diff options
Diffstat (limited to 'lib/Analysis')
-rw-r--r-- | lib/Analysis/AliasAnalysisEvaluator.cpp | 72 | ||||
-rw-r--r-- | lib/Analysis/BasicAliasAnalysis.cpp | 10 | ||||
-rw-r--r-- | lib/Analysis/MemoryDependenceAnalysis.cpp | 276 | ||||
-rw-r--r-- | lib/Analysis/PathProfileVerifier.cpp | 4 | ||||
-rw-r--r-- | lib/Analysis/ProfileInfo.cpp | 8 | ||||
-rw-r--r-- | lib/Analysis/ScalarEvolution.cpp | 30 | ||||
-rw-r--r-- | lib/Analysis/TargetTransformInfo.cpp | 4 | ||||
-rw-r--r-- | lib/Analysis/ValueTracking.cpp | 2 |
8 files changed, 256 insertions, 150 deletions
diff --git a/lib/Analysis/AliasAnalysisEvaluator.cpp b/lib/Analysis/AliasAnalysisEvaluator.cpp index e58dde3d93..a571463dfe 100644 --- a/lib/Analysis/AliasAnalysisEvaluator.cpp +++ b/lib/Analysis/AliasAnalysisEvaluator.cpp @@ -44,6 +44,8 @@ static cl::opt<bool> PrintMod("print-mod", cl::ReallyHidden); static cl::opt<bool> PrintRef("print-ref", cl::ReallyHidden); static cl::opt<bool> PrintModRef("print-modref", cl::ReallyHidden); +static cl::opt<bool> EvalTBAA("evaluate-tbaa", cl::ReallyHidden); + namespace { class AAEval : public FunctionPass { unsigned NoAlias, MayAlias, PartialAlias, MustAlias; @@ -123,6 +125,15 @@ PrintModRefResults(const char *Msg, bool P, CallSite CSA, CallSite CSB, } } +static inline void +PrintLoadStoreResults(const char *Msg, bool P, const Value *V1, + const Value *V2, const Module *M) { + if (P) { + errs() << " " << Msg << ": " << *V1 + << " <-> " << *V2 << '\n'; + } +} + static inline bool isInterestingPointer(Value *V) { return V->getType()->isPointerTy() && !isa<ConstantPointerNull>(V); @@ -133,6 +144,8 @@ bool AAEval::runOnFunction(Function &F) { SetVector<Value *> Pointers; SetVector<CallSite> CallSites; + SetVector<Value *> Loads; + SetVector<Value *> Stores; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) if (I->getType()->isPointerTy()) // Add all pointer arguments. @@ -141,6 +154,10 @@ bool AAEval::runOnFunction(Function &F) { for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { if (I->getType()->isPointerTy()) // Add all pointer instructions. Pointers.insert(&*I); + if (EvalTBAA && isa<LoadInst>(&*I)) + Loads.insert(&*I); + if (EvalTBAA && isa<StoreInst>(&*I)) + Stores.insert(&*I); Instruction &Inst = *I; if (CallSite CS = cast<Value>(&Inst)) { Value *Callee = CS.getCalledValue(); @@ -197,6 +214,61 @@ bool AAEval::runOnFunction(Function &F) { } } + if (EvalTBAA) { + // iterate over all pairs of load, store + for (SetVector<Value *>::iterator I1 = Loads.begin(), E = Loads.end(); + I1 != E; ++I1) { + for (SetVector<Value *>::iterator I2 = Stores.begin(), E2 = Stores.end(); + I2 != E2; ++I2) { + switch (AA.alias(AA.getLocation(cast<LoadInst>(*I1)), + AA.getLocation(cast<StoreInst>(*I2)))) { + case AliasAnalysis::NoAlias: + PrintLoadStoreResults("NoAlias", PrintNoAlias, *I1, *I2, + F.getParent()); + ++NoAlias; break; + case AliasAnalysis::MayAlias: + PrintLoadStoreResults("MayAlias", PrintMayAlias, *I1, *I2, + F.getParent()); + ++MayAlias; break; + case AliasAnalysis::PartialAlias: + PrintLoadStoreResults("PartialAlias", PrintPartialAlias, *I1, *I2, + F.getParent()); + ++PartialAlias; break; + case AliasAnalysis::MustAlias: + PrintLoadStoreResults("MustAlias", PrintMustAlias, *I1, *I2, + F.getParent()); + ++MustAlias; break; + } + } + } + + // iterate over all pairs of store, store + for (SetVector<Value *>::iterator I1 = Stores.begin(), E = Stores.end(); + I1 != E; ++I1) { + for (SetVector<Value *>::iterator I2 = Stores.begin(); I2 != I1; ++I2) { + switch (AA.alias(AA.getLocation(cast<StoreInst>(*I1)), + AA.getLocation(cast<StoreInst>(*I2)))) { + case AliasAnalysis::NoAlias: + PrintLoadStoreResults("NoAlias", PrintNoAlias, *I1, *I2, + F.getParent()); + ++NoAlias; break; + case AliasAnalysis::MayAlias: + PrintLoadStoreResults("MayAlias", PrintMayAlias, *I1, *I2, + F.getParent()); + ++MayAlias; break; + case AliasAnalysis::PartialAlias: + PrintLoadStoreResults("PartialAlias", PrintPartialAlias, *I1, *I2, + F.getParent()); + ++PartialAlias; break; + case AliasAnalysis::MustAlias: + PrintLoadStoreResults("MustAlias", PrintMustAlias, *I1, *I2, + F.getParent()); + ++MustAlias; break; + } + } + } + } + // Mod/ref alias analysis: compare all pairs of calls and values for (SetVector<CallSite>::iterator C = CallSites.begin(), Ce = CallSites.end(); C != Ce; ++C) { diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp index 4139336f26..ae6da1af0c 100644 --- a/lib/Analysis/BasicAliasAnalysis.cpp +++ b/lib/Analysis/BasicAliasAnalysis.cpp @@ -851,9 +851,13 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, // pointers, figure out if the indexes to the GEP tell us anything about the // derived pointer. if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { + // Do the base pointers alias? + AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, + UnderlyingV2, UnknownSize, 0); + // Check for geps of non-aliasing underlying pointers where the offsets are // identical. - if (V1Size == V2Size) { + if ((BaseAlias == MayAlias) && V1Size == V2Size) { // Do the base pointers alias assuming type and size. AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1TBAAInfo, UnderlyingV2, @@ -881,10 +885,6 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, GEP1VariableIndices.clear(); } } - - // Do the base pointers alias? - AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, - UnderlyingV2, UnknownSize, 0); // If we get a No or May, then return it immediately, no amount of analysis // will improve this situation. diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp index 1faa04623e..2240e9de33 100644 --- a/lib/Analysis/MemoryDependenceAnalysis.cpp +++ b/lib/Analysis/MemoryDependenceAnalysis.cpp @@ -8,7 +8,7 @@ //===----------------------------------------------------------------------===// // // This file implements an analysis that determines, for a given memory -// operation, what preceding memory operations it depends on. It builds on +// operation, what preceding memory operations it depends on. It builds on // alias analysis information, and tries to provide a lazy, caching interface to // a common kind of alias information query. // @@ -52,7 +52,7 @@ STATISTIC(NumCacheCompleteNonLocalPtr, static const int BlockScanLimit = 500; char MemoryDependenceAnalysis::ID = 0; - + // Register this pass... INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", "Memory Dependence Analysis", false, true) @@ -99,7 +99,7 @@ bool MemoryDependenceAnalysis::runOnFunction(Function &) { /// RemoveFromReverseMap - This is a helper function that removes Val from /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. template <typename KeyTy> -static void RemoveFromReverseMap(DenseMap<Instruction*, +static void RemoveFromReverseMap(DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> > &ReverseMap, Instruction *Inst, KeyTy Val) { typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator @@ -123,7 +123,8 @@ AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, if (LI->isUnordered()) { Loc = AA->getLocation(LI); return AliasAnalysis::Ref; - } else if (LI->getOrdering() == Monotonic) { + } + if (LI->getOrdering() == Monotonic) { Loc = AA->getLocation(LI); return AliasAnalysis::ModRef; } @@ -135,7 +136,8 @@ AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, if (SI->isUnordered()) { Loc = AA->getLocation(SI); return AliasAnalysis::Mod; - } else if (SI->getOrdering() == Monotonic) { + } + if (SI->getOrdering() == Monotonic) { Loc = AA->getLocation(SI); return AliasAnalysis::ModRef; } @@ -196,13 +198,13 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, // Walk backwards through the block, looking for dependencies while (ScanIt != BB->begin()) { // Limit the amount of scanning we do so we don't end up with quadratic - // running time on extreme testcases. + // running time on extreme testcases. --Limit; if (!Limit) return MemDepResult::getUnknown(); Instruction *Inst = --ScanIt; - + // If this inst is a memory op, get the pointer it accessed AliasAnalysis::Location Loc; AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); @@ -251,7 +253,7 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, /// /// MemLocBase, MemLocOffset are lazily computed here the first time the /// base/offs of memloc is needed. -static bool +static bool isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, const Value *&MemLocBase, int64_t &MemLocOffs, @@ -289,25 +291,25 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, if (LI->getParent()->getParent()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) return 0; - + // Get the base of this load. int64_t LIOffs = 0; - const Value *LIBase = + const Value *LIBase = GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD); - + // If the two pointers are not based on the same pointer, we can't tell that // they are related. if (LIBase != MemLocBase) return 0; - + // Okay, the two values are based on the same pointer, but returned as // no-alias. This happens when we have things like two byte loads at "P+1" // and "P+3". Check to see if increasing the size of the "LI" load up to its // alignment (or the largest native integer type) will allow us to load all // the bits required by MemLoc. - + // If MemLoc is before LI, then no widening of LI will help us out. if (MemLocOffs < LIOffs) return 0; - + // Get the alignment of the load in bytes. We assume that it is safe to load // any legal integer up to this size without a problem. For example, if we're // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can @@ -316,15 +318,15 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, unsigned LoadAlign = LI->getAlignment(); int64_t MemLocEnd = MemLocOffs+MemLocSize; - + // If no amount of rounding up will let MemLoc fit into LI, then bail out. if (LIOffs+LoadAlign < MemLocEnd) return 0; - + // This is the size of the load to try. Start with the next larger power of // two. unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; NewLoadByteSize = NextPowerOf2(NewLoadByteSize); - + while (1) { // If this load size is bigger than our known alignment or would not fit // into a native integer register, then we fail. @@ -343,7 +345,7 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, // If a load of this width would include all of MemLoc, then we succeed. if (LIOffs+NewLoadByteSize >= MemLocEnd) return NewLoadByteSize; - + NewLoadByteSize <<= 1; } } @@ -355,7 +357,7 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, /// instruction as well; this function may take advantage of the metadata /// annotated to the query instruction to refine the result. MemDepResult MemoryDependenceAnalysis:: -getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, +getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, BasicBlock *BB, Instruction *QueryInst) { @@ -382,7 +384,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { // Debug intrinsics don't (and can't) cause dependences. if (isa<DbgInfoIntrinsic>(II)) continue; - + // If we reach a lifetime begin or end marker, then the query ends here // because the value is undefined. if (II->getIntrinsicID() == Intrinsic::lifetime_start) { @@ -406,10 +408,10 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, return MemDepResult::getClobber(LI); AliasAnalysis::Location LoadLoc = AA->getLocation(LI); - + // If we found a pointer, check if it could be the same as our pointer. AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); - + if (isLoad) { if (R == AliasAnalysis::NoAlias) { // If this is an over-aligned integer load (for example, @@ -423,10 +425,10 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, MemLocOffset, LI, TD)) return MemDepResult::getClobber(Inst); - + continue; } - + // Must aliased loads are defs of each other. if (R == AliasAnalysis::MustAlias) return MemDepResult::getDef(Inst); @@ -441,7 +443,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, if (R == AliasAnalysis::PartialAlias) return MemDepResult::getClobber(Inst); #endif - + // Random may-alias loads don't depend on each other without a // dependence. continue; @@ -458,7 +460,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, // Stores depend on may/must aliased loads. return MemDepResult::getDef(Inst); } - + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { // Atomic stores have complications involved. // FIXME: This is overly conservative. @@ -474,10 +476,10 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, // Ok, this store might clobber the query pointer. Check to see if it is // a must alias: in this case, we want to return this as a def. AliasAnalysis::Location StoreLoc = AA->getLocation(SI); - + // If we found a pointer, check if it could be the same as our pointer. AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); - + if (R == AliasAnalysis::NoAlias) continue; if (R == AliasAnalysis::MustAlias) @@ -498,7 +500,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD); - + if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) return MemDepResult::getDef(Inst); // Be conservative if the accessed pointer may alias the allocation. @@ -532,7 +534,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, return MemDepResult::getClobber(Inst); } } - + // No dependence found. If this is the entry block of the function, it is // unknown, otherwise it is non-local. if (BB != &BB->getParent()->getEntryBlock()) @@ -544,25 +546,25 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, /// depends. MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { Instruction *ScanPos = QueryInst; - + // Check for a cached result MemDepResult &LocalCache = LocalDeps[QueryInst]; - + // If the cached entry is non-dirty, just return it. Note that this depends // on MemDepResult's default constructing to 'dirty'. if (!LocalCache.isDirty()) return LocalCache; - + // Otherwise, if we have a dirty entry, we know we can start the scan at that // instruction, which may save us some work. if (Instruction *Inst = LocalCache.getInst()) { ScanPos = Inst; - + RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); } - + BasicBlock *QueryParent = QueryInst->getParent(); - + // Do the scan. if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { // No dependence found. If this is the entry block of the function, it is @@ -591,11 +593,11 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { // Non-memory instruction. LocalCache = MemDepResult::getUnknown(); } - + // Remember the result! if (Instruction *I = LocalCache.getInst()) ReverseLocalDeps[I].insert(QueryInst); - + return LocalCache; } @@ -636,7 +638,7 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { /// the uncached case, this starts out as the set of predecessors we care /// about. SmallVector<BasicBlock*, 32> DirtyBlocks; - + if (!Cache.empty()) { // Okay, we have a cache entry. If we know it is not dirty, just return it // with no computation. @@ -644,17 +646,17 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { ++NumCacheNonLocal; return Cache; } - + // If we already have a partially computed set of results, scan them to // determine what is dirty, seeding our initial DirtyBlocks worklist. for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); I != E; ++I) if (I->getResult().isDirty()) DirtyBlocks.push_back(I->getBB()); - + // Sort the cache so that we can do fast binary search lookups below. std::sort(Cache.begin(), Cache.end()); - + ++NumCacheDirtyNonLocal; //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " // << Cache.size() << " cached: " << *QueryInst; @@ -665,45 +667,45 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { DirtyBlocks.push_back(*PI); ++NumUncacheNonLocal; } - + // isReadonlyCall - If this is a read-only call, we can be more aggressive. bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); SmallPtrSet<BasicBlock*, 64> Visited; - + unsigned NumSortedEntries = Cache.size(); DEBUG(AssertSorted(Cache)); - + // Iterate while we still have blocks to update. while (!DirtyBlocks.empty()) { BasicBlock *DirtyBB = DirtyBlocks.back(); DirtyBlocks.pop_back(); - + // Already processed this block? if (!Visited.insert(DirtyBB)) continue; - + // Do a binary search to see if we already have an entry for this block in // the cache set. If so, find it. DEBUG(AssertSorted(Cache, NumSortedEntries)); - NonLocalDepInfo::iterator Entry = + NonLocalDepInfo::iterator Entry = std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, NonLocalDepEntry(DirtyBB)); if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) --Entry; - + NonLocalDepEntry *ExistingResult = 0; - if (Entry != Cache.begin()+NumSortedEntries && + if (Entry != Cache.begin()+NumSortedEntries && Entry->getBB() == DirtyBB) { // If we already have an entry, and if it isn't already dirty, the block // is done. if (!Entry->getResult().isDirty()) continue; - + // Otherwise, remember this slot so we can update the value. ExistingResult = &*Entry; } - + // If the dirty entry has a pointer, start scanning from it so we don't have // to rescan the entire block. BasicBlock::iterator ScanPos = DirtyBB->end(); @@ -715,10 +717,10 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { QueryCS.getInstruction()); } } - + // Find out if this block has a local dependency for QueryInst. MemDepResult Dep; - + if (ScanPos != DirtyBB->begin()) { Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { @@ -728,14 +730,14 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { } else { Dep = MemDepResult::getNonFuncLocal(); } - + // If we had a dirty entry for the block, update it. Otherwise, just add // a new entry. if (ExistingResult) ExistingResult->setResult(Dep); else Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); - + // If the block has a dependency (i.e. it isn't completely transparent to // the value), remember the association! if (!Dep.isNonLocal()) { @@ -744,14 +746,14 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { if (Instruction *Inst = Dep.getInst()) ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); } else { - + // If the block *is* completely transparent to the load, we need to check // the predecessors of this block. Add them to our worklist. for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) DirtyBlocks.push_back(*PI); } } - + return Cache; } @@ -769,9 +771,9 @@ getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, assert(Loc.Ptr->getType()->isPointerTy() && "Can't get pointer deps of a non-pointer!"); Result.clear(); - + PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD); - + // This is the set of blocks we've inspected, and the pointer we consider in // each block. Because of critical edges, we currently bail out if querying // a block with multiple different pointers. This can happen during PHI @@ -794,7 +796,7 @@ MemDepResult MemoryDependenceAnalysis:: GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, bool isLoad, BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { - + // Do a binary search to see if we already have an entry for this block in // the cache set. If so, find it. NonLocalDepInfo::iterator Entry = @@ -802,18 +804,18 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, NonLocalDepEntry(BB)); if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) --Entry; - + NonLocalDepEntry *ExistingResult = 0; if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) ExistingResult = &*Entry; - + // If we have a cached entry, and it is non-dirty, use it as the value for // this dependency. if (ExistingResult && !ExistingResult->getResult().isDirty()) { ++NumCacheNonLocalPtr; return ExistingResult->getResult(); - } - + } + // Otherwise, we have to scan for the value. If we have a dirty cache // entry, start scanning from its position, otherwise we scan from the end // of the block. @@ -823,30 +825,30 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, "Instruction invalidated?"); ++NumCacheDirtyNonLocalPtr; ScanPos = ExistingResult->getResult().getInst(); - + // Eliminating the dirty entry from 'Cache', so update the reverse info. ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); } else { ++NumUncacheNonLocalPtr; } - + // Scan the block for the dependency. MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); - + // If we had a dirty entry for the block, update it. Otherwise, just add // a new entry. if (ExistingResult) ExistingResult->setResult(Dep); else Cache->push_back(NonLocalDepEntry(BB, Dep)); - + // If the block has a dependency (i.e. it isn't completely transparent to // the value), remember the reverse association because we just added it // to Cache! if (!Dep.isDef() && !Dep.isClobber()) return Dep; - + // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently // update MemDep when we remove instructions. Instruction *Inst = Dep.getInst(); @@ -859,7 +861,7 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain /// number of elements in the array that are already properly ordered. This is /// optimized for the case when only a few entries are added. -static void +static void SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, unsigned NumSortedEntries) { switch (Cache.size() - NumSortedEntries) { @@ -911,7 +913,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, SmallVectorImpl<NonLocalDepResult> &Result, DenseMap<BasicBlock*, Value*> &Visited, bool SkipFirstBlock) { - + // Look up the cached info for Pointer. ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); @@ -925,7 +927,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // Get the NLPI for CacheKey, inserting one into the map if it doesn't // already have one. - std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = + std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); NonLocalPointerInfo *CacheInfo = &Pair.first->second; @@ -987,14 +989,14 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); if (VI == Visited.end() || VI->second == Pointer.getAddr()) continue; - + // We have a pointer mismatch in a block. Just return clobber, saying // that something was clobbered in this result. We could also do a // non-fully cached query, but there is little point in doing this. return true; } } - + Value *Addr = Pointer.getAddr(); for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); I != E; ++I) { @@ -1005,7 +1007,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, ++NumCacheCompleteNonLocalPtr; return false; } - + // Otherwise, either this is a new block, a block with an invalid cache // pointer or one that we're about to invalidate by putting more info into it // than its valid cache info. If empty, the result will be valid cache info, @@ -1014,10 +1016,10 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); else CacheInfo->Pair = BBSkipFirstBlockPair(); - + SmallVector<BasicBlock*, 32> Worklist; Worklist.push_back(StartBB); - + // PredList used inside loop. SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; @@ -1028,10 +1030,10 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // revisit blocks after we insert info for them. unsigned NumSortedEntries = Cache->size(); DEBUG(AssertSorted(*Cache)); - + while (!Worklist.empty()) { BasicBlock *BB = Worklist.pop_back_val(); - + // Skip the first block if we have it. if (!SkipFirstBlock) { // Analyze the dependency of *Pointer in FromBB. See if we already have @@ -1043,14 +1045,14 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, DEBUG(AssertSorted(*Cache, NumSortedEntries)); MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, NumSortedEntries); - + // If we got a Def or Clobber, add this to the list of results. if (!Dep.isNonLocal() && DT->isReachableFromEntry(BB)) { Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); continue; } } - + // If 'Pointer' is an instruction defined in this block, then we need to do // phi translation to change it into a value live in the predecessor block. // If not, we just add the predecessors to the worklist and scan them with @@ -1067,7 +1069,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, NewBlocks.push_back(*PI); continue; } - + // If we have seen this block before, but it was with a different // pointer then we have a phi translation failure and we have to treat // this as a clobber. @@ -1082,12 +1084,12 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, Worklist.append(NewBlocks.begin(), NewBlocks.end()); continue; } - + // We do need to do phi translation, if we know ahead of time we can't phi // translate this value, don't even try. if (!Pointer.IsPotentiallyPHITranslatable()) goto PredTranslationFailure; - + // We may have added values to the cache list before this PHI translation. // If so, we haven't done anything to ensure that the cache remains sorted. // Sort it now (if needed) so that recursive invocations of @@ -1110,7 +1112,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, PredPointer.PHITranslateValue(BB, Pred, 0); Value *PredPtrVal = PredPointer.getAddr(); - + // Check to see if we have already visited this pred block with another // pointer. If so, we can't do this lookup. This failure can occur // with PHI translation when a critical edge exists and the PHI node in @@ -1127,14 +1129,14 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // the analysis and can ignore it. if (InsertRes.first->second == PredPtrVal) continue; - + // Otherwise, the block was previously analyzed with a different // pointer. We can't represent the result of this case, so we just // treat this as a phi translation failure. // Make sure to clean up the Visited map before continuing on to // PredTranslationFailure. - for (unsigned i = 0; i < PredList.size(); i++) + for (unsigned i = 0, n = PredList.size(); i < n; ++i) Visited.erase(PredList[i].first); goto PredTranslationFailure; @@ -1143,10 +1145,10 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // Actually process results here; this need to be a separate loop to avoid // calling getNonLocalPointerDepFromBB for blocks we don't want to return - // any results for. (getNonLocalPointerDepFromBB will modify our + // any results for. (getNonLocalPointerDepFromBB will modify our // datastructures in ways the code after the PredTranslationFailure label // doesn't expect.) - for (unsigned i = 0; i < PredList.size(); i++) { + for (unsigned i = 0, n = PredList.size(); i < n; ++i) { BasicBlock *Pred = PredList[i].first; PHITransAddr &PredPointer = PredList[i].second; Value *PredPtrVal = PredPointer.getAddr(); @@ -1186,12 +1188,12 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, continue; } } - + // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. CacheInfo = &NonLocalPointerDeps[CacheKey]; Cache = &CacheInfo->NonLocalDeps; NumSortedEntries = Cache->size(); - + // Since we did phi translation, the "Cache" set won't contain all of the // results for the query. This is ok (we can still use it to accelerate // specific block queries) but we can't do the fastpath "return all @@ -1204,20 +1206,20 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // The following code is "failure"; we can't produce a sane translation // for the given block. It assumes that we haven't modified any of // our datastructures while processing the current block. - + if (Cache == 0) { // Refresh the CacheInfo/Cache pointer if it got invalidated. CacheInfo = &NonLocalPointerDeps[CacheKey]; Cache = &CacheInfo->NonLocalDeps; NumSortedEntries = Cache->size(); } - + // Since we failed phi translation, the "Cache" set won't contain all of the // results for the query. This is ok (we can still use it to accelerate // specific block queries) but we can't do the fastpath "return all // results from the set". Clear out the indicator for this. CacheInfo->Pair = BBSkipFirstBlockPair(); - + // If *nothing* works, mark the pointer as unknown. // // If this is the magic first block, return this as a clobber of the whole @@ -1225,12 +1227,12 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // we have to bail out. if (SkipFirstBlock) return true; - + for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { assert(I != Cache->rend() && "Didn't find current block??"); if (I->getBB() != BB) continue; - + assert(I->getResult().isNonLocal() && "Should only be here with transparent block"); I->setResult(MemDepResult::getUnknown()); @@ -1250,23 +1252,23 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, /// CachedNonLocalPointerInfo, remove it. void MemoryDependenceAnalysis:: RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { - CachedNonLocalPointerInfo::iterator It = + CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); if (It == NonLocalPointerDeps.end()) return; - + // Remove all of the entries in the BB->val map. This involves removing // instructions from the reverse map. NonLocalDepInfo &PInfo = It->second.NonLocalDeps; - + for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { Instruction *Target = PInfo[i].getResult().getInst(); if (Target == 0) continue; // Ignore non-local dep results. assert(Target->getParent() == PInfo[i].getBB()); - + // Eliminating the dirty entry from 'Cache', so update the reverse info. RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); } - + // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). NonLocalPointerDeps.erase(It); } @@ -1321,20 +1323,20 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { // Remove this local dependency info. LocalDeps.erase(LocalDepEntry); } - + // If we have any cached pointer dependencies on this instruction, remove // them. If the instruction has non-pointer type, then it can't be a pointer // base. - + // Remove it from both the load info and the store info. The instruction // can't be in either of these maps if it is non-pointer. if (RemInst->getType()->isPointerTy()) { RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); } - + // Loop over all of the things that depend on the instruction we're removing. - // + // SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; // If we find RemInst as a clobber or Def in any of the maps for other values, @@ -1346,29 +1348,29 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { MemDepResult NewDirtyVal; if (!RemInst->isTerminator()) NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); - + ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); if (ReverseDepIt != ReverseLocalDeps.end()) { SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; // RemInst can't be the terminator if it has local stuff depending on it. assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && "Nothing can locally depend on a terminator"); - + for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), E = ReverseDeps.end(); I != E; ++I) { Instruction *InstDependingOnRemInst = *I; assert(InstDependingOnRemInst != RemInst && "Already removed our local dep info"); - + LocalDeps[InstDependingOnRemInst] = NewDirtyVal; - + // Make sure to remember that new things depend on NewDepInst. assert(NewDirtyVal.getInst() && "There is no way something else can have " "a local dep on this if it is a terminator!"); - ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), + ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); } - + ReverseLocalDeps.erase(ReverseDepIt); // Add new reverse deps after scanning the set, to avoid invalidating the @@ -1379,25 +1381,25 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { ReverseDepsToAdd.pop_back(); } } - + ReverseDepIt = ReverseNonLocalDeps.find(RemInst); if (ReverseDepIt != ReverseNonLocalDeps.end()) { SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); - + PerInstNLInfo &INLD = NonLocalDeps[*I]; // The information is now dirty! INLD.second = true; - - for (NonLocalDepInfo::iterator DI = INLD.first.begin(), + + for (NonLocalDepInfo::iterator DI = INLD.first.begin(), DE = INLD.first.end(); DI != DE; ++DI) { if (DI->getResult().getInst() != RemInst) continue; - + // Convert to a dirty entry for the subsequent instruction. DI->setResult(NewDirtyVal); - + if (Instruction *NextI = NewDirtyVal.getInst()) ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); } @@ -1412,7 +1414,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { ReverseDepsToAdd.pop_back(); } } - + // If the instruction is in ReverseNonLocalPtrDeps then it appears as a // value in the NonLocalPointerDeps info. ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = @@ -1420,45 +1422,45 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; - + for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { ValueIsLoadPair P = *I; assert(P.getPointer() != RemInst && "Already removed NonLocalPointerDeps info for RemInst"); - + NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; - + // The cache is not valid for any specific block anymore. NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); - + // Update any entries for RemInst to use the instruction after it. for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); DI != DE; ++DI) { if (DI->getResult().getInst() != RemInst) continue; - + // Convert to a dirty entry for the subsequent instruction. DI->setResult(NewDirtyVal); - + if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); } - + // Re-sort the NonLocalDepInfo. Changing the dirty entry to its // subsequent value may invalidate the sortedness. std::sort(NLPDI.begin(), NLPDI.end()); } - + ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); - + while (!ReversePtrDepsToAdd.empty()) { ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] .insert(ReversePtrDepsToAdd.back().second); ReversePtrDepsToAdd.pop_back(); } } - - + + assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); AA->deleteValue(RemInst); DEBUG(verifyRemoved(RemInst)); @@ -1472,7 +1474,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { assert(I->second.getInst() != D && "Inst occurs in data structures"); } - + for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), E = NonLocalPointerDeps.end(); I != E; ++I) { assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); @@ -1481,7 +1483,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { II != E; ++II) assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); } - + for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), E = NonLocalDeps.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in data structures"); @@ -1490,7 +1492,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { EE = INLD.first.end(); II != EE; ++II) assert(II->getResult().getInst() != D && "Inst occurs in data structures"); } - + for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), E = ReverseLocalDeps.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in data structures"); @@ -1498,7 +1500,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { EE = I->second.end(); II != EE; ++II) assert(*II != D && "Inst occurs in data structures"); } - + for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), E = ReverseNonLocalDeps.end(); I != E; ++I) { @@ -1507,17 +1509,17 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { EE = I->second.end(); II != EE; ++II) assert(*II != D && "Inst occurs in data structures"); } - + for (ReverseNonLocalPtrDepTy::const_iterator I = ReverseNonLocalPtrDeps.begin(), E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in rev NLPD map"); - + for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), E = I->second.end(); II != E; ++II) assert(*II != ValueIsLoadPair(D, false) && *II != ValueIsLoadPair(D, true) && "Inst occurs in ReverseNonLocalPtrDeps map"); } - + } diff --git a/lib/Analysis/PathProfileVerifier.cpp b/lib/Analysis/PathProfileVerifier.cpp index 745d8c60bb..48d7d05d78 100644 --- a/lib/Analysis/PathProfileVerifier.cpp +++ b/lib/Analysis/PathProfileVerifier.cpp @@ -84,7 +84,7 @@ bool PathProfileVerifier::runOnModule (Module &M) { for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; - arrayMap[0][F->begin()][0] = i++; + arrayMap[(BasicBlock*)0][F->begin()][0] = i++; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { TerminatorInst *TI = BB->getTerminator(); @@ -125,7 +125,7 @@ bool PathProfileVerifier::runOnModule (Module &M) { << currentPath->getCount() << "\n"); // setup the entry edge (normally path profiling doesn't care about this) if (currentPath->getFirstBlockInPath() == &F->getEntryBlock()) - edgeArray[arrayMap[0][currentPath->getFirstBlockInPath()][0]] + edgeArray[arrayMap[(BasicBlock*)0][currentPath->getFirstBlockInPath()][0]] += currentPath->getCount(); for( ProfilePathEdgeIterator nextEdge = pev->begin(), diff --git a/lib/Analysis/ProfileInfo.cpp b/lib/Analysis/ProfileInfo.cpp index 2daa7d4f6b..9626a48b9d 100644 --- a/lib/Analysis/ProfileInfo.cpp +++ b/lib/Analysis/ProfileInfo.cpp @@ -249,7 +249,7 @@ const BasicBlock *ProfileInfoT<Function,BasicBlock>:: succ_const_iterator Succ = succ_begin(BB), End = succ_end(BB); if (Succ == End) { - P[0] = BB; + P[(const BasicBlock*)0] = BB; if (Mode & GetPathToExit) { hasFoundPath = true; BB = 0; @@ -752,10 +752,10 @@ void ProfileInfoT<Function,BasicBlock>::repair(const Function *F) { Succ != End; ++Succ) { Path P; GetPath(*Succ, 0, P, GetPathToExit); - if (Dest && Dest != P[0]) { + if (Dest && Dest != P[(const BasicBlock*)0]) { AllEdgesHaveSameReturn = false; } - Dest = P[0]; + Dest = P[(const BasicBlock*)0]; } if (AllEdgesHaveSameReturn) { if(EstimateMissingEdges(BB)) { @@ -927,7 +927,7 @@ void ProfileInfoT<Function,BasicBlock>::repair(const Function *F) { Path P; const BasicBlock *Dest = GetPath(BB, 0, P, GetPathToExit | GetPathWithNewEdges); - Dest = P[0]; + Dest = P[(const BasicBlock*)0]; if (!Dest) continue; if (getEdgeWeight(getEdge(Dest,0)) == MissingValue) { diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 07d83296bc..6ea915fdb0 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -4230,6 +4230,25 @@ ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { return Max ? Max : SE->getCouldNotCompute(); } +bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, + ScalarEvolution *SE) const { + if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) + return true; + + if (!ExitNotTaken.ExitingBlock) + return false; + + for (const ExitNotTakenInfo *ENT = &ExitNotTaken; + ENT != 0; ENT = ENT->getNextExit()) { + + if (ENT->ExactNotTaken != SE->getCouldNotCompute() + && SE->hasOperand(ENT->ExactNotTaken, S)) { + return true; + } + } + return false; +} + /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each /// computable exit into a persistent ExitNotTakenInfo array. ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( @@ -6940,6 +6959,17 @@ void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { BlockDispositions.erase(S); UnsignedRanges.erase(S); SignedRanges.erase(S); + + for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = + BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { + BackedgeTakenInfo &BEInfo = I->second; + if (BEInfo.hasOperand(S, this)) { + BEInfo.clear(); + BackedgeTakenCounts.erase(I++); + } + else + ++I; + } } typedef DenseMap<const Loop *, std::string> VerifyMap; diff --git a/lib/Analysis/TargetTransformInfo.cpp b/lib/Analysis/TargetTransformInfo.cpp index 72421a00c7..976cd87321 100644 --- a/lib/Analysis/TargetTransformInfo.cpp +++ b/lib/Analysis/TargetTransformInfo.cpp @@ -263,8 +263,8 @@ struct NoTTI : ImmutablePass, TargetTransformInfo { case Instruction::PtrToInt: // A ptrtoint cast is free so long as the result is large enough to store // the pointer, and a legal integer type. - if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) && - OpTy->getScalarSizeInBits() >= DL->getPointerSizeInBits()) + if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) && + Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits()) return TCC_Free; // Otherwise it's not a no-op. diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index 45b75df508..45dcc5e37e 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -953,6 +953,8 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // Check for pointer simplifications. if (V->getType()->isPointerTy()) { + if (isKnownNonNull(V)) + return true; if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) if (isGEPKnownNonNull(GEP, TD, Depth)) return true; |