aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r--lib/Analysis/ValueTracking.cpp245
1 files changed, 95 insertions, 150 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 1784f008d5..c6b53a927d 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -44,7 +44,6 @@ static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
}
static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
- const APInt &Mask,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
const TargetData *TD, unsigned Depth) {
@@ -54,11 +53,11 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
if (!CLHS->getValue().isNegative()) {
- unsigned BitWidth = Mask.getBitWidth();
+ unsigned BitWidth = KnownZero.getBitWidth();
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- llvm::ComputeMaskedBits(Op1, MaskV, KnownZero2, KnownOne2, TD, Depth+1);
+ llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -66,27 +65,25 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
if ((KnownZero2 & MaskV) == MaskV) {
unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
// Top bits known zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
+ KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
}
}
}
}
- unsigned BitWidth = Mask.getBitWidth();
+ unsigned BitWidth = KnownZero.getBitWidth();
// If one of the operands has trailing zeros, then the bits that the
// other operand has in those bit positions will be preserved in the
// result. For an add, this works with either operand. For a subtract,
// this only works if the known zeros are in the right operand.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- APInt Mask2 = APInt::getLowBitsSet(BitWidth,
- BitWidth - Mask.countLeadingZeros());
- llvm::ComputeMaskedBits(Op0, Mask2, LHSKnownZero, LHSKnownOne, TD, Depth+1);
+ llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
assert((LHSKnownZero & LHSKnownOne) == 0 &&
"Bits known to be one AND zero?");
unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
- llvm::ComputeMaskedBits(Op1, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
+ llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
@@ -111,7 +108,7 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
}
// Are we still trying to solve for the sign bit?
- if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()) {
+ if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
if (NSW) {
if (Add) {
// Adding two positive numbers can't wrap into negative
@@ -133,21 +130,19 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
}
static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
- const APInt &Mask,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
const TargetData *TD, unsigned Depth) {
- unsigned BitWidth = Mask.getBitWidth();
- APInt Mask2 = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(Op1, Mask2, KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(Op0, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
+ unsigned BitWidth = KnownZero.getBitWidth();
+ ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
bool isKnownNegative = false;
bool isKnownNonNegative = false;
// If the multiplication is known not to overflow, compute the sign bit.
- if (Mask.isNegative() && NSW) {
+ if (NSW) {
if (Op0 == Op1) {
// The product of a number with itself is non-negative.
isKnownNonNegative = true;
@@ -184,7 +179,6 @@ static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
LeadZ = std::min(LeadZ, BitWidth);
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
APInt::getHighBitsSet(BitWidth, LeadZ);
- KnownZero &= Mask;
// Only make use of no-wrap flags if we failed to compute the sign bit
// directly. This matters if the multiplication always overflows, in
@@ -197,9 +191,8 @@ static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
KnownOne.setBit(BitWidth - 1);
}
-void llvm::computeMaskedBitsLoad(const MDNode &Ranges, const APInt &Mask,
- APInt &KnownZero) {
- unsigned BitWidth = Mask.getBitWidth();
+void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
+ unsigned BitWidth = KnownZero.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
@@ -215,12 +208,11 @@ void llvm::computeMaskedBitsLoad(const MDNode &Ranges, const APInt &Mask,
MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
}
- KnownZero = Mask & APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
+ KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
}
-/// ComputeMaskedBits - Determine which of the bits specified in Mask are
-/// known to be either zero or one and return them in the KnownZero/KnownOne
-/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
-/// processing.
+/// ComputeMaskedBits - Determine which of the bits are known to be either zero
+/// or one and return them in the KnownZero/KnownOne bit sets.
+///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero. If we don't change it to zero, other code could
@@ -230,15 +222,15 @@ void llvm::computeMaskedBitsLoad(const MDNode &Ranges, const APInt &Mask,
///
/// This function is defined on values with integer type, values with pointer
/// type (but only if TD is non-null), and vectors of integers. In the case
-/// where V is a vector, the mask, known zero, and known one values are the
+/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
- APInt &KnownZero, APInt &KnownOne,
+void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
const TargetData *TD, unsigned Depth) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
- unsigned BitWidth = Mask.getBitWidth();
+ unsigned BitWidth = KnownZero.getBitWidth();
+
assert((V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarType()->isPointerTy()) &&
"Not integer or pointer type!");
@@ -252,15 +244,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// We know all of the bits for a constant!
- KnownOne = CI->getValue() & Mask;
- KnownZero = ~KnownOne & Mask;
+ KnownOne = CI->getValue();
+ KnownZero = ~KnownOne;
return;
}
// Null and aggregate-zero are all-zeros.
if (isa<ConstantPointerNull>(V) ||
isa<ConstantAggregateZero>(V)) {
KnownOne.clearAllBits();
- KnownZero = Mask;
+ KnownZero = APInt::getAllOnesValue(BitWidth);
return;
}
// Handle a constant vector by taking the intersection of the known bits of
@@ -297,8 +289,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
}
}
if (Align > 0)
- KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
- CountTrailingZeros_32(Align));
+ KnownZero = APInt::getLowBitsSet(BitWidth,
+ CountTrailingZeros_32(Align));
else
KnownZero.clearAllBits();
KnownOne.clearAllBits();
@@ -310,8 +302,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (GA->mayBeOverridden()) {
KnownZero.clearAllBits(); KnownOne.clearAllBits();
} else {
- ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
- TD, Depth+1);
+ ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
}
return;
}
@@ -320,15 +311,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// Get alignment information off byval arguments if specified in the IR.
if (A->hasByValAttr())
if (unsigned Align = A->getParamAlignment())
- KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
- CountTrailingZeros_32(Align));
+ KnownZero = APInt::getLowBitsSet(BitWidth,
+ CountTrailingZeros_32(Align));
return;
}
// Start out not knowing anything.
KnownZero.clearAllBits(); KnownOne.clearAllBits();
- if (Depth == MaxDepth || Mask == 0)
+ if (Depth == MaxDepth)
return; // Limit search depth.
Operator *I = dyn_cast<Operator>(V);
@@ -339,14 +330,12 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
default: break;
case Instruction::Load:
if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
- computeMaskedBitsLoad(*MD, Mask, KnownZero);
+ computeMaskedBitsLoad(*MD, KnownZero);
return;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
- APInt Mask2(Mask & ~KnownZero);
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -357,10 +346,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
return;
}
case Instruction::Or: {
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
- APInt Mask2(Mask & ~KnownOne);
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -371,9 +358,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
return;
}
case Instruction::Xor: {
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -387,34 +373,30 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
- Mask, KnownZero, KnownOne, KnownZero2, KnownOne2,
- TD, Depth);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(I->getOperand(0),
- AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- ComputeMaskedBits(I->getOperand(1),
- AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
+ KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
return;
}
case Instruction::Select:
- ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
+ ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -447,11 +429,9 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
else
SrcBitWidth = SrcTy->getScalarSizeInBits();
- APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
@@ -465,8 +445,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
return;
}
break;
@@ -475,11 +454,9 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
- APInt MaskIn = Mask.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -496,9 +473,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- APInt Mask2(Mask.lshr(ShiftAmt));
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
@@ -513,9 +488,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
- APInt Mask2(Mask.shl(ShiftAmt));
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -531,9 +504,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
- APInt Mask2(Mask.shl(ShiftAmt));
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -549,15 +520,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- Mask, KnownZero, KnownOne, KnownZero2, KnownOne2,
- TD, Depth);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- Mask, KnownZero, KnownOne, KnownZero2, KnownOne2,
- TD, Depth);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth);
break;
}
case Instruction::SRem:
@@ -565,9 +536,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -583,19 +552,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
KnownOne |= ~LowBits;
- KnownZero &= Mask;
- KnownOne &= Mask;
-
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero.
- if (Mask.isNegative() && KnownZero.isNonNegative()) {
- APInt Mask2 = APInt::getSignBit(BitWidth);
+ if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
+ ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Depth+1);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
@@ -608,27 +573,24 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- APInt Mask2 = LowBits & Mask;
- KnownZero |= ~LowBits & Mask;
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero |= ~LowBits;
+ KnownOne &= LowBits;
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
- TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
- TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
KnownOne.clearAllBits();
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
+ KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
break;
}
@@ -639,17 +601,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
Align = TD->getABITypeAlignment(AI->getType()->getElementType());
if (Align > 0)
- KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
- CountTrailingZeros_32(Align));
+ KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
break;
}
case Instruction::GetElementPtr: {
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
- APInt LocalMask = APInt::getAllOnesValue(BitWidth);
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), LocalMask,
- LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
+ Depth+1);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -669,17 +629,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (!IndexedTy->isSized()) return;
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
- LocalMask = APInt::getAllOnesValue(GEPOpiBits);
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- ComputeMaskedBits(Index, LocalMask,
- LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
TrailZ = std::min(TrailZ,
unsigned(CountTrailingZeros_64(TypeSize) +
LocalKnownZero.countTrailingOnes()));
}
}
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
break;
}
case Instruction::PHI: {
@@ -714,17 +672,13 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- APInt Mask2 = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
- Mask2 = APInt::getLowBitsSet(BitWidth,
- KnownZero2.countTrailingOnes());
+ ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
+ ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
- KnownZero = Mask &
- APInt::getLowBitsSet(BitWidth,
+ KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
KnownZero3.countTrailingOnes()));
break;
@@ -743,8 +697,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (P->hasConstantValue() == P)
break;
- KnownZero = Mask;
- KnownOne = Mask;
+ KnownZero = APInt::getAllOnesValue(BitWidth);
+ KnownOne = APInt::getAllOnesValue(BitWidth);
for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
// Skip direct self references.
if (P->getIncomingValue(i) == P) continue;
@@ -753,8 +707,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
- ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
- KnownZero2, KnownOne2, TD, MaxDepth-1);
+ ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
+ MaxDepth-1);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -775,17 +729,17 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
LowBits -= 1;
- KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
case Intrinsic::ctpop: {
unsigned LowBits = Log2_32(BitWidth)+1;
- KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
case Intrinsic::x86_sse42_crc32_64_8:
case Intrinsic::x86_sse42_crc32_64_64:
- KnownZero = Mask & APInt::getHighBitsSet(64, 32);
+ KnownZero = APInt::getHighBitsSet(64, 32);
break;
}
}
@@ -800,21 +754,19 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
- II->getArgOperand(1), false, Mask,
- KnownZero, KnownOne, KnownZero2, KnownOne2,
- TD, Depth);
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
- II->getArgOperand(1), false, Mask,
- KnownZero, KnownOne, KnownZero2, KnownOne2,
- TD, Depth);
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
- false, Mask, KnownZero, KnownOne,
+ false, KnownZero, KnownOne,
KnownZero2, KnownOne2, TD, Depth);
break;
}
@@ -835,8 +787,7 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
- Depth);
+ ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
@@ -944,7 +895,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
if (KnownOne[0])
return true;
}
@@ -986,12 +937,12 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
}
@@ -1021,8 +972,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
- TD, Depth);
+ ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
return KnownOne != 0;
}
@@ -1038,7 +988,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
const TargetData *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
@@ -1129,13 +1079,11 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask = APInt::getAllOnesValue(TyBits);
- ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
- if ((KnownZero | APInt(TyBits, 1)) == Mask)
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If we are subtracting one from a positive number, there is no carry
@@ -1156,12 +1104,10 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask = APInt::getAllOnesValue(TyBits);
- ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
- TD, Depth+1);
+ ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
- if ((KnownZero | APInt(TyBits, 1)) == Mask)
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If the input is known to be positive (the sign bit is known clear),
@@ -1203,8 +1149,8 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask = APInt::getAllOnesValue(TyBits);
- ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+ APInt Mask;
+ ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
@@ -1896,8 +1842,7 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(Op, APInt::getAllOnesValue(BitWidth),
- KnownZero, KnownOne, TD);
+ ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
return !!KnownZero;
}
case Instruction::Load: {