diff options
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r-- | lib/Analysis/ScalarEvolution.cpp | 2543 |
1 files changed, 2543 insertions, 0 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp new file mode 100644 index 0000000000..120b9f5e48 --- /dev/null +++ b/lib/Analysis/ScalarEvolution.cpp @@ -0,0 +1,2543 @@ +//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the scalar evolution analysis +// engine, which is used primarily to analyze expressions involving induction +// variables in loops. +// +// There are several aspects to this library. First is the representation of +// scalar expressions, which are represented as subclasses of the SCEV class. +// These classes are used to represent certain types of subexpressions that we +// can handle. These classes are reference counted, managed by the SCEVHandle +// class. We only create one SCEV of a particular shape, so pointer-comparisons +// for equality are legal. +// +// One important aspect of the SCEV objects is that they are never cyclic, even +// if there is a cycle in the dataflow for an expression (ie, a PHI node). If +// the PHI node is one of the idioms that we can represent (e.g., a polynomial +// recurrence) then we represent it directly as a recurrence node, otherwise we +// represent it as a SCEVUnknown node. +// +// In addition to being able to represent expressions of various types, we also +// have folders that are used to build the *canonical* representation for a +// particular expression. These folders are capable of using a variety of +// rewrite rules to simplify the expressions. +// +// Once the folders are defined, we can implement the more interesting +// higher-level code, such as the code that recognizes PHI nodes of various +// types, computes the execution count of a loop, etc. +// +// TODO: We should use these routines and value representations to implement +// dependence analysis! +// +//===----------------------------------------------------------------------===// +// +// There are several good references for the techniques used in this analysis. +// +// Chains of recurrences -- a method to expedite the evaluation +// of closed-form functions +// Olaf Bachmann, Paul S. Wang, Eugene V. Zima +// +// On computational properties of chains of recurrences +// Eugene V. Zima +// +// Symbolic Evaluation of Chains of Recurrences for Loop Optimization +// Robert A. van Engelen +// +// Efficient Symbolic Analysis for Optimizing Compilers +// Robert A. van Engelen +// +// Using the chains of recurrences algebra for data dependence testing and +// induction variable substitution +// MS Thesis, Johnie Birch +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/ConstantRange.h" +#include "llvm/Support/InstIterator.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/ADT/Statistic.h" +#include <cmath> +#include <algorithm> +using namespace llvm; + +namespace { + RegisterAnalysis<ScalarEvolution> + R("scalar-evolution", "Scalar Evolution Analysis"); + + Statistic<> + NumBruteForceEvaluations("scalar-evolution", + "Number of brute force evaluations needed to " + "calculate high-order polynomial exit values"); + Statistic<> + NumArrayLenItCounts("scalar-evolution", + "Number of trip counts computed with array length"); + Statistic<> + NumTripCountsComputed("scalar-evolution", + "Number of loops with predictable loop counts"); + Statistic<> + NumTripCountsNotComputed("scalar-evolution", + "Number of loops without predictable loop counts"); + Statistic<> + NumBruteForceTripCountsComputed("scalar-evolution", + "Number of loops with trip counts computed by force"); + + cl::opt<unsigned> + MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, + cl::desc("Maximum number of iterations SCEV will " + "symbolically execute a constant derived loop"), + cl::init(100)); +} + +//===----------------------------------------------------------------------===// +// SCEV class definitions +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Implementation of the SCEV class. +// +SCEV::~SCEV() {} +void SCEV::dump() const { + print(std::cerr); +} + +/// getValueRange - Return the tightest constant bounds that this value is +/// known to have. This method is only valid on integer SCEV objects. +ConstantRange SCEV::getValueRange() const { + const Type *Ty = getType(); + assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); + Ty = Ty->getUnsignedVersion(); + // Default to a full range if no better information is available. + return ConstantRange(getType()); +} + + +SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} + +bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return false; +} + +const Type *SCEVCouldNotCompute::getType() const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return 0; +} + +bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return false; +} + +SCEVHandle SCEVCouldNotCompute:: +replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc) const { + return this; +} + +void SCEVCouldNotCompute::print(std::ostream &OS) const { + OS << "***COULDNOTCOMPUTE***"; +} + +bool SCEVCouldNotCompute::classof(const SCEV *S) { + return S->getSCEVType() == scCouldNotCompute; +} + + +// SCEVConstants - Only allow the creation of one SCEVConstant for any +// particular value. Don't use a SCEVHandle here, or else the object will +// never be deleted! +static std::map<ConstantInt*, SCEVConstant*> SCEVConstants; + + +SCEVConstant::~SCEVConstant() { + SCEVConstants.erase(V); +} + +SCEVHandle SCEVConstant::get(ConstantInt *V) { + // Make sure that SCEVConstant instances are all unsigned. + if (V->getType()->isSigned()) { + const Type *NewTy = V->getType()->getUnsignedVersion(); + V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy)); + } + + SCEVConstant *&R = SCEVConstants[V]; + if (R == 0) R = new SCEVConstant(V); + return R; +} + +ConstantRange SCEVConstant::getValueRange() const { + return ConstantRange(V); +} + +const Type *SCEVConstant::getType() const { return V->getType(); } + +void SCEVConstant::print(std::ostream &OS) const { + WriteAsOperand(OS, V, false); +} + +// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will +// never be deleted! +static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates; + +SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) + : SCEV(scTruncate), Op(op), Ty(ty) { + assert(Op->getType()->isInteger() && Ty->isInteger() && + Ty->isUnsigned() && + "Cannot truncate non-integer value!"); + assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() && + "This is not a truncating conversion!"); +} + +SCEVTruncateExpr::~SCEVTruncateExpr() { + SCEVTruncates.erase(std::make_pair(Op, Ty)); +} + +ConstantRange SCEVTruncateExpr::getValueRange() const { + return getOperand()->getValueRange().truncate(getType()); +} + +void SCEVTruncateExpr::print(std::ostream &OS) const { + OS << "(truncate " << *Op << " to " << *Ty << ")"; +} + +// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will never +// be deleted! +static std::map<std::pair<SCEV*, const Type*>, + SCEVZeroExtendExpr*> SCEVZeroExtends; + +SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) + : SCEV(scTruncate), Op(op), Ty(ty) { + assert(Op->getType()->isInteger() && Ty->isInteger() && + Ty->isUnsigned() && + "Cannot zero extend non-integer value!"); + assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() && + "This is not an extending conversion!"); +} + +SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { + SCEVZeroExtends.erase(std::make_pair(Op, Ty)); +} + +ConstantRange SCEVZeroExtendExpr::getValueRange() const { + return getOperand()->getValueRange().zeroExtend(getType()); +} + +void SCEVZeroExtendExpr::print(std::ostream &OS) const { + OS << "(zeroextend " << *Op << " to " << *Ty << ")"; +} + +// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will never +// be deleted! +static std::map<std::pair<unsigned, std::vector<SCEV*> >, + SCEVCommutativeExpr*> SCEVCommExprs; + +SCEVCommutativeExpr::~SCEVCommutativeExpr() { + SCEVCommExprs.erase(std::make_pair(getSCEVType(), + std::vector<SCEV*>(Operands.begin(), + Operands.end()))); +} + +void SCEVCommutativeExpr::print(std::ostream &OS) const { + assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); + const char *OpStr = getOperationStr(); + OS << "(" << *Operands[0]; + for (unsigned i = 1, e = Operands.size(); i != e; ++i) + OS << OpStr << *Operands[i]; + OS << ")"; +} + +SCEVHandle SCEVCommutativeExpr:: +replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); + if (H != getOperand(i)) { + std::vector<SCEVHandle> NewOps; + NewOps.reserve(getNumOperands()); + for (unsigned j = 0; j != i; ++j) + NewOps.push_back(getOperand(j)); + NewOps.push_back(H); + for (++i; i != e; ++i) + NewOps.push_back(getOperand(i)-> + replaceSymbolicValuesWithConcrete(Sym, Conc)); + + if (isa<SCEVAddExpr>(this)) + return SCEVAddExpr::get(NewOps); + else if (isa<SCEVMulExpr>(this)) + return SCEVMulExpr::get(NewOps); + else + assert(0 && "Unknown commutative expr!"); + } + } + return this; +} + + +// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular +// input. Don't use a SCEVHandle here, or else the object will never be +// deleted! +static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs; + +SCEVUDivExpr::~SCEVUDivExpr() { + SCEVUDivs.erase(std::make_pair(LHS, RHS)); +} + +void SCEVUDivExpr::print(std::ostream &OS) const { + OS << "(" << *LHS << " /u " << *RHS << ")"; +} + +const Type *SCEVUDivExpr::getType() const { + const Type *Ty = LHS->getType(); + if (Ty->isSigned()) Ty = Ty->getUnsignedVersion(); + return Ty; +} + +// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will never +// be deleted! +static std::map<std::pair<const Loop *, std::vector<SCEV*> >, + SCEVAddRecExpr*> SCEVAddRecExprs; + +SCEVAddRecExpr::~SCEVAddRecExpr() { + SCEVAddRecExprs.erase(std::make_pair(L, + std::vector<SCEV*>(Operands.begin(), + Operands.end()))); +} + +SCEVHandle SCEVAddRecExpr:: +replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); + if (H != getOperand(i)) { + std::vector<SCEVHandle> NewOps; + NewOps.reserve(getNumOperands()); + for (unsigned j = 0; j != i; ++j) + NewOps.push_back(getOperand(j)); + NewOps.push_back(H); + for (++i; i != e; ++i) + NewOps.push_back(getOperand(i)-> + replaceSymbolicValuesWithConcrete(Sym, Conc)); + + return get(NewOps, L); + } + } + return this; +} + + +bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { + // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't + // contain L and if the start is invariant. + return !QueryLoop->contains(L->getHeader()) && + getOperand(0)->isLoopInvariant(QueryLoop); +} + + +void SCEVAddRecExpr::print(std::ostream &OS) const { + OS << "{" << *Operands[0]; + for (unsigned i = 1, e = Operands.size(); i != e; ++i) + OS << ",+," << *Operands[i]; + OS << "}<" << L->getHeader()->getName() + ">"; +} + +// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular +// value. Don't use a SCEVHandle here, or else the object will never be +// deleted! +static std::map<Value*, SCEVUnknown*> SCEVUnknowns; + +SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); } + +bool SCEVUnknown::isLoopInvariant(const Loop *L) const { + // All non-instruction values are loop invariant. All instructions are loop + // invariant if they are not contained in the specified loop. + if (Instruction *I = dyn_cast<Instruction>(V)) + return !L->contains(I->getParent()); + return true; +} + +const Type *SCEVUnknown::getType() const { + return V->getType(); +} + +void SCEVUnknown::print(std::ostream &OS) const { + WriteAsOperand(OS, V, false); +} + +//===----------------------------------------------------------------------===// +// SCEV Utilities +//===----------------------------------------------------------------------===// + +namespace { + /// SCEVComplexityCompare - Return true if the complexity of the LHS is less + /// than the complexity of the RHS. This comparator is used to canonicalize + /// expressions. + struct SCEVComplexityCompare { + bool operator()(SCEV *LHS, SCEV *RHS) { + return LHS->getSCEVType() < RHS->getSCEVType(); + } + }; +} + +/// GroupByComplexity - Given a list of SCEV objects, order them by their +/// complexity, and group objects of the same complexity together by value. +/// When this routine is finished, we know that any duplicates in the vector are +/// consecutive and that complexity is monotonically increasing. +/// +/// Note that we go take special precautions to ensure that we get determinstic +/// results from this routine. In other words, we don't want the results of +/// this to depend on where the addresses of various SCEV objects happened to +/// land in memory. +/// +static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { + if (Ops.size() < 2) return; // Noop + if (Ops.size() == 2) { + // This is the common case, which also happens to be trivially simple. + // Special case it. + if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) + std::swap(Ops[0], Ops[1]); + return; + } + + // Do the rough sort by complexity. + std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); + + // Now that we are sorted by complexity, group elements of the same + // complexity. Note that this is, at worst, N^2, but the vector is likely to + // be extremely short in practice. Note that we take this approach because we + // do not want to depend on the addresses of the objects we are grouping. + for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { + SCEV *S = Ops[i]; + unsigned Complexity = S->getSCEVType(); + + // If there are any objects of the same complexity and same value as this + // one, group them. + for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { + if (Ops[j] == S) { // Found a duplicate. + // Move it to immediately after i'th element. + std::swap(Ops[i+1], Ops[j]); + ++i; // no need to rescan it. + if (i == e-2) return; // Done! + } + } + } +} + + + +//===----------------------------------------------------------------------===// +// Simple SCEV method implementations +//===----------------------------------------------------------------------===// + +/// getIntegerSCEV - Given an integer or FP type, create a constant for the +/// specified signed integer value and return a SCEV for the constant. +SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) { + Constant *C; + if (Val == 0) + C = Constant::getNullValue(Ty); + else if (Ty->isFloatingPoint()) + C = ConstantFP::get(Ty, Val); + else if (Ty->isSigned()) + C = ConstantSInt::get(Ty, Val); + else { + C = ConstantSInt::get(Ty->getSignedVersion(), Val); + C = ConstantExpr::getCast(C, Ty); + } + return SCEVUnknown::get(C); +} + +/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the +/// input value to the specified type. If the type must be extended, it is zero +/// extended. +static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) { + const Type *SrcTy = V->getType(); + assert(SrcTy->isInteger() && Ty->isInteger() && + "Cannot truncate or zero extend with non-integer arguments!"); + if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize()) + return V; // No conversion + if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize()) + return SCEVTruncateExpr::get(V, Ty); + return SCEVZeroExtendExpr::get(V, Ty); +} + +/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V +/// +SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) { + if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) + return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue())); + + return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType())); +} + +/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. +/// +SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) { + // X - Y --> X + -Y + return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS)); +} + + +/// PartialFact - Compute V!/(V-NumSteps)! +static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) { + // Handle this case efficiently, it is common to have constant iteration + // counts while computing loop exit values. + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { + uint64_t Val = SC->getValue()->getRawValue(); + uint64_t Result = 1; + for (; NumSteps; --NumSteps) + Result *= Val-(NumSteps-1); + Constant *Res = ConstantUInt::get(Type::ULongTy, Result); + return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType())); + } + + const Type *Ty = V->getType(); + if (NumSteps == 0) + return SCEVUnknown::getIntegerSCEV(1, Ty); + + SCEVHandle Result = V; + for (unsigned i = 1; i != NumSteps; ++i) + Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V, + SCEVUnknown::getIntegerSCEV(i, Ty))); + return Result; +} + + +/// evaluateAtIteration - Return the value of this chain of recurrences at +/// the specified iteration number. We can evaluate this recurrence by +/// multiplying each element in the chain by the binomial coefficient +/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: +/// +/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) +/// +/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. +/// Is the binomial equation safe using modular arithmetic?? +/// +SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const { + SCEVHandle Result = getStart(); + int Divisor = 1; + const Type *Ty = It->getType(); + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + SCEVHandle BC = PartialFact(It, i); + Divisor *= i; + SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)), + SCEVUnknown::getIntegerSCEV(Divisor,Ty)); + Result = SCEVAddExpr::get(Result, Val); + } + return Result; +} + + +//===----------------------------------------------------------------------===// +// SCEV Expression folder implementations +//===----------------------------------------------------------------------===// + +SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) { + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) + return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty)); + + // If the input value is a chrec scev made out of constants, truncate + // all of the constants. + if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { + std::vector<SCEVHandle> Operands; + for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) + // FIXME: This should allow truncation of other expression types! + if (isa<SCEVConstant>(AddRec->getOperand(i))) + Operands.push_back(get(AddRec->getOperand(i), Ty)); + else + break; + if (Operands.size() == AddRec->getNumOperands()) + return SCEVAddRecExpr::get(Operands, AddRec->getLoop()); + } + + SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); + return Result; +} + +SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) { + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) + return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty)); + + // FIXME: If the input value is a chrec scev, and we can prove that the value + // did not overflow the old, smaller, value, we can zero extend all of the + // operands (often constants). This would allow analysis of something like + // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } + + SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); + return Result; +} + +// get - Get a canonical add expression, or something simpler if possible. +SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) { + assert(!Ops.empty() && "Cannot get empty add!"); + if (Ops.size() == 1) return Ops[0]; + + // Sort by complexity, this groups all similar expression types together. + GroupByComplexity(Ops); + + // If there are any constants, fold them together. + unsigned Idx = 0; + if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { + ++Idx; + assert(Idx < Ops.size()); + while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { + // We found two constants, fold them together! + Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue()); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { + Ops[0] = SCEVConstant::get(CI); + Ops.erase(Ops.begin()+1); // Erase the folded element + if (Ops.size() == 1) return Ops[0]; + LHSC = cast<SCEVConstant>(Ops[0]); + } else { + // If we couldn't fold the expression, move to the next constant. Note + // that this is impossible to happen in practice because we always + // constant fold constant ints to constant ints. + ++Idx; + } + } + + // If we are left with a constant zero being added, strip it off. + if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) { + Ops.erase(Ops.begin()); + --Idx; + } + } + + if (Ops.size() == 1) return Ops[0]; + + // Okay, check to see if the same value occurs in the operand list twice. If + // so, merge them together into an multiply expression. Since we sorted the + // list, these values are required to be adjacent. + const Type *Ty = Ops[0]->getType(); + for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) + if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 + // Found a match, merge the two values into a multiply, and add any + // remaining values to the result. + SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty); + SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two); + if (Ops.size() == 2) + return Mul; + Ops.erase(Ops.begin()+i, Ops.begin()+i+2); + Ops.push_back(Mul); + return SCEVAddExpr::get(Ops); + } + + // Okay, now we know the first non-constant operand. If there are add + // operands they would be next. + if (Idx < Ops.size()) { + bool DeletedAdd = false; + while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { + // If we have an add, expand the add operands onto the end of the operands + // list. + Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); + Ops.erase(Ops.begin()+Idx); + DeletedAdd = true; + } + + // If we deleted at least one add, we added operands to the end of the list, + // and they are not necessarily sorted. Recurse to resort and resimplify + // any operands we just aquired. + if (DeletedAdd) + return get(Ops); + } + + // Skip over the add expression until we get to a multiply. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) + ++Idx; + + // If we are adding something to a multiply expression, make sure the + // something is not already an operand of the multiply. If so, merge it into + // the multiply. + for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { + SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); + for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { + SCEV *MulOpSCEV = Mul->getOperand(MulOp); + for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) + if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { + // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) + SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); + if (Mul->getNumOperands() != 2) { + // If the multiply has more than two operands, we must get the + // Y*Z term. + std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); + MulOps.erase(MulOps.begin()+MulOp); + InnerMul = SCEVMulExpr::get(MulOps); + } + SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty); + SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One); + SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]); + if (Ops.size() == 2) return OuterMul; + if (AddOp < Idx) { + Ops.erase(Ops.begin()+AddOp); + Ops.erase(Ops.begin()+Idx-1); + } else { + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+AddOp-1); + } + Ops.push_back(OuterMul); + return SCEVAddExpr::get(Ops); + } + + // Check this multiply against other multiplies being added together. + for (unsigned OtherMulIdx = Idx+1; + OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); + ++OtherMulIdx) { + SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); + // If MulOp occurs in OtherMul, we can fold the two multiplies + // together. + for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); + OMulOp != e; ++OMulOp) + if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { + // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) + SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); + if (Mul->getNumOperands() != 2) { + std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); + MulOps.erase(MulOps.begin()+MulOp); + InnerMul1 = SCEVMulExpr::get(MulOps); + } + SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); + if (OtherMul->getNumOperands() != 2) { + std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), + OtherMul->op_end()); + MulOps.erase(MulOps.begin()+OMulOp); + InnerMul2 = SCEVMulExpr::get(MulOps); + } + SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2); + SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum); + if (Ops.size() == 2) return OuterMul; + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+OtherMulIdx-1); + Ops.push_back(OuterMul); + return SCEVAddExpr::get(Ops); + } + } + } + } + + // If there are any add recurrences in the operands list, see if any other + // added values are loop invariant. If so, we can fold them into the + // recurrence. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) + ++Idx; + + // Scan over all recurrences, trying to fold loop invariants into them. + for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { + // Scan all of the other operands to this add and add them to the vector if + // they are loop invariant w.r.t. the recurrence. + std::vector<SCEVHandle> LIOps; + SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { + LIOps.push_back(Ops[i]); + Ops.erase(Ops.begin()+i); + --i; --e; + } + + // If we found some loop invariants, fold them into the recurrence. + if (!LIOps.empty()) { + // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } + LIOps.push_back(AddRec->getStart()); + + std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); + AddRecOps[0] = SCEVAddExpr::get(LIOps); + + SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop()); + // If all of the other operands were loop invariant, we are done. + if (Ops.size() == 1) return NewRec; + + // Otherwise, add the folded AddRec by the non-liv parts. + for (unsigned i = 0;; ++i) + if (Ops[i] == AddRec) { + Ops[i] = NewRec; + break; + } + return SCEVAddExpr::get(Ops); + } + + // Okay, if there weren't any loop invariants to be folded, check to see if + // there are multiple AddRec's with the same loop induction variable being + // added together. If so, we can fold them. + for (unsigned OtherIdx = Idx+1; + OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) + if (OtherIdx != Idx) { + SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); + if (AddRec->getLoop() == OtherAddRec->getLoop()) { + // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} + std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); + for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { + if (i >= NewOps.size()) { + NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, + OtherAddRec->op_end()); + break; + } + NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i)); + } + SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); + + if (Ops.size() == 2) return NewAddRec; + + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+OtherIdx-1); + Ops.push_back(NewAddRec); + return SCEVAddExpr::get(Ops); + } + } + + // Otherwise couldn't fold anything into this recurrence. Move onto the + // next one. + } + + // Okay, it looks like we really DO need an add expr. Check to see if we + // already have one, otherwise create a new one. + std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); + SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr, + SCEVOps)]; + if (Result == 0) Result = new SCEVAddExpr(Ops); + return Result; +} + + +SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) { + assert(!Ops.empty() && "Cannot get empty mul!"); + + // Sort by complexity, this groups all similar expression types together. + GroupByComplexity(Ops); + + // If there are any constants, fold them together. + unsigned Idx = 0; + if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { + + // C1*(C2+V) -> C1*C2 + C1*V + if (Ops.size() == 2) + if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) + if (Add->getNumOperands() == 2 && + isa<SCEVConstant>(Add->getOperand(0))) + return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)), + SCEVMulExpr::get(LHSC, Add->getOperand(1))); + + + ++Idx; + while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { + // We found two constants, fold them together! + Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue()); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { + Ops[0] = SCEVConstant::get(CI); + Ops.erase(Ops.begin()+1); // Erase the folded element + if (Ops.size() == 1) return Ops[0]; + LHSC = cast<SCEVConstant>(Ops[0]); + } else { + // If we couldn't fold the expression, move to the next constant. Note + // that this is impossible to happen in practice because we always + // constant fold constant ints to constant ints. + ++Idx; + } + } + + // If we are left with a constant one being multiplied, strip it off. + if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { + Ops.erase(Ops.begin()); + --Idx; + } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) { + // If we have a multiply of zero, it will always be zero. + return Ops[0]; + } + } + + // Skip over the add expression until we get to a multiply. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) + ++Idx; + + if (Ops.size() == 1) + return Ops[0]; + + // If there are mul operands inline them all into this expression. + if (Idx < Ops.size()) { + bool DeletedMul = false; + while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { + // If we have an mul, expand the mul operands onto the end of the operands + // list. + Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); + Ops.erase(Ops.begin()+Idx); + DeletedMul = true; + } + + // If we deleted at least one mul, we added operands to the end of the list, + // and they are not necessarily sorted. Recurse to resort and resimplify + // any operands we just aquired. + if (DeletedMul) + return get(Ops); + } + + // If there are any add recurrences in the operands list, see if any other + // added values are loop invariant. If so, we can fold them into the + // recurrence. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) + ++Idx; + + // Scan over all recurrences, trying to fold loop invariants into them. + for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { + // Scan all of the other operands to this mul and add them to the vector if + // they are loop invariant w.r.t. the recurrence. + std::vector<SCEVHandle> LIOps; + SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { + LIOps.push_back(Ops[i]); + Ops.erase(Ops.begin()+i); + --i; --e; + } + + // If we found some loop invariants, fold them into the recurrence. + if (!LIOps.empty()) { + // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } + std::vector<SCEVHandle> NewOps; + NewOps.reserve(AddRec->getNumOperands()); + if (LIOps.size() == 1) { + SCEV *Scale = LIOps[0]; + for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) + NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i))); + } else { + for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { + std::vector<SCEVHandle> MulOps(LIOps); + MulOps.push_back(AddRec->getOperand(i)); + NewOps.push_back(SCEVMulExpr::get(MulOps)); + } + } + + SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); + + // If all of the other operands were loop invariant, we are done. + if (Ops.size() == 1) return NewRec; + + // Otherwise, multiply the folded AddRec by the non-liv parts. + for (unsigned i = 0;; ++i) + if (Ops[i] == AddRec) { + Ops[i] = NewRec; + break; + } + return SCEVMulExpr::get(Ops); + } + + // Okay, if there weren't any loop invariants to be folded, check to see if + // there are multiple AddRec's with the same loop induction variable being + // multiplied together. If so, we can fold them. + for (unsigned OtherIdx = Idx+1; + OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) + if (OtherIdx != Idx) { + SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); + if (AddRec->getLoop() == OtherAddRec->getLoop()) { + // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} + SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; + SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(), + G->getStart()); + SCEVHandle B = F->getStepRecurrence(); + SCEVHandle D = G->getStepRecurrence(); + SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D), + SCEVMulExpr::get(G, B), + SCEVMulExpr::get(B, D)); + SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep, + F->getLoop()); + if (Ops.size() == 2) return NewAddRec; + + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+OtherIdx-1); + Ops.push_back(NewAddRec); + return SCEVMulExpr::get(Ops); + } + } + + // Otherwise couldn't fold anything into this recurrence. Move onto the + // next one. + } + + // Okay, it looks like we really DO need an mul expr. Check to see if we + // already have one, otherwise create a new one. + std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); + SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr, + SCEVOps)]; + if (Result == 0) + Result = new SCEVMulExpr(Ops); + return Result; +} + +SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) { + if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { + if (RHSC->getValue()->equalsInt(1)) + return LHS; // X /u 1 --> x + if (RHSC->getValue()->isAllOnesValue()) + return SCEV::getNegativeSCEV(LHS); // X /u -1 --> -x + + if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { + Constant *LHSCV = LHSC->getValue(); + Constant *RHSCV = RHSC->getValue(); + if (LHSCV->getType()->isSigned()) + LHSCV = ConstantExpr::getCast(LHSCV, + LHSCV->getType()->getUnsignedVersion()); + if (RHSCV->getType()->isSigned()) + RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType()); + return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV)); + } + } + + // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. + + SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)]; + if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); + return Result; +} + + +/// SCEVAddRecExpr::get - Get a add recurrence expression for the +/// specified loop. Simplify the expression as much as possible. +SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start, + const SCEVHandle &Step, const Loop *L) { + std::vector<SCEVHandle> Operands; + Operands.push_back(Start); + if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) + if (StepChrec->getLoop() == L) { + Operands.insert(Operands.end(), StepChrec->op_begin(), + StepChrec->op_end()); + return get(Operands, L); + } + + Operands.push_back(Step); + return get(Operands, L); +} + +/// SCEVAddRecExpr::get - Get a add recurrence expression for the +/// specified loop. Simplify the expression as much as possible. +SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands, + const Loop *L) { + if (Operands.size() == 1) return Operands[0]; + + if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) + if (StepC->getValue()->isNullValue()) { + Operands.pop_back(); + return get(Operands, L); // { X,+,0 } --> X + } + + SCEVAddRecExpr *&Result = + SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), + Operands.end()))]; + if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); + return Result; +} + +SCEVHandle SCEVUnknown::get(Value *V) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return SCEVConstant::get(CI); + SCEVUnknown *&Result = SCEVUnknowns[V]; + if (Result == 0) Result = new SCEVUnknown(V); + return Result; +} + + +//===----------------------------------------------------------------------===// +// ScalarEvolutionsImpl Definition and Implementation +//===----------------------------------------------------------------------===// +// +/// ScalarEvolutionsImpl - This class implements the main driver for the scalar +/// evolution code. +/// +namespace { + struct ScalarEvolutionsImpl { + /// F - The function we are analyzing. + /// + Function &F; + + /// LI - The loop information for the function we are currently analyzing. + /// + LoopInfo &LI; + + /// UnknownValue - This SCEV is used to represent unknown trip counts and + /// things. + SCEVHandle UnknownValue; + + /// Scalars - This is a cache of the scalars we have analyzed so far. + /// + std::map<Value*, SCEVHandle> Scalars; + + /// IterationCounts - Cache the iteration count of the loops for this + /// function as they are computed. + std::map<const Loop*, SCEVHandle> IterationCounts; + + /// ConstantEvolutionLoopExitValue - This map contains entries for all of + /// the PHI instructions that we attempt to compute constant evolutions for. + /// This allows us to avoid potentially expensive recomputation of these + /// properties. An instruction maps to null if we are unable to compute its + /// exit value. + std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; + + public: + ScalarEvolutionsImpl(Function &f, LoopInfo &li) + : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} + + /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the + /// expression and create a new one. + SCEVHandle getSCEV(Value *V); + + /// hasSCEV - Return true if the SCEV for this value has already been + /// computed. + bool hasSCEV(Value *V) const { + return Scalars.count(V); + } + + /// setSCEV - Insert the specified SCEV into the map of current SCEVs for + /// the specified value. + void setSCEV(Value *V, const SCEVHandle &H) { + bool isNew = Scalars.insert(std::make_pair(V, H)).second; + assert(isNew && "This entry already existed!"); + } + + + /// getSCEVAtScope - Compute the value of the specified expression within + /// the indicated loop (which may be null to indicate in no loop). If the + /// expression cannot be evaluated, return UnknownValue itself. + SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); + + + /// hasLoopInvariantIterationCount - Return true if the specified loop has + /// an analyzable loop-invariant iteration count. + bool hasLoopInvariantIterationCount(const Loop *L); + + /// getIterationCount - If the specified loop has a predictable iteration + /// count, return it. Note that it is not valid to call this method on a + /// loop without a loop-invariant iteration count. + SCEVHandle getIterationCount(const Loop *L); + + /// deleteInstructionFromRecords - This method should be called by the + /// client before it removes an instruction from the program, to make sure + /// that no dangling references are left around. + void deleteInstructionFromRecords(Instruction *I); + + private: + /// createSCEV - We know that there is no SCEV for the specified value. + /// Analyze the expression. + SCEVHandle createSCEV(Value *V); + SCEVHandle createNodeForCast(CastInst *CI); + + /// createNodeForPHI - Provide the special handling we need to analyze PHI + /// SCEVs. + SCEVHandle createNodeForPHI(PHINode *PN); + + /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value + /// for the specified instruction and replaces any references to the + /// symbolic value SymName with the specified value. This is used during + /// PHI resolution. + void ReplaceSymbolicValueWithConcrete(Instruction *I, + const SCEVHandle &SymName, + const SCEVHandle &NewVal); + + /// ComputeIterationCount - Compute the number of times the specified loop + /// will iterate. + SCEVHandle ComputeIterationCount(const Loop *L); + + /// ComputeLoadConstantCompareIterationCount - Given an exit condition of + /// 'setcc load X, cst', try to se if we can compute the trip count. + SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, + Constant *RHS, + const Loop *L, + unsigned SetCCOpcode); + + /// ComputeIterationCountExhaustively - If the trip is known to execute a + /// constant number of times (the condition evolves only from constants), + /// try to evaluate a few iterations of the loop until we get the exit + /// condition gets a value of ExitWhen (true or false). If we cannot + /// evaluate the trip count of the loop, return UnknownValue. + SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, + bool ExitWhen); + + /// HowFarToZero - Return the number of times a backedge comparing the + /// specified value to zero will execute. If not computable, return + /// UnknownValue. + SCEVHandle HowFarToZero(SCEV *V, const Loop *L); + + /// HowFarToNonZero - Return the number of times a backedge checking the + /// specified value for nonzero will execute. If not computable, return + /// UnknownValue. + SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); + + /// HowManyLessThans - Return the number of times a backedge containing the + /// specified less-than comparison will execute. If not computable, return + /// UnknownValue. + SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L); + + /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is + /// in the header of its containing loop, we know the loop executes a + /// constant number of times, and the PHI node is just a recurrence + /// involving constants, fold it. + Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, + const Loop *L); + }; +} + +//===----------------------------------------------------------------------===// +// Basic SCEV Analysis and PHI Idiom Recognition Code +// + +/// deleteInstructionFromRecords - This method should be called by the +/// client before it removes an instruction from the program, to make sure +/// that no dangling references are left around. +void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) { + Scalars.erase(I); + if (PHINode *PN = dyn_cast<PHINode>(I)) + ConstantEvolutionLoopExitValue.erase(PN); +} + + +/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the +/// expression and create a new one. +SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { + assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); + + std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); + if (I != Scalars.end()) return I->second; + SCEVHandle S = createSCEV(V); + Scalars.insert(std::make_pair(V, S)); + return S; +} + +/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for +/// the specified instruction and replaces any references to the symbolic value +/// SymName with the specified value. This is used during PHI resolution. +void ScalarEvolutionsImpl:: +ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, + const SCEVHandle &NewVal) { + std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); + if (SI == Scalars.end()) return; + + SCEVHandle NV = + SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal); + if (NV == SI->second) return; // No change. + + SI->second = NV; // Update the scalars map! + + // Any instruction values that use this instruction might also need to be + // updated! + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) + ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); +} + +/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in +/// a loop header, making it a potential recurrence, or it doesn't. +/// +SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { + if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. + if (const Loop *L = LI.getLoopFor(PN->getParent())) + if (L->getHeader() == PN->getParent()) { + // If it lives in the loop header, it has two incoming values, one + // from outside the loop, and one from inside. + unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); + unsigned BackEdge = IncomingEdge^1; + + // While we are analyzing this PHI node, handle its value symbolically. + SCEVHandle SymbolicName = SCEVUnknown::get(PN); + assert(Scalars.find(PN) == Scalars.end() && + "PHI node already processed?"); + Scalars.insert(std::make_pair(PN, SymbolicName)); + + // Using this symbolic name for the PHI, analyze the value coming around + // the back-edge. + SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); + + // NOTE: If BEValue is loop invariant, we know that the PHI node just + // has a special value for the first iteration of the loop. + + // If the value coming around the backedge is an add with the symbolic + // value we just inserted, then we found a simple induction variable! + if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { + // If there is a single occurrence of the symbolic value, replace it + // with a recurrence. + unsigned FoundIndex = Add->getNumOperands(); + for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) + if (Add->getOperand(i) == SymbolicName) + if (FoundIndex == e) { + FoundIndex = i; + break; + } + + if (FoundIndex != Add->getNumOperands()) { + // Create an add with everything but the specified operand. + std::vector<SCEVHandle> Ops; + for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) + if (i != FoundIndex) + Ops.push_back(Add->getOperand(i)); + SCEVHandle Accum = SCEVAddExpr::get(Ops); + + // This is not a valid addrec if the step amount is varying each + // loop iteration, but is not itself an addrec in this loop. + if (Accum->isLoopInvariant(L) || + (isa<SCEVAddRecExpr>(Accum) && + cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { + SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); + SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L); + + // Okay, for the entire analysis of this edge we assumed the PHI + // to be symbolic. We now need to go back and update all of the + // entries for the scalars that use the PHI (except for the PHI + // itself) to use the new analyzed value instead of the "symbolic" + // value. + ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); + return PHISCEV; + } + } + } + + return SymbolicName; + } + + // If it's not a loop phi, we can't handle it yet. + return SCEVUnknown::get(PN); +} + +/// createNodeForCast - Handle the various forms of casts that we support. +/// +SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) { + const Type *SrcTy = CI->getOperand(0)->getType(); + const Type *DestTy = CI->getType(); + + // If this is a noop cast (ie, conversion from int to uint), ignore it. + if (SrcTy->isLosslesslyConvertibleTo(DestTy)) + return getSCEV(CI->getOperand(0)); + + if (SrcTy->isInteger() && DestTy->isInteger()) { + // Otherwise, if this is a truncating integer cast, we can represent this + // cast. + if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize()) + return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)), + CI->getType()->getUnsignedVersion()); + if (SrcTy->isUnsigned() && + SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize()) + return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)), + CI->getType()->getUnsignedVersion()); + } + + // If this is an sign or zero extending cast and we can prove that the value + // will never overflow, we could do similar transformations. + + // Otherwise, we can't handle this cast! + return SCEVUnknown::get(CI); +} + + +/// createSCEV - We know that there is no SCEV for the specified value. +/// Analyze the expression. +/// +SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { + if (Instruction *I = dyn_cast<Instruction>(V)) { + switch (I->getOpcode()) { + case Instruction::Add: + return SCEVAddExpr::get(getSCEV(I->getOperand(0)), + getSCEV(I->getOperand(1))); + case Instruction::Mul: + return SCEVMulExpr::get(getSCEV(I->getOperand(0)), + getSCEV(I->getOperand(1))); + case Instruction::Div: + if (V->getType()->isInteger() && V->getType()->isUnsigned()) + return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), + getSCEV(I->getOperand(1))); + break; + + case Instruction::Sub: + return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)), + getSCEV(I->getOperand(1))); + + case Instruction::Shl: + // Turn shift left of a constant amount into a multiply. + if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + Constant *X = ConstantInt::get(V->getType(), 1); + X = ConstantExpr::getShl(X, SA); + return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X)); + } + break; + + case Instruction::Shr: + if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) + if (V->getType()->isUnsigned()) { + Constant *X = ConstantInt::get(V->getType(), 1); + X = ConstantExpr::getShl(X, SA); + return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X)); + } + break; + + case Instruction::Cast: + return createNodeForCast(cast<CastInst>(I)); + + case Instruction::PHI: + return createNodeForPHI(cast<PHINode>(I)); + + default: // We cannot analyze this expression. + break; + } + } + + return SCEVUnknown::get(V); +} + + + +//===----------------------------------------------------------------------===// +// Iteration Count Computation Code +// + +/// getIterationCount - If the specified loop has a predictable iteration +/// count, return it. Note that it is not valid to call this method on a +/// loop without a loop-invariant iteration count. +SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { + std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); + if (I == IterationCounts.end()) { + SCEVHandle ItCount = ComputeIterationCount(L); + I = IterationCounts.insert(std::make_pair(L, ItCount)).first; + if (ItCount != UnknownValue) { + assert(ItCount->isLoopInvariant(L) && + "Computed trip count isn't loop invariant for loop!"); + ++NumTripCountsComputed; + } else if (isa<PHINode>(L->getHeader()->begin())) { + // Only count loops that have phi nodes as not being computable. + ++NumTripCountsNotComputed; + } + } + return I->second; +} + +/// ComputeIterationCount - Compute the number of times the specified loop +/// will iterate. +SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { + // If the loop has a non-one exit block count, we can't analyze it. + std::vector<BasicBlock*> ExitBlocks; + L->getExitBlocks(ExitBlocks); + if (ExitBlocks.size() != 1) return UnknownValue; + + // Okay, there is one exit block. Try to find the condition that causes the + // loop to be exited. + BasicBlock *ExitBlock = ExitBlocks[0]; + + BasicBlock *ExitingBlock = 0; + for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); + PI != E; ++PI) + if (L->contains(*PI)) { + if (ExitingBlock == 0) + ExitingBlock = *PI; + else + return UnknownValue; // More than one block exiting! + } + assert(ExitingBlock && "No exits from loop, something is broken!"); + + // Okay, we've computed the exiting block. See what condition causes us to + // exit. + // + // FIXME: we should be able to handle switch instructions (with a single exit) + // FIXME: We should handle cast of int to bool as well + BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); + if (ExitBr == 0) return UnknownValue; + assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); + SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition()); + if (ExitCond == 0) // Not a setcc + return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), + ExitBr->getSuccessor(0) == ExitBlock); + + // If the condition was exit on true, convert the condition to exit on false. + Instruction::BinaryOps Cond; + if (ExitBr->getSuccessor(1) == ExitBlock) + Cond = ExitCond->getOpcode(); + else + Cond = ExitCond->getInverseCondition(); + + // Handle common loops like: for (X = "string"; *X; ++X) + if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) + if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { + SCEVHandle ItCnt = + ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); + if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; + } + + SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); + SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); + + // Try to evaluate any dependencies out of the loop. + SCEVHandle Tmp = getSCEVAtScope(LHS, L); + if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; + Tmp = getSCEVAtScope(RHS, L); + if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; + + // At this point, we would like to compute how many iterations of the loop the + // predicate will return true for these inputs. + if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { + // If there is a constant, force it into the RHS. + std::swap(LHS, RHS); + Cond = SetCondInst::getSwappedCondition(Cond); + } + + // FIXME: think about handling pointer comparisons! i.e.: + // while (P != P+100) ++P; + + // If we have a comparison of a chrec against a constant, try to use value + // ranges to answer this query. + if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) + if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) + if (AddRec->getLoop() == L) { + // Form the comparison range using the constant of the correct type so + // that the ConstantRange class knows to do a signed or unsigned + // comparison. + ConstantInt *CompVal = RHSC->getValue(); + const Type *RealTy = ExitCond->getOperand(0)->getType(); + CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy)); + if (CompVal) { + // Form the constant range. + ConstantRange CompRange(Cond, CompVal); + + // Now that we have it, if it's signed, convert it to an unsigned + // range. + if (CompRange.getLower()->getType()->isSigned()) { + const Type *NewTy = RHSC->getValue()->getType(); + Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy); + Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy); + CompRange = ConstantRange(NewL, NewU); + } + + SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange); + if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; + } + } + + switch (Cond) { + case Instruction::SetNE: // while (X != Y) + // Convert to: while (X-Y != 0) + if (LHS->getType()->isInteger()) { + SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L); + if (!isa<SCEVCouldNotCompute>(TC)) return TC; + } + break; + case Instruction::SetEQ: + // Convert to: while (X-Y == 0) // while (X == Y) + if (LHS->getType()->isInteger()) { + SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L); + if (!isa<SCEVCouldNotCompute>(TC)) return TC; + } + break; + case Instruction::SetLT: + if (LHS->getType()->isInteger() && + ExitCond->getOperand(0)->getType()->isSigned()) { + SCEVHandle TC = HowManyLessThans(LHS, RHS, L); + if (!isa<SCEVCouldNotCompute>(TC)) return TC; + } + break; + case Instruction::SetGT: + if (LHS->getType()->isInteger() && + ExitCond->getOperand(0)->getType()->isSigned()) { + SCEVHandle TC = HowManyLessThans(RHS, LHS, L); + if (!isa<SCEVCouldNotCompute>(TC)) return TC; + } + break; + default: +#if 0 + std::cerr << "ComputeIterationCount "; + if (ExitCond->getOperand(0)->getType()->isUnsigned()) + std::cerr << "[unsigned] "; + std::cerr << *LHS << " " + << Instruction::getOpcodeName(Cond) << " " << *RHS << "\n"; +#endif + break; + } + + return ComputeIterationCountExhaustively(L, ExitCond, + ExitBr->getSuccessor(0) == ExitBlock); +} + +static ConstantInt * +EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) { + SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C)); + SCEVHandle Val = AddRec->evaluateAtIteration(InVal); + assert(isa<SCEVConstant>(Val) && + "Evaluation of SCEV at constant didn't fold correctly?"); + return cast<SCEVConstant>(Val)->getValue(); +} + +/// GetAddressedElementFromGlobal - Given a global variable with an initializer +/// and a GEP expression (missing the pointer index) indexing into it, return +/// the addressed element of the initializer or null if the index expression is +/// invalid. +static Constant * +GetAddressedElementFromGlobal(GlobalVariable *GV, + const std::vector<ConstantInt*> &Indices) { + Constant *Init = GV->getInitializer(); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) { + uint64_t Idx = Indices[i]->getRawValue(); + if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { + assert(Idx < CS->getNumOperands() && "Bad struct index!"); + Init = cast<Constant>(CS->getOperand(Idx)); + } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { + if (Idx >= CA->getNumOperands()) return 0; // Bogus program + Init = cast<Constant>(CA->getOperand(Idx)); + } else if (isa<ConstantAggregateZero>(Init)) { + if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { + assert(Idx < STy->getNumElements() && "Bad struct index!"); + Init = Constant::getNullValue(STy->getElementType(Idx)); + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { + if (Idx >= ATy->getNumElements()) return 0; // Bogus program + Init = Constant::getNullValue(ATy->getElementType()); + } else { + assert(0 && "Unknown constant aggregate type!"); + } + return 0; + } else { + return 0; // Unknown initializer type + } + } + return Init; +} + +/// ComputeLoadConstantCompareIterationCount - Given an exit condition of +/// 'setcc load X, cst', try to se if we can compute the trip count. +SCEVHandle ScalarEvolutionsImpl:: +ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, + const Loop *L, unsigned SetCCOpcode) { + if (LI->isVolatile()) return UnknownValue; + + // Check to see if the loaded pointer is a getelementptr of a global. + GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); + if (!GEP) return UnknownValue; + + // Make sure that it is really a constant global we are gepping, with an + // initializer, and make sure the first IDX is really 0. + GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); + if (!GV || !GV->isConstant() || !GV->hasInitializer() || + GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || + !cast<Constant>(GEP->getOperand(1))->isNullValue()) + return UnknownValue; + + // Okay, we allow one non-constant index into the GEP instruction. + Value *VarIdx = 0; + std::vector<ConstantInt*> Indexes; + unsigned VarIdxNum = 0; + for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { + Indexes.push_back(CI); + } else if (!isa<ConstantInt>(GEP->getOperand(i))) { + if (VarIdx) return UnknownValue; // Multiple non-constant idx's. + VarIdx = GEP->getOperand(i); + VarIdxNum = i-2; + Indexes.push_back(0); + } + + // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. + // Check to see if X is a loop variant variable value now. + SCEVHandle Idx = getSCEV(VarIdx); + SCEVHandle Tmp = getSCEVAtScope(Idx, L); + if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; + + // We can only recognize very limited forms of loop index expressions, in + // particular, only affine AddRec's like {C1,+,C2}. + SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); + if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || + !isa<SCEVConstant>(IdxExpr->getOperand(0)) || + !isa<SCEVConstant>(IdxExpr->getOperand(1))) + return UnknownValue; + + unsigned MaxSteps = MaxBruteForceIterations; + for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { + ConstantUInt *ItCst = + ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum); + ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst); + + // Form the GEP offset. + Indexes[VarIdxNum] = Val; + + Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); + if (Result == 0) break; // Cannot compute! + + // Evaluate the condition for this iteration. + Result = ConstantExpr::get(SetCCOpcode, Result, RHS); + if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure + if (Result == ConstantBool::False) { +#if 0 + std::cerr << "\n***\n*** Computed loop count " << *ItCst + << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() + << "***\n"; +#endif + ++NumArrayLenItCounts; + return SCEVConstant::get(ItCst); // Found terminating iteration! + } + } + return UnknownValue; +} + + +/// CanConstantFold - Return true if we can constant fold an instruction of the +/// specified type, assuming that all operands were constants. +static bool CanConstantFold(const Instruction *I) { + if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) || + isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) + return true; + + if (const CallInst *CI = dyn_cast<CallInst>(I)) + if (const Function *F = CI->getCalledFunction()) + return canConstantFoldCallTo((Function*)F); // FIXME: elim cast + return false; +} + +/// ConstantFold - Constant fold an instruction of the specified type with the +/// specified constant operands. This function may modify the operands vector. +static Constant *ConstantFold(const Instruction *I, + std::vector<Constant*> &Operands) { + if (isa<BinaryOperator>(I) || isa<ShiftInst>(I)) + return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]); + + switch (I->getOpcode()) { + case Instruction::Cast: + return ConstantExpr::getCast(Operands[0], I->getType()); + case Instruction::Select: + return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]); + case Instruction::Call: + if (Function *GV = dyn_cast<Function>(Operands[0])) { + Operands.erase(Operands.begin()); + return ConstantFoldCall(cast<Function>(GV), Operands); + } + + return 0; + case Instruction::GetElementPtr: + Constant *Base = Operands[0]; + Operands.erase(Operands.begin()); + return ConstantExpr::getGetElementPtr(Base, Operands); + } + return 0; +} + + +/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node +/// in the loop that V is derived from. We allow arbitrary operations along the +/// way, but the operands of an operation must either be constants or a value +/// derived from a constant PHI. If this expression does not fit with these +/// constraints, return null. +static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { + // If this is not an instruction, or if this is an instruction outside of the + // loop, it can't be derived from a loop PHI. + Instruction *I = dyn_cast<Instruction>(V); + if (I == 0 || !L->contains(I->getParent())) return 0; + + if (PHINode *PN = dyn_cast<PHINode>(I)) + if (L->getHeader() == I->getParent()) + return PN; + else + // We don't currently keep track of the control flow needed to evaluate + // PHIs, so we cannot handle PHIs inside of loops. + return 0; + + // If we won't be able to constant fold this expression even if the operands + // are constants, return early. + if (!CanConstantFold(I)) return 0; + + // Otherwise, we can evaluate this instruction if all of its operands are + // constant or derived from a PHI node themselves. + PHINode *PHI = 0; + for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) + if (!(isa<Constant>(I->getOperand(Op)) || + isa<GlobalValue>(I->getOperand(Op)))) { + PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); + if (P == 0) return 0; // Not evolving from PHI + if (PHI == 0) + PHI = P; + else if (PHI != P) + return 0; // Evolving from multiple different PHIs. + } + + // This is a expression evolving from a constant PHI! + return PHI; +} + +/// EvaluateExpression - Given an expression that passes the +/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node +/// in the loop has the value PHIVal. If we can't fold this expression for some +/// reason, return null. +static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { + if (isa<PHINode>(V)) return PHIVal; + if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) + return GV; + if (Constant *C = dyn_cast<Constant>(V)) return C; + Instruction *I = cast<Instruction>(V); + + std::vector<Constant*> Operands; + Operands.resize(I->getNumOperands()); + + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); + if (Operands[i] == 0) return 0; + } + + return ConstantFold(I, Operands); +} + +/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is +/// in the header of its containing loop, we know the loop executes a +/// constant number of times, and the PHI node is just a recurrence +/// involving constants, fold it. +Constant *ScalarEvolutionsImpl:: +getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) { + std::map<PHINode*, Constant*>::iterator I = + ConstantEvolutionLoopExitValue.find(PN); + if (I != ConstantEvolutionLoopExitValue.end()) + return I->second; + + if (Its > MaxBruteForceIterations) + return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. + + Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; + + // Since the loop is canonicalized, the PHI node must have two entries. One + // entry must be a constant (coming in from outside of the loop), and the + // second must be derived from the same PHI. + bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); + Constant *StartCST = + dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); + if (StartCST == 0) + return RetVal = 0; // Must be a constant. + + Value *BEValue = PN->getIncomingValue(SecondIsBackedge); + PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); + if (PN2 != PN) + return RetVal = 0; // Not derived from same PHI. + + // Execute the loop symbolically to determine the exit value. + unsigned IterationNum = 0; + unsigned NumIterations = Its; + if (NumIterations != Its) + return RetVal = 0; // More than 2^32 iterations?? + + for (Constant *PHIVal = StartCST; ; ++IterationNum) { + if (IterationNum == NumIterations) + return RetVal = PHIVal; // Got exit value! + + // Compute the value of the PHI node for the next iteration. + Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); + if (NextPHI == PHIVal) + return RetVal = NextPHI; // Stopped evolving! + if (NextPHI == 0) + return 0; // Couldn't evaluate! + PHIVal = NextPHI; + } +} + +/// ComputeIterationCountExhaustively - If the trip is known to execute a +/// constant number of times (the condition evolves only from constants), +/// try to evaluate a few iterations of the loop until we get the exit +/// condition gets a value of ExitWhen (true or false). If we cannot +/// evaluate the trip count of the loop, return UnknownValue. +SCEVHandle ScalarEvolutionsImpl:: +ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { + PHINode *PN = getConstantEvolvingPHI(Cond, L); + if (PN == 0) return UnknownValue; + + // Since the loop is canonicalized, the PHI node must have two entries. One + // entry must be a constant (coming in from outside of the loop), and the + // second must be derived from the same PHI. + bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); + Constant *StartCST = + dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); + if (StartCST == 0) return UnknownValue; // Must be a constant. + + Value *BEValue = PN->getIncomingValue(SecondIsBackedge); + PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); + if (PN2 != PN) return UnknownValue; // Not derived from same PHI. + + // Okay, we find a PHI node that defines the trip count of this loop. Execute + // the loop symbolically to determine when the condition gets a value of + // "ExitWhen". + unsigned IterationNum = 0; + unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. + for (Constant *PHIVal = StartCST; + IterationNum != MaxIterations; ++IterationNum) { + ConstantBool *CondVal = + dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal)); + if (!CondVal) return UnknownValue; // Couldn't symbolically evaluate. + + if (CondVal->getValue() == ExitWhen) { + ConstantEvolutionLoopExitValue[PN] = PHIVal; + ++NumBruteForceTripCountsComputed; + return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum)); + } + + // Compute the value of the PHI node for the next iteration. + Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); + if (NextPHI == 0 || NextPHI == PHIVal) + return UnknownValue; // Couldn't evaluate or not making progress... + PHIVal = NextPHI; + } + + // Too many iterations were needed to evaluate. + return UnknownValue; +} + +/// getSCEVAtScope - Compute the value of the specified expression within the +/// indicated loop (which may be null to indicate in no loop). If the +/// expression cannot be evaluated, return UnknownValue. +SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { + // FIXME: this should be turned into a virtual method on SCEV! + + if (isa<SCEVConstant>(V)) return V; + + // If this instruction is evolves from a constant-evolving PHI, compute the + // exit value from the loop without using SCEVs. + if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { + if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { + const Loop *LI = this->LI[I->getParent()]; + if (LI && LI->getParentLoop() == L) // Looking for loop exit value. + if (PHINode *PN = dyn_cast<PHINode>(I)) + if (PN->getParent() == LI->getHeader()) { + // Okay, there is no closed form solution for the PHI node. Check + // to see if the loop that contains it has a known iteration count. + // If so, we may be able to force computation of the exit value. + SCEVHandle IterationCount = getIterationCount(LI); + if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { + // Okay, we know how many times the containing loop executes. If + // this is a constant evolving PHI node, get the final value at + // the specified iteration number. + Constant *RV = getConstantEvolutionLoopExitValue(PN, + ICC->getValue()->getRawValue(), + LI); + if (RV) return SCEVUnknown::get(RV); + } + } + + // Okay, this is a some expression that we cannot symbolically evaluate + // into a SCEV. Check to see if it's possible to symbolically evaluate + // the arguments into constants, and if see, try to constant propagate the + // result. This is particularly useful for computing loop exit values. + if (CanConstantFold(I)) { + std::vector<Constant*> Operands; + Operands.reserve(I->getNumOperands()); + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + Value *Op = I->getOperand(i); + if (Constant *C = dyn_cast<Constant>(Op)) { + Operands.push_back(C); + } else { + SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) + Operands.push_back(ConstantExpr::getCast(SC->getValue(), + Op->getType())); + else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { + if (Constant *C = dyn_cast<Constant>(SU->getValue())) + Operands.push_back(ConstantExpr::getCast(C, Op->getType())); + else + return V; + } else { + return V; + } + } + } + return SCEVUnknown::get(ConstantFold(I, Operands)); + } + } + + // This is some other type of SCEVUnknown, just return it. + return V; + } + + if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { + // Avoid performing the look-up in the common case where the specified + // expression has no loop-variant portions. + for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { + SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); + if (OpAtScope != Comm->getOperand(i)) { + if (OpAtScope == UnknownValue) return UnknownValue; + // Okay, at least one of these operands is loop variant but might be + // foldable. Build a new instance of the folded commutative expression. + std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); + NewOps.push_back(OpAtScope); + + for (++i; i != e; ++i) { + OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); + if (OpAtScope == UnknownValue) return UnknownValue; + NewOps.push_back(OpAtScope); + } + if (isa<SCEVAddExpr>(Comm)) + return SCEVAddExpr::get(NewOps); + assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); + return SCEVMulExpr::get(NewOps); + } + } + // If we got here, all operands are loop invariant. + return Comm; + } + + if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) { + SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L); + if (LHS == UnknownValue) return LHS; + SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L); + if (RHS == UnknownValue) return RHS; + if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS()) + return UDiv; // must be loop invariant + return SCEVUDivExpr::get(LHS, RHS); + } + + // If this is a loop recurrence for a loop that does not contain L, then we + // are dealing with the final value computed by the loop. + if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { + if (!L || !AddRec->getLoop()->contains(L->getHeader())) { + // To evaluate this recurrence, we need to know how many times the AddRec + // loop iterates. Compute this now. + SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); + if (IterationCount == UnknownValue) return UnknownValue; + IterationCount = getTruncateOrZeroExtend(IterationCount, + AddRec->getType()); + + // If the value is affine, simplify the expression evaluation to just + // Start + Step*IterationCount. + if (AddRec->isAffine()) + return SCEVAddExpr::get(AddRec->getStart(), + SCEVMulExpr::get(IterationCount, + AddRec->getOperand(1))); + + // Otherwise, evaluate it the hard way. + return AddRec->evaluateAtIteration(IterationCount); + } + return UnknownValue; + } + + //assert(0 && "Unknown SCEV type!"); + return UnknownValue; +} + + +/// SolveQuadraticEquation - Find the roots of the quadratic equation for the +/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which +/// might be the same) or two SCEVCouldNotCompute objects. +/// +static std::pair<SCEVHandle,SCEVHandle> +SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) { + assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); + SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); + SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); + SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); + + // We currently can only solve this if the coefficients are constants. + if (!L || !M || !N) { + SCEV *CNC = new SCEVCouldNotCompute(); + return std::make_pair(CNC, CNC); + } + + Constant *Two = ConstantInt::get(L->getValue()->getType(), 2); + + // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C + Constant *C = L->getValue(); + // The B coefficient is M-N/2 + Constant *B = ConstantExpr::getSub(M->getValue(), + ConstantExpr::getDiv(N->getValue(), + Two)); + // The A coefficient is N/2 + Constant *A = ConstantExpr::getDiv(N->getValue(), Two); + + // Compute the B^2-4ac term. + Constant *SqrtTerm = + ConstantExpr::getMul(ConstantInt::get(C->getType(), 4), + ConstantExpr::getMul(A, C)); + SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm); + + // Compute floor(sqrt(B^2-4ac)) + ConstantUInt *SqrtVal = + cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm, + SqrtTerm->getType()->getUnsignedVersion())); + uint64_t SqrtValV = SqrtVal->getValue(); + uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV); + // The square root might not be precise for arbitrary 64-bit integer + // values. Do some sanity checks to ensure it's correct. + if (SqrtValV2*SqrtValV2 > SqrtValV || + (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) { + SCEV *CNC = new SCEVCouldNotCompute(); + return std::make_pair(CNC, CNC); + } + + SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2); + SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType()); + + Constant *NegB = ConstantExpr::getNeg(B); + Constant *TwoA = ConstantExpr::getMul(A, Two); + + // The divisions must be performed as signed divisions. + const Type *SignedTy = NegB->getType()->getSignedVersion(); + NegB = ConstantExpr::getCast(NegB, SignedTy); + TwoA = ConstantExpr::getCast(TwoA, SignedTy); + SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy); + + Constant *Solution1 = + ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA); + Constant *Solution2 = + ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA); + return std::make_pair(SCEVUnknown::get(Solution1), + SCEVUnknown::get(Solution2)); +} + +/// HowFarToZero - Return the number of times a backedge comparing the specified +/// value to zero will execute. If not computable, return UnknownValue +SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { + // If the value is a constant + if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { + // If the value is already zero, the branch will execute zero times. + if (C->getValue()->isNullValue()) return C; + return UnknownValue; // Otherwise it will loop infinitely. + } + + SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); + if (!AddRec || AddRec->getLoop() != L) + return UnknownValue; + + if (AddRec->isAffine()) { + // If this is an affine expression the execution count of this branch is + // equal to: + // + // (0 - Start/Step) iff Start % Step == 0 + // + // Get the initial value for the loop. + SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); + if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; + SCEVHandle Step = AddRec->getOperand(1); + + Step = getSCEVAtScope(Step, L->getParentLoop()); + + // Figure out if Start % Step == 0. + // FIXME: We should add DivExpr and RemExpr operations to our AST. + if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { + if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 + return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start + if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 + return Start; // 0 - Start/-1 == Start + + // Check to see if Start is divisible by SC with no remainder. + if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { + ConstantInt *StartCC = StartC->getValue(); + Constant *StartNegC = ConstantExpr::getNeg(StartCC); + Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue()); + if (Rem->isNullValue()) { + Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue()); + return SCEVUnknown::get(Result); + } + } + } + } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { + // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of + // the quadratic equation to solve it. + std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec); + SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); + SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); + if (R1) { +#if 0 + std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1 + << " sol#2: " << *R2 << "\n"; +#endif + // Pick the smallest positive root value. + assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?"); + if (ConstantBool *CB = + dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(), + R2->getValue()))) { + if (CB != ConstantBool::True) + std::swap(R1, R2); // R1 is the minimum root now. + + // We can only use this value if the chrec ends up with an exact zero + // value at this index. When solving for "X*X != 5", for example, we + // should not accept a root of 2. + SCEVHandle Val = AddRec->evaluateAtIteration(R1); + if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) + if (EvalVal->getValue()->isNullValue()) + return R1; // We found a quadratic root! + } + } + } + + return UnknownValue; +} + +/// HowFarToNonZero - Return the number of times a backedge checking the +/// specified value for nonzero will execute. If not computable, return +/// UnknownValue +SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { + // Loops that look like: while (X == 0) are very strange indeed. We don't + // handle them yet except for the trivial case. This could be expanded in the + // future as needed. + + // If the value is a constant, check to see if it is known to be non-zero + // already. If so, the backedge will execute zero times. + if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { + Constant *Zero = Constant::getNullValue(C->getValue()->getType()); + Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero); + if (NonZero == ConstantBool::True) + return getSCEV(Zero); + return UnknownValue; // Otherwise it will loop infinitely. + } + + // We could implement others, but I really doubt anyone writes loops like + // this, and if they did, they would already be constant folded. + return UnknownValue; +} + +/// HowManyLessThans - Return the number of times a backedge containing the +/// specified less-than comparison will execute. If not computable, return +/// UnknownValue. +SCEVHandle ScalarEvolutionsImpl:: +HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) { + // Only handle: "ADDREC < LoopInvariant". + if (!RHS->isLoopInvariant(L)) return UnknownValue; + + SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); + if (!AddRec || AddRec->getLoop() != L) + return UnknownValue; + + if (AddRec->isAffine()) { + // FORNOW: We only support unit strides. + SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType()); + if (AddRec->getOperand(1) != One) + return UnknownValue; + + // The number of iterations for "[n,+,1] < m", is m-n. However, we don't + // know that m is >= n on input to the loop. If it is, the condition return + // true zero times. What we really should return, for full generality, is + // SMAX(0, m-n). Since we cannot check this, we will instead check for a + // canonical loop form: most do-loops will have a check that dominates the + // loop, that only enters the loop if [n-1]<m. If we can find this check, + // we know that the SMAX will evaluate to m-n, because we know that m >= n. + + // Search for the check. + BasicBlock *Preheader = L->getLoopPreheader(); + BasicBlock *PreheaderDest = L->getHeader(); + if (Preheader == 0) return UnknownValue; + + BranchInst *LoopEntryPredicate = + dyn_cast<BranchInst>(Preheader->getTerminator()); + if (!LoopEntryPredicate) return UnknownValue; + + // This might be a critical edge broken out. If the loop preheader ends in + // an unconditional branch to the loop, check to see if the preheader has a + // single predecessor, and if so, look for its terminator. + while (LoopEntryPredicate->isUnconditional()) { + PreheaderDest = Preheader; + Preheader = Preheader->getSinglePredecessor(); + if (!Preheader) return UnknownValue; // Multiple preds. + + LoopEntryPredicate = + dyn_cast<BranchInst>(Preheader->getTerminator()); + if (!LoopEntryPredicate) return UnknownValue; + } + + // Now that we found a conditional branch that dominates the loop, check to + // see if it is the comparison we are looking for. + SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition()); + if (!SCI) return UnknownValue; + Value *PreCondLHS = SCI->getOperand(0); + Value *PreCondRHS = SCI->getOperand(1); + Instruction::BinaryOps Cond; + if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) + Cond = SCI->getOpcode(); + else + Cond = SCI->getInverseCondition(); + + switch (Cond) { + case Instruction::SetGT: + std::swap(PreCondLHS, PreCondRHS); + Cond = Instruction::SetLT; + // Fall Through. + case Instruction::SetLT: + if (PreCondLHS->getType()->isInteger() && + PreCondLHS->getType()->isSigned()) { + if (RHS != getSCEV(PreCondRHS)) + return UnknownValue; // Not a comparison against 'm'. + + if (SCEV::getMinusSCEV(AddRec->getOperand(0), One) + != getSCEV(PreCondLHS)) + return UnknownValue; // Not a comparison against 'n-1'. + break; + } else { + return UnknownValue; + } + default: break; + } + + //std::cerr << "Computed Loop Trip Count as: " << + // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n"; + return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)); + } + + return UnknownValue; +} + +/// getNumIterationsInRange - Return the number of iterations of this loop that +/// produce values in the specified constant range. Another way of looking at +/// this is that it returns the first iteration number where the value is not in +/// the condition, thus computing the exit count. If the iteration count can't +/// be computed, an instance of SCEVCouldNotCompute is returned. +SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const { + if (Range.isFullSet()) // Infinite loop. + return new SCEVCouldNotCompute(); + + // If the start is a non-zero constant, shift the range to simplify things. + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) + if (!SC->getValue()->isNullValue()) { + std::vector<SCEVHandle> Operands(op_begin(), op_end()); + Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType()); + SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop()); + if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) + return ShiftedAddRec->getNumIterationsInRange( + Range.subtract(SC->getValue())); + // This is strange and shouldn't happen. + return new SCEVCouldNotCompute(); + } + + // The only time we can solve this is when we have all constant indices. + // Otherwise, we cannot determine the overflow conditions. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (!isa<SCEVConstant>(getOperand(i))) + return new SCEVCouldNotCompute(); + + + // Okay at this point we know that all elements of the chrec are constants and + // that the start element is zero. + + // First check to see if the range contains zero. If not, the first + // iteration exits. + ConstantInt *Zero = ConstantInt::get(getType(), 0); + if (!Range.contains(Zero)) return SCEVConstant::get(Zero); + + if (isAffine()) { + // If this is an affine expression then we have this situation: + // Solve {0,+,A} in Range === Ax in Range + + // Since we know that zero is in the range, we know that the upper value of + // the range must be the first possible exit value. Also note that we + // already checked for a full range. + ConstantInt *Upper = cast<ConstantInt>(Range.getUpper()); + ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue(); + ConstantInt *One = ConstantInt::get(getType(), 1); + + // The exit value should be (Upper+A-1)/A. + Constant *ExitValue = Upper; + if (A != One) { + ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One); + ExitValue = ConstantExpr::getDiv(ExitValue, A); + } + assert(isa<ConstantInt>(ExitValue) && + "Constant folding of integers not implemented?"); + + // Evaluate at the exit value. If we really did fall out of the valid + // range, then we computed our trip count, otherwise wrap around or other + // things must have happened. + ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue); + if (Range.contains(Val)) + return new SCEVCouldNotCompute(); // Something strange happened + + // Ensure that the previous value is in the range. This is a sanity check. + assert(Range.contains(EvaluateConstantChrecAtConstant(this, + ConstantExpr::getSub(ExitValue, One))) && + "Linear scev computation is off in a bad way!"); + return SCEVConstant::get(cast<ConstantInt>(ExitValue)); + } else if (isQuadratic()) { + // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the + // quadratic equation to solve it. To do this, we must frame our problem in + // terms of figuring out when zero is crossed, instead of when + // Range.getUpper() is crossed. + std::vector<SCEVHandle> NewOps(op_begin(), op_end()); + NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper())); + SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop()); + + // Next, solve the constructed addrec + std::pair<SCEVHandle,SCEVHandle> Roots = + SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec)); + SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); + SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); + if (R1) { + // Pick the smallest positive root value. + assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?"); + if (ConstantBool *CB = + dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(), + R2->getValue()))) { + if (CB != ConstantBool::True) + std::swap(R1, R2); // R1 is the minimum root now. + + // Make sure the root is not off by one. The returned iteration should + // not be in the range, but the previous one should be. When solving + // for "X*X < 5", for example, we should not return a root of 2. + ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, + R1->getValue()); + if (Range.contains(R1Val)) { + // The next iteration must be out of the range... + Constant *NextVal = + ConstantExpr::getAdd(R1->getValue(), + ConstantInt::get(R1->getType(), 1)); + + R1Val = EvaluateConstantChrecAtConstant(this, NextVal); + if (!Range.contains(R1Val)) + return SCEVUnknown::get(NextVal); + return new SCEVCouldNotCompute(); // Something strange happened + } + + // If R1 was not in the range, then it is a good return value. Make + // sure that R1-1 WAS in the range though, just in case. + Constant *NextVal = + ConstantExpr::getSub(R1->getValue(), + ConstantInt::get(R1->getType(), 1)); + R1Val = EvaluateConstantChrecAtConstant(this, NextVal); + if (Range.contains(R1Val)) + return R1; + return new SCEVCouldNotCompute(); // Something strange happened + } + } + } + + // Fallback, if this is a general polynomial, figure out the progression + // through brute force: evaluate until we find an iteration that fails the + // test. This is likely to be slow, but getting an accurate trip count is + // incredibly important, we will be able to simplify the exit test a lot, and + // we are almost guaranteed to get a trip count in this case. + ConstantInt *TestVal = ConstantInt::get(getType(), 0); + ConstantInt *One = ConstantInt::get(getType(), 1); + ConstantInt *EndVal = TestVal; // Stop when we wrap around. + do { + ++NumBruteForceEvaluations; + SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal)); + if (!isa<SCEVConstant>(Val)) // This shouldn't happen. + return new SCEVCouldNotCompute(); + + // Check to see if we found the value! + if (!Range.contains(cast<SCEVConstant>(Val)->getValue())) + return SCEVConstant::get(TestVal); + + // Increment to test the next index. + TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One)); + } while (TestVal != EndVal); + + return new SCEVCouldNotCompute(); +} + + + +//===----------------------------------------------------------------------===// +// ScalarEvolution Class Implementation +//===----------------------------------------------------------------------===// + +bool ScalarEvolution::runOnFunction(Function &F) { + Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>()); + return false; +} + +void ScalarEvolution::releaseMemory() { + delete (ScalarEvolutionsImpl*)Impl; + Impl = 0; +} + +void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<LoopInfo>(); +} + +SCEVHandle ScalarEvolution::getSCEV(Value *V) const { + return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); +} + +/// hasSCEV - Return true if the SCEV for this value has already been +/// computed. +bool ScalarEvolution::hasSCEV(Value *V) const { + return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); +} + + +/// setSCEV - Insert the specified SCEV into the map of current SCEVs for +/// the specified value. +void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { + ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); +} + + +SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { + return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); +} + +bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { + return !isa<SCEVCouldNotCompute>(getIterationCount(L)); +} + +SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { + return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); +} + +void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const { + return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I); +} + +static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, + const Loop *L) { + // Print all inner loops first + for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) + PrintLoopInfo(OS, SE, *I); + + std::cerr << "Loop " << L->getHeader()->getName() << ": "; + + std::vector<BasicBlock*> ExitBlocks; + L->getExitBlocks(ExitBlocks); + if (ExitBlocks.size() != 1) + std::cerr << "<multiple exits> "; + + if (SE->hasLoopInvariantIterationCount(L)) { + std::cerr << *SE->getIterationCount(L) << " iterations! "; + } else { + std::cerr << "Unpredictable iteration count. "; + } + + std::cerr << "\n"; +} + +void ScalarEvolution::print(std::ostream &OS, const Module* ) const { + Function &F = ((ScalarEvolutionsImpl*)Impl)->F; + LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; + + OS << "Classifying expressions for: " << F.getName() << "\n"; + for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) + if (I->getType()->isInteger()) { + OS << *I; + OS << " --> "; + SCEVHandle SV = getSCEV(&*I); + SV->print(OS); + OS << "\t\t"; + + if ((*I).getType()->isIntegral()) { + ConstantRange Bounds = SV->getValueRange(); + if (!Bounds.isFullSet()) + OS << "Bounds: " << Bounds << " "; + } + + if (const Loop *L = LI.getLoopFor((*I).getParent())) { + OS << "Exits: "; + SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); + if (isa<SCEVCouldNotCompute>(ExitValue)) { + OS << "<<Unknown>>"; + } else { + OS << *ExitValue; + } + } + + + OS << "\n"; + } + + OS << "Determining loop execution counts for: " << F.getName() << "\n"; + for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) + PrintLoopInfo(OS, this, *I); +} + |