aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ScalarEvolutionExpander.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ScalarEvolutionExpander.cpp')
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp130
1 files changed, 130 insertions, 0 deletions
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
new file mode 100644
index 0000000000..e2a98d4d86
--- /dev/null
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -0,0 +1,130 @@
+//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the scalar evolution expander,
+// which is used to generate the code corresponding to a given scalar evolution
+// expression.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+using namespace llvm;
+
+Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
+ const Type *Ty = S->getType();
+ int FirstOp = 0; // Set if we should emit a subtract.
+ if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
+ if (SC->getValue()->isAllOnesValue())
+ FirstOp = 1;
+
+ int i = S->getNumOperands()-2;
+ Value *V = expandInTy(S->getOperand(i+1), Ty);
+
+ // Emit a bunch of multiply instructions
+ for (; i >= FirstOp; --i)
+ V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
+ "tmp.", InsertPt);
+ // -1 * ... ---> 0 - ...
+ if (FirstOp == 1)
+ V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
+ return V;
+}
+
+Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
+ const Type *Ty = S->getType();
+ const Loop *L = S->getLoop();
+ // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
+ assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
+
+ // {X,+,F} --> X + {0,+,F}
+ if (!isa<SCEVConstant>(S->getStart()) ||
+ !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
+ Value *Start = expandInTy(S->getStart(), Ty);
+ std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
+ NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
+ Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
+
+ // FIXME: look for an existing add to use.
+ return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
+ }
+
+ // {0,+,1} --> Insert a canonical induction variable into the loop!
+ if (S->getNumOperands() == 2 &&
+ S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
+ // Create and insert the PHI node for the induction variable in the
+ // specified loop.
+ BasicBlock *Header = L->getHeader();
+ PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
+ PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
+
+ pred_iterator HPI = pred_begin(Header);
+ assert(HPI != pred_end(Header) && "Loop with zero preds???");
+ if (!L->contains(*HPI)) ++HPI;
+ assert(HPI != pred_end(Header) && L->contains(*HPI) &&
+ "No backedge in loop?");
+
+ // Insert a unit add instruction right before the terminator corresponding
+ // to the back-edge.
+ Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
+ : ConstantInt::get(Ty, 1);
+ Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
+ (*HPI)->getTerminator());
+
+ pred_iterator PI = pred_begin(Header);
+ if (*PI == L->getLoopPreheader())
+ ++PI;
+ PN->addIncoming(Add, *PI);
+ return PN;
+ }
+
+ // Get the canonical induction variable I for this loop.
+ Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
+
+ // If this is a simple linear addrec, emit it now as a special case.
+ if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
+ Value *F = expandInTy(S->getOperand(1), Ty);
+
+ // IF the step is by one, just return the inserted IV.
+ if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(F))
+ if (CI->getRawValue() == 1)
+ return I;
+
+ // If the insert point is directly inside of the loop, emit the multiply at
+ // the insert point. Otherwise, L is a loop that is a parent of the insert
+ // point loop. If we can, move the multiply to the outer most loop that it
+ // is safe to be in.
+ Instruction *MulInsertPt = InsertPt;
+ Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
+ if (InsertPtLoop != L && InsertPtLoop &&
+ L->contains(InsertPtLoop->getHeader())) {
+ while (InsertPtLoop != L) {
+ // If we cannot hoist the multiply out of this loop, don't.
+ if (!InsertPtLoop->isLoopInvariant(F)) break;
+
+ // Otherwise, move the insert point to the preheader of the loop.
+ MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
+ InsertPtLoop = InsertPtLoop->getParentLoop();
+ }
+ }
+
+ return BinaryOperator::createMul(I, F, "tmp.", MulInsertPt);
+ }
+
+ // If this is a chain of recurrences, turn it into a closed form, using the
+ // folders, then expandCodeFor the closed form. This allows the folders to
+ // simplify the expression without having to build a bunch of special code
+ // into this folder.
+ SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
+
+ SCEVHandle V = S->evaluateAtIteration(IH);
+ //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
+
+ return expandInTy(V, Ty);
+}