diff options
Diffstat (limited to 'lib/Analysis/LoadValueNumbering.cpp')
| -rw-r--r-- | lib/Analysis/LoadValueNumbering.cpp | 233 | 
1 files changed, 233 insertions, 0 deletions
diff --git a/lib/Analysis/LoadValueNumbering.cpp b/lib/Analysis/LoadValueNumbering.cpp new file mode 100644 index 0000000000..154621e06e --- /dev/null +++ b/lib/Analysis/LoadValueNumbering.cpp @@ -0,0 +1,233 @@ +//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// +// +// This file implements a value numbering pass that value #'s load instructions. +// To do this, it finds lexically identical load instructions, and uses alias +// analysis to determine which loads are guaranteed to produce the same value. +// +// This pass builds off of another value numbering pass to implement value +// numbering for non-load instructions.  It uses Alias Analysis so that it can +// disambiguate the load instructions.  The more powerful these base analyses +// are, the more powerful the resultant analysis will be. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LoadValueNumbering.h" +#include "llvm/Analysis/ValueNumbering.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Pass.h" +#include "llvm/iMemory.h" +#include "llvm/BasicBlock.h" +#include "llvm/Support/CFG.h" +#include <algorithm> +#include <set> + +namespace { +  // FIXME: This should not be a functionpass. +  struct LoadVN : public FunctionPass, public ValueNumbering { +     +    /// Pass Implementation stuff.  This doesn't do any analysis. +    /// +    bool runOnFunction(Function &) { return false; } +     +    /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering +    /// and Alias Analysis. +    /// +    virtual void getAnalysisUsage(AnalysisUsage &AU) const; +     +    /// getEqualNumberNodes - Return nodes with the same value number as the +    /// specified Value.  This fills in the argument vector with any equal +    /// values. +    /// +    virtual void getEqualNumberNodes(Value *V1, +                                     std::vector<Value*> &RetVals) const; +  private: +    /// haveEqualValueNumber - Given two load instructions, determine if they +    /// both produce the same value on every execution of the program, assuming +    /// that their source operands always give the same value.  This uses the +    /// AliasAnalysis implementation to invalidate loads when stores or function +    /// calls occur that could modify the value produced by the load. +    /// +    bool haveEqualValueNumber(LoadInst *LI, LoadInst *LI2, AliasAnalysis &AA, +                              DominatorSet &DomSetInfo) const; +  }; + +  // Register this pass... +  RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering"); + +  // Declare that we implement the ValueNumbering interface +  RegisterAnalysisGroup<ValueNumbering, LoadVN> Y; +} + + + +Pass *createLoadValueNumberingPass() { return new LoadVN(); } + + +/// getAnalysisUsage - Does not modify anything.  It uses Value Numbering and +/// Alias Analysis. +/// +void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequired<AliasAnalysis>(); +  AU.addRequired<ValueNumbering>(); +  AU.addRequired<DominatorSet>(); +} + +// getEqualNumberNodes - Return nodes with the same value number as the +// specified Value.  This fills in the argument vector with any equal values. +// +void LoadVN::getEqualNumberNodes(Value *V, +                                 std::vector<Value*> &RetVals) const { + +  if (LoadInst *LI = dyn_cast<LoadInst>(V)) { +    // If we have a load instruction find all of the load instructions that use +    // the same source operand.  We implement this recursively, because there +    // could be a load of a load of a load that are all identical.  We are +    // guaranteed that this cannot be an infinite recursion because load +    // instructions would have to pass through a PHI node in order for there to +    // be a cycle.  The PHI node would be handled by the else case here, +    // breaking the infinite recursion. +    // +    std::vector<Value*> PointerSources; +    getEqualNumberNodes(LI->getOperand(0), PointerSources); +    PointerSources.push_back(LI->getOperand(0)); + +    Function *F = LI->getParent()->getParent(); + +    // Now that we know the set of equivalent source pointers for the load +    // instruction, look to see if there are any load candiates that are +    // identical. +    // +    std::vector<LoadInst*> CandidateLoads; +    while (!PointerSources.empty()) { +      Value *Source = PointerSources.back(); +      PointerSources.pop_back();                // Get a source pointer... + +      for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end(); +           UI != UE; ++UI) +        if (LoadInst *Cand = dyn_cast<LoadInst>(*UI))  // Is a load of source? +          if (Cand->getParent()->getParent() == F &&   // In the same function? +              Cand != LI)                              // Not LI itself? +            CandidateLoads.push_back(Cand);     // Got one... +    } + +    // Remove duplicates from the CandidateLoads list because alias analysis +    // processing may be somewhat expensive and we don't want to do more work +    // than neccesary. +    // +    std::sort(CandidateLoads.begin(), CandidateLoads.end()); +    CandidateLoads.erase(std::unique(CandidateLoads.begin(), +                                     CandidateLoads.end()), +                         CandidateLoads.end()); + +    // Get Alias Analysis... +    AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); +    DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); +     +    // Loop over all of the candindate loads.  If they are not invalidated by +    // stores or calls between execution of them and LI, then add them to +    // RetVals. +    for (unsigned i = 0, e = CandidateLoads.size(); i != e; ++i) +      if (haveEqualValueNumber(LI, CandidateLoads[i], AA, DomSetInfo)) +        RetVals.push_back(CandidateLoads[i]); +     +  } else { +    // Make sure passmanager doesn't try to fulfill our request with ourself! +    assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this && +           "getAnalysis() returned this!"); + +    // Not a load instruction?  Just chain to the base value numbering +    // implementation to satisfy the request... +    return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); +  } +} + +// CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB +// (until DestBB) contain an instruction that might invalidate Ptr. +// +static bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, +                                     Value *Ptr, AliasAnalysis &AA, +                                     std::set<BasicBlock*> &VisitedSet) { +  // Found the termination point! +  if (BB == DestBB || VisitedSet.count(BB)) return false; + +  // Avoid infinite recursion! +  VisitedSet.insert(BB); + +  // Can this basic block modify Ptr? +  if (AA.canBasicBlockModify(*BB, Ptr)) +    return true; + +  // Check all of our predecessor blocks... +  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) +    if (CheckForInvalidatingInst(*PI, DestBB, Ptr, AA, VisitedSet)) +      return true; + +  // None of our predecessor blocks contain an invalidating instruction, and we +  // don't either! +  return false; +} + + +/// haveEqualValueNumber - Given two load instructions, determine if they both +/// produce the same value on every execution of the program, assuming that +/// their source operands always give the same value.  This uses the +/// AliasAnalysis implementation to invalidate loads when stores or function +/// calls occur that could modify the value produced by the load. +/// +bool LoadVN::haveEqualValueNumber(LoadInst *L1, LoadInst *L2, +                                  AliasAnalysis &AA, +                                  DominatorSet &DomSetInfo) const { +  // Figure out which load dominates the other one.  If neither dominates the +  // other we cannot eliminate them. +  // +  // FIXME: This could be enhanced to some cases with a shared dominator! +  // +  if (DomSetInfo.dominates(L2, L1))  +    std::swap(L1, L2);   // Make L1 dominate L2 +  else if (!DomSetInfo.dominates(L1, L2)) +    return false;  // Neither instruction dominates the other one... + +  BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent(); +  Value *LoadAddress = L1->getOperand(0); + +  // L1 now dominates L2.  Check to see if the intervening instructions between +  // the two loads include a store or call... +  // +  if (BB1 == BB2) {  // In same basic block? +    // In this degenerate case, no checking of global basic blocks has to occur +    // just check the instructions BETWEEN L1 & L2... +    // +    if (AA.canInstructionRangeModify(*L1, *L2, LoadAddress)) +      return false;   // Cannot eliminate load + +    // No instructions invalidate the loads, they produce the same value! +    return true; +  } else { +    // Make sure that there are no store instructions between L1 and the end of +    // it's basic block... +    // +    if (AA.canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress)) +      return false;   // Cannot eliminate load + +    // Make sure that there are no store instructions between the start of BB2 +    // and the second load instruction... +    // +    if (AA.canInstructionRangeModify(BB2->front(), *L2, LoadAddress)) +      return false;   // Cannot eliminate load + +    // Do a depth first traversal of the inverse CFG starting at L2's block, +    // looking for L1's block.  The inverse CFG is made up of the predecessor +    // nodes of a block... so all of the edges in the graph are "backward". +    // +    std::set<BasicBlock*> VisitedSet; +    for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) +      if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, AA, VisitedSet)) +        return false; + +    // If we passed all of these checks then we are sure that the two loads +    // produce the same value. +    return true; +  } +}  | 
