds.size()-FirstVariableOperand) & 1)
+ error("Invalid call instruction!"); // Must be pairs of type/value
+
+ for (unsigned i = FirstVariableOperand, e = Oprnds.size();
+ i != e; i += 2)
+ Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
+ }
+
+ Result = new CallInst(F, Params);
+ if (isTailCall) cast<CallInst>(Result)->setTailCall();
+ if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
+ break;
+ }
+ case 56: // Invoke with encoded CC
+ case 57: // Invoke Fast CC
+ case Instruction::Invoke: { // Invoke C CC
+ if (Oprnds.size() < 3)
+ error("Invalid invoke instruction!");
+ Value *F = getValue(iType, Oprnds[0]);
+
+ // Check to make sure we have a pointer to function type
+ const PointerType *PTy = dyn_cast<PointerType>(F->getType());
+ if (PTy == 0)
+ error("Invoke to non function pointer value!");
+ const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
+ if (FTy == 0)
+ error("Invoke to non function pointer value!");
+
+ std::vector<Value *> Params;
+ BasicBlock *Normal, *Except;
+ unsigned CallingConv = CallingConv::C;
+
+ if (Opcode == 57)
+ CallingConv = CallingConv::Fast;
+ else if (Opcode == 56) {
+ CallingConv = Oprnds.back();
+ Oprnds.pop_back();
+ }
+
+ if (!FTy->isVarArg()) {
+ Normal = getBasicBlock(Oprnds[1]);
+ Except = getBasicBlock(Oprnds[2]);
+
+ FunctionType::param_iterator It = FTy->param_begin();
+ for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
+ if (It == FTy->param_end())
+ error("Invalid invoke instruction!");
+ Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
+ }
+ if (It != FTy->param_end())
+ error("Invalid invoke instruction!");
+ } else {
+ Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
+
+ Normal = getBasicBlock(Oprnds[0]);
+ Except = getBasicBlock(Oprnds[1]);
+
+ unsigned FirstVariableArgument = FTy->getNumParams()+2;
+ for (unsigned i = 2; i != FirstVariableArgument; ++i)
+ Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
+ Oprnds[i]));
+
+ if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
+ error("Invalid invoke instruction!");
+
+ for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
+ Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
+ }
+
+ Result = new InvokeInst(F, Normal, Except, Params);
+ if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
+ break;
+ }
+ case Instruction::Malloc:
+ if (Oprnds.size() > 2)
+ error("Invalid malloc instruction!");
+ if (!isa<PointerType>(InstTy))
+ error("Invalid malloc instruction!");
+
+ Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
+ Oprnds.size() ? getValue(Type::UIntTyID,
+ Oprnds[0]) : 0);
+ break;
+
+ case Instruction::Alloca:
+ if (Oprnds.size() > 2)
+ error("Invalid alloca instruction!");
+ if (!isa<PointerType>(InstTy))
+ error("Invalid alloca instruction!");
+
+ Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
+ Oprnds.size() ? getValue(Type::UIntTyID,
+ Oprnds[0]) :0);
+ break;
+ case Instruction::Free:
+ if (!isa<PointerType>(InstTy))
+ error("Invalid free instruction!");
+ Result = new FreeInst(getValue(iType, Oprnds[0]));
+ break;
+ case Instruction::GetElementPtr: {
+ if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
+ error("Invalid getelementptr instruction!");
+
+ std::vector<Value*> Idx;
+
+ const Type *NextTy = InstTy;
+ for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
+ const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
+ if (!TopTy)
+ error("Invalid getelementptr instruction!");
+
+ unsigned ValIdx = Oprnds[i];
+ unsigned IdxTy = 0;
+ if (!hasRestrictedGEPTypes) {
+ // Struct indices are always uints, sequential type indices can be any
+ // of the 32 or 64-bit integer types. The actual choice of type is
+ // encoded in the low two bits of the slot number.
+ if (isa<StructType>(TopTy))
+ IdxTy = Type::UIntTyID;
+ else {
+ switch (ValIdx & 3) {
+ default:
+ case 0: IdxTy = Type::UIntTyID; break;
+ case 1: IdxTy = Type::IntTyID; break;
+ case 2: IdxTy = Type::ULongTyID; break;
+ case 3: IdxTy = Type::LongTyID; break;
+ }
+ ValIdx >>= 2;
+ }
+ } else {
+ IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
+ }
+
+ Idx.push_back(getValue(IdxTy, ValIdx));
+
+ // Convert ubyte struct indices into uint struct indices.
+ if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
+ if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
+ Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
+
+ NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
+ }
+
+ Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
+ break;
+ }
+
+ case 62: // volatile load
+ case Instruction::Load:
+ if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
+ error("Invalid load instruction!");
+ Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
+ break;
+
+ case 63: // volatile store
+ case Instruction::Store: {
+ if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
+ error("Invalid store instruction!");
+
+ Value *Ptr = getValue(iType, Oprnds[1]);
+ const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
+ Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
+ Opcode == 63);
+ break;
+ }
+ case Instruction::Unwind:
+ if (Oprnds.size() != 0) error("Invalid unwind instruction!");
+ Result = new UnwindInst();
+ break;
+ case Instruction::Unreachable:
+ if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
+ Result = new UnreachableInst();
+ break;
+ } // end switch(Opcode)
+
+ unsigned TypeSlot;
+ if (Result->getType() == InstTy)
+ TypeSlot = iType;
+ else
+ TypeSlot = getTypeSlot(Result->getType());
+
+ insertValue(Result, TypeSlot, FunctionValues);
+ BB->getInstList().push_back(Result);
+}
+
+/// Get a particular numbered basic block, which might be a forward reference.
+/// This works together with ParseBasicBlock to handle these forward references
+/// in a clean manner. This function is used when constructing phi, br, switch,
+/// and other instructions that reference basic blocks. Blocks are numbered
+/// sequentially as they appear in the function.
+BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
+ // Make sure there is room in the table...
+ if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
+
+ // First check to see if this is a backwards reference, i.e., ParseBasicBlock
+ // has already created this block, or if the forward reference has already
+ // been created.
+ if (ParsedBasicBlocks[ID])
+ return ParsedBasicBlocks[ID];
+
+ // Otherwise, the basic block has not yet been created. Do so and add it to
+ // the ParsedBasicBlocks list.
+ return ParsedBasicBlocks[ID] = new BasicBlock();
+}
+
+/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
+/// This method reads in one of the basicblock packets. This method is not used
+/// for bytecode files after LLVM 1.0
+/// @returns The basic block constructed.
+BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
+ if (Handler) Handler->handleBasicBlockBegin(BlockNo);
+
+ BasicBlock *BB = 0;
+
+ if (ParsedBasicBlocks.size() == BlockNo)
+ ParsedBasicBlocks.push_back(BB = new BasicBlock());
+ else if (ParsedBasicBlocks[BlockNo] == 0)
+ BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
+ else
+ BB = ParsedBasicBlocks[BlockNo];
+
+ std::vector<unsigned> Operands;
+ while (moreInBlock())
+ ParseInstruction(Operands, BB);
+
+ if (Handler) Handler->handleBasicBlockEnd(BlockNo);
+ return BB;
+}
+
+/// Parse all of the BasicBlock's & Instruction's in the body of a function.
+/// In post 1.0 bytecode files, we no longer emit basic block individually,
+/// in order to avoid per-basic-block overhead.
+/// @returns Rhe number of basic blocks encountered.
+unsigned BytecodeReader::ParseInstructionList(Function* F) {
+ unsigned BlockNo = 0;
+ std::vector<unsigned> Args;
+
+ while (moreInBlock()) {
+ if (Handler) Handler->handleBasicBlockBegin(BlockNo);
+ BasicBlock *BB;
+ if (ParsedBasicBlocks.size() == BlockNo)
+ ParsedBasicBlocks.push_back(BB = new BasicBlock());
+ else if (ParsedBasicBlocks[BlockNo] == 0)
+ BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
+ else
+ BB = ParsedBasicBlocks[BlockNo];
+ ++BlockNo;
+ F->getBasicBlockList().push_back(BB);
+
+ // Read instructions into this basic block until we get to a terminator
+ while (moreInBlock() && !BB->getTerminator())
+ ParseInstruction(Args, BB);
+
+ if (!BB->getTerminator())
+ error("Non-terminated basic block found!");
+
+ if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
+ }
+
+ return BlockNo;
+}
+
+/// Parse a symbol table. This works for both module level and function
+/// level symbol tables. For function level symbol tables, the CurrentFunction
+/// parameter must be non-zero and the ST parameter must correspond to
+/// CurrentFunction's symbol table. For Module level symbol tables, the
+/// CurrentFunction argument must be zero.
+void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
+ SymbolTable *ST) {
+ if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
+
+ // Allow efficient basic block lookup by number.
+ std::vector<BasicBlock*> BBMap;
+ if (CurrentFunction)
+ for (Function::iterator I = CurrentFunction->begin(),
+ E = CurrentFunction->end(); I != E; ++I)
+ BBMap.push_back(I);
+
+ /// In LLVM 1.3 we write types separately from values so
+ /// The types are always first in the symbol table. This is
+ /// because Type no longer derives from Value.
+ if (!hasTypeDerivedFromValue) {
+ // Symtab block header: [num entries]
+ unsigned NumEntries = read_vbr_uint();
+ for (unsigned i = 0; i < NumEntries; ++i) {
+ // Symtab entry: [def slot #][name]
+ unsigned slot = read_vbr_uint();
+ std::string Name = read_str();
+ const Type* T = getType(slot);
+ ST->insert(Name, T);
+ }
+ }
+
+ while (moreInBlock()) {
+ // Symtab block header: [num entries][type id number]
+ unsigned NumEntries = read_vbr_uint();
+ unsigned Typ = 0;
+ bool isTypeType = read_typeid(Typ);
+ const Type *Ty = getType(Typ);
+
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ // Symtab entry: [def slot #][name]
+ unsigned slot = read_vbr_uint();
+ std::string Name = read_str();
+
+ // if we're reading a pre 1.3 bytecode file and the type plane
+ // is the "type type", handle it here
+ if (isTypeType) {
+ const Type* T = getType(slot);
+ if (T == 0)
+ error("Failed type look-up for name '" + Name + "'");
+ ST->insert(Name, T);
+ continue; // code below must be short circuited
+ } else {
+ Value *V = 0;
+ if (Typ == Type::LabelTyID) {
+ if (slot < BBMap.size())
+ V = BBMap[slot];
+ } else {
+ V = getValue(Typ, slot, false); // Find mapping...
+ }
+ if (V == 0)
+ error("Failed value look-up for name '" + Name + "'");
+ V->setName(Name);
+ }
+ }
+ }
+ checkPastBlockEnd("Symbol Table");
+ if (Handler) Handler->handleSymbolTableEnd();
+}
+
+/// Read in the types portion of a compaction table.
+void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ unsigned TypeSlot = 0;
+ if (read_typeid(TypeSlot))
+ error("Invalid type in compaction table: type type");
+ const Type *Typ = getGlobalTableType(TypeSlot);
+ CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
+ if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
+ }
+}
+
+/// Parse a compaction table.
+void BytecodeReader::ParseCompactionTable() {
+
+ // Notify handler that we're beginning a compaction table.
+ if (Handler) Handler->handleCompactionTableBegin();
+
+ // In LLVM 1.3 Type no longer derives from Value. So,
+ // we always write them first in the compaction table
+ // because they can't occupy a "type plane" where the
+ // Values reside.
+ if (! hasTypeDerivedFromValue) {
+ unsigned NumEntries = read_vbr_uint();
+ ParseCompactionTypes(NumEntries);
+ }
+
+ // Compaction tables live in separate blocks so we have to loop
+ // until we've read the whole thing.
+ while (moreInBlock()) {
+ // Read the number of Value* entries in the compaction table
+ unsigned NumEntries = read_vbr_uint();
+ unsigned Ty = 0;
+ unsigned isTypeType = false;
+
+ // Decode the type from value read in. Most compaction table
+ // planes will have one or two entries in them. If that's the
+ // case then the length is encoded in the bottom two bits and
+ // the higher bits encode the type. This saves another VBR value.
+ if ((NumEntries & 3) == 3) {
+ // In this case, both low-order bits are set (value 3). This
+ // is a signal that the typeid follows.
+ NumEntries >>= 2;
+ isTypeType = read_typeid(Ty);
+ } else {
+ // In this case, the low-order bits specify the number of entries
+ // and the high order bits specify the type.
+ Ty = NumEntries >> 2;
+ isTypeType = sanitizeTypeId(Ty);
+ NumEntries &= 3;
+ }
+
+ // if we're reading a pre 1.3 bytecode file and the type plane
+ // is the "type type", handle it here
+ if (isTypeType) {
+ ParseCompactionTypes(NumEntries);
+ } else {
+ // Make sure we have enough room for the plane.
+ if (Ty >= CompactionValues.size())
+ CompactionValues.resize(Ty+1);
+
+ // Make sure the plane is empty or we have some kind of error.
+ if (!CompactionValues[Ty].empty())
+ error("Compaction table plane contains multiple entries!");
+
+ // Notify handler about the plane.
+ if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
+
+ // Push the implicit zero.
+ CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));
+
+ // Read in each of the entries, put them in the compaction table
+ // and notify the handler that we have a new compaction table value.
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ unsigned ValSlot = read_vbr_uint();
+ Value *V = getGlobalTableValue(Ty, ValSlot);
+ CompactionValues[Ty].push_back(V);
+ if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
+ }
+ }
+ }
+ // Notify handler that the compaction table is done.
+ if (Handler) Handler->handleCompactionTableEnd();
+}
+
+// Parse a single type. The typeid is read in first. If its a primitive type
+// then nothing else needs to be read, we know how to instantiate it. If its
+// a derived type, then additional data is read to fill out the type
+// definition.
+const Type *BytecodeReader::ParseType() {
+ unsigned PrimType = 0;
+ if (read_typeid(PrimType))
+ error("Invalid type (type type) in type constants!");
+
+ const Type *Result = 0;
+ if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
+ return Result;
+
+ switch (PrimType) {
+ case Type::FunctionTyID: {
+ const Type *RetType = readSanitizedType();
+
+ unsigned NumParams = read_vbr_uint();
+
+ std::vector<const Type*> Params;
+ while (NumParams--)
+ Params.push_back(readSanitizedType());
+
+ bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
+ if (isVarArg) Params.pop_back();
+
+ Result = FunctionType::get(RetType, Params, isVarArg);
+ break;
+ }
+ case Type::ArrayTyID: {
+ const Type *ElementType = readSanitizedType();
+ unsigned NumElements = read_vbr_uint();
+ Result = ArrayType::get(ElementType, NumElements);
+ break;
+ }
+ case Type::PackedTyID: {
+ const Type *ElementType = readSanitizedType();
+ unsigned NumElements = read_vbr_uint();
+ Result = PackedType::get(ElementType, NumElements);
+ break;
+ }
+ case Type::StructTyID: {
+ std::vector<const Type*> Elements;
+ unsigned Typ = 0;
+ if (read_typeid(Typ))
+ error("Invalid element type (type type) for structure!");
+
+ while (Typ) { // List is terminated by void/0 typeid
+ Elements.push_back(getType(Typ));
+ if (read_typeid(Typ))
+ error("Invalid element type (type type) for structure!");
+ }
+
+ Result = StructType::get(Elements);
+ break;
+ }
+ case Type::PointerTyID: {
+ Result = PointerType::get(readSanitizedType());
+ break;
+ }
+
+ case Type::OpaqueTyID: {
+ Result = OpaqueType::get();
+ break;
+ }
+
+ default:
+ error("Don't know how to deserialize primitive type " + utostr(PrimType));
+ break;
+ }
+ if (Handler) Handler->handleType(Result);
+ return Result;
+}
+
+// ParseTypes - We have to use this weird code to handle recursive
+// types. We know that recursive types will only reference the current slab of
+// values in the type plane, but they can forward reference types before they
+// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
+// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
+// this ugly problem, we pessimistically insert an opaque type for each type we
+// are about to read. This means that forward references will resolve to
+// something and when we reread the type later, we can replace the opaque type
+// with a new resolved concrete type.
+//
+void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
+ assert(Tab.size() == 0 && "should not have read type constants in before!");
+
+ // Insert a bunch of opaque types to be resolved later...
+ Tab.reserve(NumEntries);
+ for (unsigned i = 0; i != NumEntries; ++i)
+ Tab.push_back(OpaqueType::get());
+
+ if (Handler)
+ Handler->handleTypeList(NumEntries);
+
+ // If we are about to resolve types, make sure the type cache is clear.
+ if (NumEntries)
+ ModuleTypeIDCache.clear();
+
+ // Loop through reading all of the types. Forward types will make use of the
+ // opaque types just inserted.
+ //
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ const Type* NewTy = ParseType();
+ const Type* OldTy = Tab[i].get();
+ if (NewTy == 0)
+ error("Couldn't parse type!");
+
+ // Don't directly push the new type on the Tab. Instead we want to replace
+ // the opaque type we previously inserted with the new concrete value. This
+ // approach helps with forward references to types. The refinement from the
+ // abstract (opaque) type to the new type causes all uses of the abstract
+ // type to use the concrete type (NewTy). This will also cause the opaque
+ // type to be deleted.
+ cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
+
+ // This should have replaced the old opaque type with the new type in the
+ // value table... or with a preexisting type that was already in the system.
+ // Let's just make sure it did.
+ assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
+ }
+}
+
+/// Parse a single constant value
+Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
+ // We must check for a ConstantExpr before switching by type because
+ // a ConstantExpr can be of any type, and has no explicit value.
+ //
+ // 0 if not expr; numArgs if is expr
+ unsigned isExprNumArgs = read_vbr_uint();
+
+ if (isExprNumArgs) {
+ // 'undef' is encoded with 'exprnumargs' == 1.
+ if (!hasNoUndefValue)
+ if (--isExprNumArgs == 0)
+ return UndefValue::get(getType(TypeID));
+
+ // FIXME: Encoding of constant exprs could be much more compact!
+ std::vector<Constant*> ArgVec;
+ ArgVec.reserve(isExprNumArgs);
+ unsigned Opcode = read_vbr_uint();
+
+ // Bytecode files before LLVM 1.4 need have a missing terminator inst.
+ if (hasNoUnreachableInst) Opcode++;
+
+ // Read the slot number and types of each of the arguments
+ for (unsigned i = 0; i != isExprNumArgs; ++i) {
+ unsigned ArgValSlot = read_vbr_uint();
+ unsigned ArgTypeSlot = 0;
+ if (read_typeid(ArgTypeSlot))
+ error("Invalid argument type (type type) for constant value");
+
+ // Get the arg value from its slot if it exists, otherwise a placeholder
+ ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
+ }
+
+ // Construct a ConstantExpr of the appropriate kind
+ if (isExprNumArgs == 1) { // All one-operand expressions
+ if (Opcode != Instruction::Cast)
+ error("Only cast instruction has one argument for ConstantExpr");
+
+ Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
+ if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
+ return Result;
+ } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
+ std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
+
+ if (hasRestrictedGEPTypes) {
+ const Type *BaseTy = ArgVec[0]->getType();
+ generic_gep_type_iterator<std::vector<Constant*>::iterator>
+ GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
+ E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
+ for (unsigned i = 0; GTI != E; ++GTI, ++i)
+ if (isa<StructType>(*GTI)) {
+ if (IdxList[i]->getType() != Type::UByteTy)
+ error("Invalid index for getelementptr!");
+ IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
+ }
+ }
+
+ Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
+ if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
+ return Result;
+ } else if (Opcode == Instruction::Select) {
+ if (ArgVec.size() != 3)
+ error("Select instruction must have three arguments.");
+ Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
+ ArgVec[2]);
+ if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
+ return Result;
+ } else { // All other 2-operand expressions
+ Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
+ if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
+ return Result;
+ }
+ }
+
+ // Ok, not an ConstantExpr. We now know how to read the given type...
+ const Type *Ty = getType(TypeID);
+ switch (Ty->getTypeID()) {
+ case Type::BoolTyID: {
+ unsigned Val = read_vbr_uint();
+ if (Val != 0 && Val != 1)
+ error("Invalid boolean value read.");
+ Constant* Result = ConstantBool::get(Val == 1);
+ if (Handler) Handler->handleConstantValue(Result);
+ return Result;
+ }
+
+ case Type::UByteTyID: // Unsigned integer types...
+ case Type::UShortTyID:
+ case Type::UIntTyID: {
+ unsigned Val = read_vbr_uint();
+ if (!ConstantUInt::isValueValidForType(Ty, Val))
+ error("Invalid unsigned byte/short/int read.");
+ Constant* Result = ConstantUInt::get(Ty, Val);
+ if (Handler) Handler->handleConstantValue(Result);
+ return Result;
+ }
+
+ case Type::ULongTyID: {
+ Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
+ if (Handler) Handler->handleConstantValue(Result);
+ return Result;
+ }
+
+ case Type::SByteTyID: // Signed integer types...
+ case Type::ShortTyID:
+ case Type::IntTyID: {
+ case Type::LongTyID:
+ int64_t Val = read_vbr_int64();
+ if (!ConstantSInt::isValueValidForType(Ty, Val))
+ error("Invalid signed byte/short/int/long read.");
+ Constant* Result = ConstantSInt::get(Ty, Val);
+ if (Handler) Handler->handleConstantValue(Result);
+ return Result;
+ }
+
+ case Type::FloatTyID: {
+ float Val;
+ read_float(Val);
+ Constant* Result = ConstantFP::get(Ty, Val);
+ if (Handler) Handler->handleConstantValue(Result);
+ return Result;
+ }
+
+ case Type::DoubleTyID: {
+ double Val;
+ read_double(Val);
+ Constant* Result = ConstantFP::get(Ty, Val);
+ if (Handler) Handler->handleConstantValue(Result);
+ return Result;
+ }
+
+ case Type::ArrayTyID: {
+ const ArrayType *AT = cast<ArrayType>(Ty);
+ unsigned NumElements = AT->getNumElements();
+ unsigned TypeSlot = getTypeSlot(AT->getElementType());
+ std::vector<Constant*> Elements;
+ Elements.reserve(NumElements);
+ while (NumElements--) // Read all of the elements of the constant.
+ Elements.push_back(getConstantValue(TypeSlot,
+ read_vbr_uint()));
+ Constant* Result = ConstantArray::get(AT, Elements);
+ if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
+ return Result;
+ }
+
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(Ty);
+
+ std::vector<Constant *> Elements;
+ Elements.reserve(ST->getNumElements());
+ for (unsigned i = 0; i != ST->getNumElements(); ++i)
+ Elements.push_back(getConstantValue(ST->getElementType(i),
+ read_vbr_uint()));
+
+ Constant* Result = ConstantStruct::get(ST, Elements);
+ if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
+ return Result;
+ }
+
+ case Type::PackedTyID: {
+ const PackedType *PT = cast<PackedType>(Ty);
+ unsigned NumElements = PT->getNumElements();
+ unsigned TypeSlot = getTypeSlot(PT->getElementType());
+ std::vector<Constant*> Elements;
+ Elements.reserve(NumElements);
+ while (NumElements--) // Read all of the elements of the constant.
+ Elements.push_back(getConstantValue(TypeSlot,
+ read_vbr_uint()));
+ Constant* Result = ConstantPacked::get(PT, Elements);
+ if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
+ return Result;
+ }
+
+ case Type::PointerTyID: { // ConstantPointerRef value (backwards compat).
+ const PointerType *PT = cast<PointerType>(Ty);
+ unsigned Slot = read_vbr_uint();
+
+ // Check to see if we have already read this global variable...
+ Value *Val = getValue(TypeID, Slot, false);
+ if (Val) {
+ GlobalValue *GV = dyn_cast<GlobalValue>(Val);
+ if (!GV) error("GlobalValue not in ValueTable!");
+ if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
+ return GV;
+ } else {
+ error("Forward references are not allowed here.");
+ }
+ }
+
+ default:
+ error("Don't know how to deserialize constant value of type '" +
+ Ty->getDescription());
+ break;
+ }
+ return 0;
+}
+
+/// Resolve references for constants. This function resolves the forward
+/// referenced constants in the ConstantFwdRefs map. It uses the
+/// replaceAllUsesWith method of Value class to substitute the placeholder
+/// instance with the actual instance.
+void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
+ unsigned Slot) {
+ ConstantRefsType::iterator I =
+ ConstantFwdRefs.find(std::make_pair(Typ, Slot));
+ if (I == ConstantFwdRefs.end()) return; // Never forward referenced?
+
+ Value *PH = I->second; // Get the placeholder...
+ PH->replaceAllUsesWith(NewV);
+ delete PH; // Delete the old placeholder
+ ConstantFwdRefs.erase(I); // Remove the map entry for it
+}
+
+/// Parse the constant strings section.
+void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
+ for (; NumEntries; --NumEntries) {
+ unsigned Typ = 0;
+ if (read_typeid(Typ))
+ error("Invalid type (type type) for string constant");
+ const Type *Ty = getType(Typ);
+ if (!isa<ArrayType>(Ty))
+ error("String constant data invalid!");
+
+ const ArrayType *ATy = cast<ArrayType>(Ty);
+ if (ATy->getElementType() != Type::SByteTy &&
+ ATy->getElementType() != Type::UByteTy)
+ error("String constant data invalid!");
+
+ // Read character data. The type tells us how long the string is.
+ char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
+ read_data(Data, Data+ATy->getNumElements());
+
+ std::vector<Constant*> Elements(ATy->getNumElements());
+ if (ATy->getElementType() == Type::SByteTy)
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+ Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
+ else
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+ Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
+
+ // Create the constant, inserting it as needed.
+ Constant *C = ConstantArray::get(ATy, Elements);
+ unsigned Slot = insertValue(C, Typ, Tab);
+ ResolveReferencesToConstant(C, Typ, Slot);
+ if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
+ }
+}
+
+/// Parse the constant pool.
+void BytecodeReader::ParseConstantPool(ValueTable &Tab,
+ TypeListTy &TypeTab,
+ bool isFunction) {
+ if (Handler) Handler->handleGlobalConstantsBegin();
+
+ /// In LLVM 1.3 Type does not derive from Value so the types
+ /// do not occupy a plane. Consequently, we read the types
+ /// first in the constant pool.
+ if (isFunction && !hasTypeDerivedFromValue) {
+ unsigned NumEntries = read_vbr_uint();
+ ParseTypes(TypeTab, NumEntries);
+ }
+
+ while (moreInBlock()) {
+ unsigned NumEntries = read_vbr_uint();
+ unsigned Typ = 0;
+ bool isTypeType = read_typeid(Typ);
+
+ /// In LLVM 1.2 and before, Types were written to the
+ /// bytecode file in the "Type Type" plane (#12).
+ /// In 1.3 plane 12 is now the label plane. Handle this here.
+ if (isTypeType) {
+ ParseTypes(TypeTab, NumEntries);
+ } else if (Typ == Type::VoidTyID) {
+ /// Use of Type::VoidTyID is a misnomer. It actually means
+ /// that the following plane is constant strings
+ assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
+ ParseStringConstants(NumEntries, Tab);
+ } else {
+ for (unsigned i = 0; i < NumEntries; ++i) {
+ Constant *C = ParseConstantValue(Typ);
+ assert(C && "ParseConstantValue returned NULL!");
+ unsigned Slot = insertValue(C, Typ, Tab);
+
+ // If we are reading a function constant table, make sure that we adjust
+ // the slot number to be the real global constant number.
+ //
+ if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
+ ModuleValues[Typ])
+ Slot += ModuleValues[Typ]->size();
+ ResolveReferencesToConstant(C, Typ, Slot);
+ }
+ }
+ }
+
+ // After we have finished parsing the constant pool, we had better not have
+ // any dangling references left.
+ if (!ConstantFwdRefs.empty()) {
+ ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
+ Constant* missingConst = I->second;
+ error(utostr(ConstantFwdRefs.size()) +
+ " unresolved constant reference exist. First one is '" +
+ missingConst->getName() + "' of type '" +
+ missingConst->getType()->getDescription() + "'.");
+ }
+
+ checkPastBlockEnd("Constant Pool");
+ if (Handler) Handler->handleGlobalConstantsEnd();
+}
+
+/// Parse the contents of a function. Note that this function can be
+/// called lazily by materializeFunction
+/// @see materializeFunction
+void BytecodeReader::ParseFunctionBody(Function* F) {
+
+ unsigned FuncSize = BlockEnd - At;
+ GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
+
+ unsigned LinkageType = read_vbr_uint();
+ switch (LinkageType) {
+ case 0: Linkage = GlobalValue::ExternalLinkage; break;
+ case 1: Linkage = GlobalValue::WeakLinkage; break;
+ case 2: Linkage = GlobalValue::AppendingLinkage; break;
+ case 3: Linkage = GlobalValue::InternalLinkage; break;
+ case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
+ default:
+ error("Invalid linkage type for Function.");
+ Linkage = GlobalValue::InternalLinkage;
+ break;
+ }
+
+ F->setLinkage(Linkage);
+ if (Handler) Handler->handleFunctionBegin(F,FuncSize);
+
+ // Keep track of how many basic blocks we have read in...
+ unsigned BlockNum = 0;
+ bool InsertedArguments = false;
+
+ BufPtr MyEnd = BlockEnd;
+ while (At < MyEnd) {
+ unsigned Type, Size;
+ BufPtr OldAt = At;
+ read_block(Type, Size);
+
+ switch (Type) {
+ case BytecodeFormat::ConstantPoolBlockID:
+ if (!InsertedArguments) {
+ // Insert arguments into the value table before we parse the first basic
+ // block in the function, but after we potentially read in the
+ // compaction table.
+ insertArguments(F);
+ InsertedArguments = true;
+ }
+
+ ParseConstantPool(FunctionValues, FunctionTypes, true);
+ break;
+
+ case BytecodeFormat::CompactionTableBlockID:
+ ParseCompactionTable();
+ break;
+
+ case BytecodeFormat::BasicBlock: {
+ if (!InsertedArguments) {
+ // Insert arguments into the value table before we parse the first basic
+ // block in the function, but after we potentially read in the
+ // compaction table.
+ insertArguments(F);
+ InsertedArguments = true;
+ }
+
+ BasicBlock *BB = ParseBasicBlock(BlockNum++);
+ F->getBasicBlockList().push_back(BB);
+ break;
+ }
+
+ case BytecodeFormat::InstructionListBlockID: {
+ // Insert arguments into the value table before we parse the instruction
+ // list for the function, but after we potentially read in the compaction
+ // table.
+ if (!InsertedArguments) {
+ insertArguments(F);
+ InsertedArguments = true;
+ }
+
+ if (BlockNum)
+ error("Already parsed basic blocks!");
+ BlockNum = ParseInstructionList(F);
+ break;
+ }
+
+ case BytecodeFormat::SymbolTableBlockID:
+ ParseSymbolTable(F, &F->getSymbolTable());
+ break;
+
+ default:
+ At += Size;
+ if (OldAt > At)
+ error("Wrapped around reading bytecode.");
+ break;
+ }
+ BlockEnd = MyEnd;
+
+ // Malformed bc file if read past end of block.
+ align32();
+ }
+
+ // Make sure there were no references to non-existant basic blocks.
+ if (BlockNum != ParsedBasicBlocks.size())
+ error("Illegal basic block operand reference");
+
+ ParsedBasicBlocks.clear();
+
+ // Resolve forward references. Replace any uses of a forward reference value
+ // with the real value.
+ while (!ForwardReferences.empty()) {
+ std::map<std::pair<unsigned,unsigned>, Value*>::iterator
+ I = ForwardReferences.begin();
+ Value *V = getValue(I->first.first, I->first.second, false);
+ Value *PlaceHolder = I->second;
+ PlaceHolder->replaceAllUsesWith(V);
+ ForwardReferences.erase(I);
+ delete PlaceHolder;
+ }
+
+ // Clear out function-level types...
+ FunctionTypes.clear();
+ CompactionTypes.clear();
+ CompactionValues.clear();
+ freeTable(FunctionValues);
+
+ if (Handler) Handler->handleFunctionEnd(F);
+}
+
+/// This function parses LLVM functions lazily. It obtains the type of the
+/// function and records where the body of the function is in the bytecode
+/// buffer. The caller can then use the ParseNextFunction and
+/// ParseAllFunctionBodies to get handler events for the functions.
+void BytecodeReader::ParseFunctionLazily() {
+ if (FunctionSignatureList.empty())
+ error("FunctionSignatureList empty!");
+
+ Function *Func = FunctionSignatureList.back();
+ FunctionSignatureList.pop_back();
+
+ // Save the information for future reading of the function
+ LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
+
+ // This function has a body but it's not loaded so it appears `External'.
+ // Mark it as a `Ghost' instead to notify the users that it has a body.
+ Func->setLinkage(GlobalValue::GhostLinkage);
+
+ // Pretend we've `parsed' this function
+ At = BlockEnd;
+}
+
+/// The ParserFunction method lazily parses one function. Use this method to
+/// casue the parser to parse a specific function in the module. Note that
+/// this will remove the function from what is to be included by
+/// ParseAllFunctionBodies.
+/// @see ParseAllFunctionBodies
+/// @see ParseBytecode
+void BytecodeReader::ParseFunction(Function* Func) {
+ // Find {start, end} pointers and slot in the map. If not there, we're done.
+ LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
+
+ // Make sure we found it
+ if (Fi == LazyFunctionLoadMap.end()) {
+ error("Unrecognized function of type " + Func->getType()->getDescription());
+ return;
+ }
+
+ BlockStart = At = Fi->second.Buf;
+ BlockEnd = Fi->second.EndBuf;
+ assert(Fi->first == Func && "Found wrong function?");
+
+ LazyFunctionLoadMap.erase(Fi);
+
+ this->ParseFunctionBody(Func);
+}
+
+/// The ParseAllFunctionBodies method parses through all the previously
+/// unparsed functions in the bytecode file. If you want to completely parse
+/// a bytecode file, this method should be called after Parsebytecode because
+/// Parsebytecode only records the locations in the bytecode file of where
+/// the function definitions are located. This function uses that information
+/// to materialize the functions.
+/// @see ParseBytecode
+void BytecodeReader::ParseAllFunctionBodies() {
+ LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
+ LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
+
+ while (Fi != Fe) {
+ Function* Func = Fi->first;
+ BlockStart = At = Fi->second.Buf;
+ BlockEnd = Fi->second.EndBuf;
+ ParseFunctionBody(Func);
+ ++Fi;
+ }
+ LazyFunctionLoadMap.clear();
+}
+
+/// Parse the global type list
+void BytecodeReader::ParseGlobalTypes() {
+ // Read the number of types
+ unsigned NumEntries = read_vbr_uint();
+
+ // Ignore the type plane identifier for types if the bc file is pre 1.3
+ if (hasTypeDerivedFromValue)
+ read_vbr_uint();
+
+ ParseTypes(ModuleTypes, NumEntries);
+}
+
+/// Parse the Global info (types, global vars, constants)
+void BytecodeReader::ParseModuleGlobalInfo() {
+
+ if (Handler) Handler->handleModuleGlobalsBegin();
+
+ // Read global variables...
+ unsigned VarType = read_vbr_uint();
+ while (VarType != Type::VoidTyID) { // List is terminated by Void
+ // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
+ // Linkage, bit4+ = slot#
+ unsigned SlotNo = VarType >> 5;
+ if (sanitizeTypeId(SlotNo))
+ error("Invalid type (type type) for global var!");
+ unsigned LinkageID = (VarType >> 2) & 7;
+ bool isConstant = VarType & 1;
+ bool hasInitializer = VarType & 2;
+ GlobalValue::LinkageTypes Linkage;
+
+ switch (LinkageID) {
+ case 0: Linkage = GlobalValue::ExternalLinkage; break;
+ case 1: Linkage = GlobalValue::WeakLinkage; break;
+ case 2: Linkage = GlobalValue::AppendingLinkage; break;
+ case 3: Linkage = GlobalValue::InternalLinkage; break;
+ case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
+ default:
+ error("Unknown linkage type: " + utostr(LinkageID));
+ Linkage = GlobalValue::InternalLinkage;
+ break;
+ }
+
+ const Type *Ty = getType(SlotNo);
+ if (!Ty) {
+ error("Global has no type! SlotNo=" + utostr(SlotNo));
+ }
+
+ if (!isa<PointerType>(Ty)) {
+ error("Global not a pointer type! Ty= " + Ty->getDescription());
+ }
+
+ const Type *ElTy = cast<PointerType>(Ty)->getElementType();
+
+ // Create the global variable...
+ GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
+ 0, "", TheModule);
+ insertValue(GV, SlotNo, ModuleValues);
+
+ unsigned initSlot = 0;
+ if (hasInitializer) {
+ initSlot = read_vbr_uint();
+ GlobalInits.push_back(std::make_pair(GV, initSlot));
+ }
+
+ // Notify handler about the global value.
+ if (Handler)
+ Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);
+
+ // Get next item
+ VarType = read_vbr_uint();
+ }
+
+ // Read the function objects for all of the functions that are coming
+ unsigned FnSignature = read_vbr_uint();
+
+ if (hasNoFlagsForFunctions)
+ FnSignature = (FnSignature << 5) + 1;
+
+ // List is terminated by VoidTy.
+ while ((FnSignature >> 5) != Type::VoidTyID) {
+ const Type *Ty = getType(FnSignature >> 5);
+ if (!isa<PointerType>(Ty) ||
+ !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
+ error("Function not a pointer to function type! Ty = " +
+ Ty->getDescription());
+ }
+
+ // We create functions by passing the underlying FunctionType to create...
+ const FunctionType* FTy =
+ cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
+
+
+ // Insert the place holder.
+ Function* Func = new Function(FTy, GlobalValue::ExternalLinkage,
+ "", TheModule);
+ insertValue(Func, FnSignature >> 5, ModuleValues);
+
+ // Flags are not used yet.
+ unsigned Flags = FnSignature & 31;
+
+ // Save this for later so we know type of lazily instantiated functions.
+ // Note that known-external functions do not have FunctionInfo blocks, so we
+ // do not add them to the FunctionSignatureList.
+ if ((Flags & (1 << 4)) == 0)
+ FunctionSignatureList.push_back(Func);
+
+ // Look at the low bits. If there is a calling conv here, apply it,
+ // read it as a vbr.
+ Flags &= 15;
+ if (Flags)
+ Func->setCallingConv(Flags-1);
+ else
+ Func->setCallingConv(read_vbr_uint());
+
+ if (Handler) Handler->handleFunctionDeclaration(Func);
+
+ // Get the next function signature.
+ FnSignature = read_vbr_uint();
+ if (hasNoFlagsForFunctions)
+ FnSignature = (FnSignature << 5) + 1;
+ }
+
+ // Now that the function signature list is set up, reverse it so that we can
+ // remove elements efficiently from the back of the vector.
+ std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
+
+ // If this bytecode format has dependent library information in it ..
+ if (!hasNoDependentLibraries) {
+ // Read in the number of dependent library items that follow
+ unsigned num_dep_libs = read_vbr_uint();
+ std::string dep_lib;
+ while( num_dep_libs-- ) {
+ dep_lib = read_str();
+ TheModule->addLibrary(dep_lib);
+ if (Handler)
+ Handler->handleDependentLibrary(dep_lib);
+ }
+
+
+ // Read target triple and place into the module
+ std::string triple = read_str();
+ TheModule->setTargetTriple(triple);
+ if (Handler)
+ Handler->handleTargetTriple(triple);
+ }
+
+ if (hasInconsistentModuleGlobalInfo)
+ align32();
+
+ // This is for future proofing... in the future extra fields may be added that
+ // we don't understand, so we transparently ignore them.
+ //
+ At = BlockEnd;
+
+ if (Handler) Handler->handleModuleGlobalsEnd();
+}
+
+/// Parse the version information and decode it by setting flags on the
+/// Reader that enable backward compatibility of the reader.
+void BytecodeReader::ParseVersionInfo() {
+ unsigned Version = read_vbr_uint();
+
+ // Unpack version number: low four bits are for flags, top bits = version
+ Module::Endianness Endianness;
+ Module::PointerSize PointerSize;
+ Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
+ PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
+
+ bool hasNoEndianness = Version & 4;
+ bool hasNoPointerSize = Version & 8;
+
+ RevisionNum = Version >> 4;
+
+ // Default values for the current bytecode version
+ hasInconsistentModuleGlobalInfo = false;
+ hasExplicitPrimitiveZeros = false;
+ hasRestrictedGEPTypes = false;
+ hasTypeDerivedFromValue = false;
+ hasLongBlockHeaders = false;
+ has32BitTypes = false;
+ hasNoDependentLibraries = false;
+ hasAlignment = false;
+ hasNoUndefValue = false;
+ hasNoFlagsForFunctions = false;
+ hasNoUnreachableInst = false;
+
+ switch (RevisionNum) {
+ case 0: // LLVM 1.0, 1.1 (Released)
+ // Base LLVM 1.0 bytecode format.
+ hasInconsistentModuleGlobalInfo = true;
+ hasExplicitPrimitiveZeros = true;
+
+ // FALL THROUGH
+
+ case 1: // LLVM 1.2 (Released)
+ // LLVM 1.2 added explicit support for emitting strings efficiently.
+
+ // Also, it fixed the problem where the size of the ModuleGlobalInfo block
+ // included the size for the alignment at the end, where the rest of the
+ // blocks did not.
+
+ // LLVM 1.2 and before required that GEP indices be ubyte constants for
+ // structures and longs for sequential types.
+ hasRestrictedGEPTypes = true;
+
+ // LLVM 1.2 and before had the Type class derive from Value class. This
+ // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
+ // written differently because Types can no longer be part of the
+ // type planes for Values.
+ hasTypeDerivedFromValue = true;
+
+ // FALL THROUGH
+
+ case 2: // 1.2.5 (Not Released)
+
+ // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
+ // especially for small files where the 8 bytes per block is a large
+ // fraction of the total block size. In LLVM 1.3, the block type and length
+ // are compressed into a single 32-bit unsigned integer. 27 bits for length,
+ // 5 bits for block type.
+ hasLongBlockHeaders = true;
+
+ // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
+ // this has been reduced to vbr_uint24. It shouldn't make much difference
+ // since we haven't run into a module with > 24 million types, but for
+ // safety the 24-bit restriction has been enforced in 1.3 to free some bits
+ // in various places and to ensure consistency.
+ has32BitTypes = true;
+
+ // LLVM 1.2 and earlier did not provide a target triple nor a list of
+ // libraries on which the bytecode is dependent. LLVM 1.3 provides these
+ // features, for use in future versions of LLVM.
+ hasNoDependentLibraries = true;
+
+ // FALL THROUGH
+
+ case 3: // LLVM 1.3 (Released)
+ // LLVM 1.3 and earlier caused alignment bytes to be written on some block
+ // boundaries and at the end of some strings. In extreme cases (e.g. lots
+ // of GEP references to a constant array), this can increase the file size
+ // by 30% or more. In version 1.4 alignment is done away with completely.
+ hasAlignment = true;
+
+ // FALL THROUGH
+
+ case 4: // 1.3.1 (Not Released)
+ // In version 4, we did not support the 'undef' constant.
+ hasNoUndefValue = true;
+
+ // In version 4 and above, we did not include space for flags for functions
+ // in the module info block.
+ hasNoFlagsForFunctions = true;
+
+ // In version 4 and above, we did not include the 'unreachable' instruction
+ // in the opcode numbering in the bytecode file.
+ hasNoUnreachableInst = true;
+ break;
+
+ // FALL THROUGH
+
+ case 5: // 1.4 (Released)
+ break;
+
+ default:
+ error("Unknown bytecode version number: " + itostr(RevisionNum));
+ }
+
+ if (hasNoEndianness) Endianness = Module::AnyEndianness;
+ if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
+
+ TheModule->setEndianness(Endianness);
+ TheModule->setPointerSize(PointerSize);
+
+ if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
+}
+
+/// Parse a whole module.
+void BytecodeReader::ParseModule() {
+ unsigned Type, Size;
+
+ FunctionSignatureList.clear(); // Just in case...
+
+ // Read into instance variables...
+ ParseVersionInfo();
+ align32();
+
+ bool SeenModuleGlobalInfo = false;
+ bool SeenGlobalTypePlane = false;
+ BufPtr MyEnd = BlockEnd;
+ while (At < MyEnd) {
+ BufPtr OldAt = At;
+ read_block(Type, Size);
+
+ switch (Type) {
+
+ case BytecodeFormat::GlobalTypePlaneBlockID:
+ if (SeenGlobalTypePlane)
+ error("Two GlobalTypePlane Blocks Encountered!");
+
+ if (Size > 0)
+ ParseGlobalTypes();
+ SeenGlobalTypePlane = true;
+ break;
+
+ case BytecodeFormat::ModuleGlobalInfoBlockID:
+ if (SeenModuleGlobalInfo)
+ error("Two ModuleGlobalInfo Blocks Encountered!");
+ ParseModuleGlobalInfo();
+ SeenModuleGlobalInfo = true;
+ break;
+
+ case BytecodeFormat::ConstantPoolBlockID:
+ ParseConstantPool(ModuleValues, ModuleTypes,false);
+ break;
+
+ case BytecodeFormat::FunctionBlockID:
+ ParseFunctionLazily();
+ break;
+
+ case BytecodeFormat::SymbolTableBlockID:
+ ParseSymbolTable(0, &TheModule->getSymbolTable());
+ break;
+
+ default:
+ At += Size;
+ if (OldAt > At) {
+ error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
+ }
+ break;
+ }
+ BlockEnd = MyEnd;
+ align32();
+ }
+
+ // After the module constant pool has been read, we can safely initialize
+ // global variables...
+ while (!GlobalInits.empty()) {
+ GlobalVariable *GV = GlobalInits.back().first;
+ unsigned Slot = GlobalInits.back().second;
+ GlobalInits.pop_back();
+
+ // Look up the initializer value...
+ // FIXME: Preserve this type ID!
+
+ const llvm::PointerType* GVType = GV->getType();
+ unsigned TypeSlot = getTypeSlot(GVType->getElementType());
+ if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
+ if (GV->hasInitializer())
+ error("Global *already* has an initializer?!");
+ if (Handler) Handler->handleGlobalInitializer(GV,CV);
+ GV->setInitializer(CV);
+ } else
+ error("Cannot find initializer value.");
+ }
+
+ if (!ConstantFwdRefs.empty())
+ error("Use of undefined constants in a module");
+
+ /// Make sure we pulled them all out. If we didn't then there's a declaration
+ /// but a missing body. That's not allowed.
+ if (!FunctionSignatureList.empty())
+ error("Function declared, but bytecode stream ended before definition");
+}
+
+/// This function completely parses a bytecode buffer given by the \p Buf
+/// and \p Length parameters.
+void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
+ const std::string &ModuleID) {
+
+ try {
+ RevisionNum = 0;
+ At = MemStart = BlockStart = Buf;
+ MemEnd = BlockEnd = Buf + Length;
+
+ // Create the module
+ TheModule = new Module(ModuleID);
+
+ if (Handler) Handler->handleStart(TheModule, Length);
+
+ // Read the four bytes of the signature.
+ unsigned Sig = read_uint();
+
+ // If this is a compressed file
+ if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
+
+ // Invoke the decompression of the bytecode. Note that we have to skip the
+ // file's magic number which is not part of the compressed block. Hence,
+ // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
+ // member for retention until BytecodeReader is destructed.
+ unsigned decompressedLength = Compressor::decompressToNewBuffer(
+ (char*)Buf+4,Length-4,decompressedBlock);
+
+ // We must adjust the buffer pointers used by the bytecode reader to point
+ // into the new decompressed block. After decompression, the
+ // decompressedBlock will point to a contiguous memory area that has
+ // the decompressed data.
+ At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
+ MemEnd = BlockEnd = Buf + decompressedLength;
+
+ // else if this isn't a regular (uncompressed) bytecode file, then its
+ // and error, generate that now.
+ } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
+ error("Invalid bytecode signature: " + utohexstr(Sig));
+ }
+
+ // Tell the handler we're starting a module
+ if (Handler) Handler->handleModuleBegin(ModuleID);
+
+ // Get the module block and size and verify. This is handled specially
+ // because the module block/size is always written in long format. Other
+ // blocks are written in short format so the read_block method is used.
+ unsigned Type, Size;
+ Type = read_uint();
+ Size = read_uint();
+ if (Type != BytecodeFormat::ModuleBlockID) {
+ error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
+ + utostr(Size));
+ }
+
+ // It looks like the darwin ranlib program is broken, and adds trailing
+ // garbage to the end of some bytecode files. This hack allows the bc
+ // reader to ignore trailing garbage on bytecode files.
+ if (At + Size < MemEnd)
+ MemEnd = BlockEnd = At+Size;
+
+ if (At + Size != MemEnd)
+ error("Invalid Top Level Block Length! Type:" + utostr(Type)
+ + ", Size:" + utostr(Size));
+
+ // Parse the module contents
+ this->ParseModule();
+
+ // Check for missing functions
+ if (hasFunctions())
+ error("Function expected, but bytecode stream ended!");
+
+ // Tell the handler we're done with the module
+ if (Handler)
+ Handler->handleModuleEnd(ModuleID);
+
+ // Tell the handler we're finished the parse
+ if (Handler) Handler->handleFinish();
+
+ } catch (std::string& errstr) {
+ if (Handler) Handler->handleError(errstr);
+ freeState();
+ delete TheModule;
+ TheModule = 0;
+ if (decompressedBlock != 0 ) {
+ ::free(decompressedBlock);
+ decompressedBlock = 0;
+ }
+ throw;
+ } catch (...) {
+ std::string msg("Unknown Exception Occurred");
+ if (Handler) Handler->handleError(msg);
+ freeState();
+ delete TheModule;
+ TheModule = 0;
+ if (decompressedBlock != 0) {
+ ::free(decompressedBlock);
+ decompressedBlock = 0;
+ }
+ throw msg;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+//=== Default Implementations of Handler Methods
+//===----------------------------------------------------------------------===//
+
+BytecodeHandler::~BytecodeHandler() {}
+