aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/IPA/GlobalsModRef.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/IPA/GlobalsModRef.cpp')
-rw-r--r--lib/Analysis/IPA/GlobalsModRef.cpp400
1 files changed, 400 insertions, 0 deletions
diff --git a/lib/Analysis/IPA/GlobalsModRef.cpp b/lib/Analysis/IPA/GlobalsModRef.cpp
new file mode 100644
index 0000000000..5b3c953bcd
--- /dev/null
+++ b/lib/Analysis/IPA/GlobalsModRef.cpp
@@ -0,0 +1,400 @@
+//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This simple pass provides alias and mod/ref information for global values
+// that do not have their address taken, and keeps track of whether functions
+// read or write memory (are "pure"). For this simple (but very common) case,
+// we can provide pretty accurate and useful information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Instructions.h"
+#include "llvm/Constants.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SCCIterator.h"
+#include <set>
+using namespace llvm;
+
+namespace {
+ Statistic<>
+ NumNonAddrTakenGlobalVars("globalsmodref-aa",
+ "Number of global vars without address taken");
+ Statistic<>
+ NumNonAddrTakenFunctions("globalsmodref-aa",
+ "Number of functions without address taken");
+ Statistic<>
+ NumNoMemFunctions("globalsmodref-aa",
+ "Number of functions that do not access memory");
+ Statistic<>
+ NumReadMemFunctions("globalsmodref-aa",
+ "Number of functions that only read memory");
+
+ /// FunctionRecord - One instance of this structure is stored for every
+ /// function in the program. Later, the entries for these functions are
+ /// removed if the function is found to call an external function (in which
+ /// case we know nothing about it.
+ struct FunctionRecord {
+ /// GlobalInfo - Maintain mod/ref info for all of the globals without
+ /// addresses taken that are read or written (transitively) by this
+ /// function.
+ std::map<GlobalValue*, unsigned> GlobalInfo;
+
+ unsigned getInfoForGlobal(GlobalValue *GV) const {
+ std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
+ if (I != GlobalInfo.end())
+ return I->second;
+ return 0;
+ }
+
+ /// FunctionEffect - Capture whether or not this function reads or writes to
+ /// ANY memory. If not, we can do a lot of aggressive analysis on it.
+ unsigned FunctionEffect;
+
+ FunctionRecord() : FunctionEffect(0) {}
+ };
+
+ /// GlobalsModRef - The actual analysis pass.
+ class GlobalsModRef : public ModulePass, public AliasAnalysis {
+ /// NonAddressTakenGlobals - The globals that do not have their addresses
+ /// taken.
+ std::set<GlobalValue*> NonAddressTakenGlobals;
+
+ /// FunctionInfo - For each function, keep track of what globals are
+ /// modified or read.
+ std::map<Function*, FunctionRecord> FunctionInfo;
+
+ public:
+ bool runOnModule(Module &M) {
+ InitializeAliasAnalysis(this); // set up super class
+ AnalyzeGlobals(M); // find non-addr taken globals
+ AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
+ return false;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AliasAnalysis::getAnalysisUsage(AU);
+ AU.addRequired<CallGraph>();
+ AU.setPreservesAll(); // Does not transform code
+ }
+
+ //------------------------------------------------
+ // Implement the AliasAnalysis API
+ //
+ AliasResult alias(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size);
+ ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
+ ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
+ return AliasAnalysis::getModRefInfo(CS1,CS2);
+ }
+ bool hasNoModRefInfoForCalls() const { return false; }
+
+ /// getModRefBehavior - Return the behavior of the specified function if
+ /// called from the specified call site. The call site may be null in which
+ /// case the most generic behavior of this function should be returned.
+ virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
+ std::vector<PointerAccessInfo> *Info) {
+ if (FunctionRecord *FR = getFunctionInfo(F))
+ if (FR->FunctionEffect == 0)
+ return DoesNotAccessMemory;
+ else if ((FR->FunctionEffect & Mod) == 0)
+ return OnlyReadsMemory;
+ return AliasAnalysis::getModRefBehavior(F, CS, Info);
+ }
+
+ virtual void deleteValue(Value *V);
+ virtual void copyValue(Value *From, Value *To);
+
+ private:
+ /// getFunctionInfo - Return the function info for the function, or null if
+ /// the function calls an external function (in which case we don't have
+ /// anything useful to say about it).
+ FunctionRecord *getFunctionInfo(Function *F) {
+ std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
+ if (I != FunctionInfo.end())
+ return &I->second;
+ return 0;
+ }
+
+ void AnalyzeGlobals(Module &M);
+ void AnalyzeCallGraph(CallGraph &CG, Module &M);
+ void AnalyzeSCC(std::vector<CallGraphNode *> &SCC);
+ bool AnalyzeUsesOfGlobal(Value *V, std::vector<Function*> &Readers,
+ std::vector<Function*> &Writers);
+ };
+
+ RegisterOpt<GlobalsModRef> X("globalsmodref-aa",
+ "Simple mod/ref analysis for globals");
+ RegisterAnalysisGroup<AliasAnalysis, GlobalsModRef> Y;
+}
+
+Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
+
+
+/// AnalyzeGlobalUses - Scan through the users of all of the internal
+/// GlobalValue's in the program. If none of them have their "Address taken"
+/// (really, their address passed to something nontrivial), record this fact,
+/// and record the functions that they are used directly in.
+void GlobalsModRef::AnalyzeGlobals(Module &M) {
+ std::vector<Function*> Readers, Writers;
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (I->hasInternalLinkage()) {
+ if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) {
+ // Remember that we are tracking this global.
+ NonAddressTakenGlobals.insert(I);
+ ++NumNonAddrTakenFunctions;
+ }
+ Readers.clear(); Writers.clear();
+ }
+
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (I->hasInternalLinkage()) {
+ if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) {
+ // Remember that we are tracking this global, and the mod/ref fns
+ NonAddressTakenGlobals.insert(I);
+ for (unsigned i = 0, e = Readers.size(); i != e; ++i)
+ FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
+
+ if (!I->isConstant()) // No need to keep track of writers to constants
+ for (unsigned i = 0, e = Writers.size(); i != e; ++i)
+ FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
+ ++NumNonAddrTakenGlobalVars;
+ }
+ Readers.clear(); Writers.clear();
+ }
+}
+
+/// AnalyzeUsesOfGlobal - Look at all of the users of the specified global value
+/// derived pointer. If this is used by anything complex (i.e., the address
+/// escapes), return true. Also, while we are at it, keep track of those
+/// functions that read and write to the value.
+bool GlobalsModRef::AnalyzeUsesOfGlobal(Value *V,
+ std::vector<Function*> &Readers,
+ std::vector<Function*> &Writers) {
+ if (!isa<PointerType>(V->getType())) return true;
+
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+ if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+ Readers.push_back(LI->getParent()->getParent());
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+ if (V == SI->getOperand(0)) return true; // Storing the pointer
+ Writers.push_back(SI->getParent()->getParent());
+ } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
+ if (AnalyzeUsesOfGlobal(GEP, Readers, Writers)) return true;
+ } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
+ // Make sure that this is just the function being called, not that it is
+ // passing into the function.
+ for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
+ if (CI->getOperand(i) == V) return true;
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
+ // Make sure that this is just the function being called, not that it is
+ // passing into the function.
+ for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
+ if (II->getOperand(i) == V) return true;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
+ if (CE->getOpcode() == Instruction::GetElementPtr ||
+ CE->getOpcode() == Instruction::Cast) {
+ if (AnalyzeUsesOfGlobal(CE, Readers, Writers))
+ return true;
+ } else {
+ return true;
+ }
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(*UI)) {
+ if (AnalyzeUsesOfGlobal(GV, Readers, Writers)) return true;
+ } else {
+ return true;
+ }
+ return false;
+}
+
+/// AnalyzeCallGraph - At this point, we know the functions where globals are
+/// immediately stored to and read from. Propagate this information up the call
+/// graph to all callers and compute the mod/ref info for all memory for each
+/// function.
+void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
+ // We do a bottom-up SCC traversal of the call graph. In other words, we
+ // visit all callees before callers (leaf-first).
+ for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I!=E; ++I)
+ if ((*I).size() != 1) {
+ AnalyzeSCC(*I);
+ } else if (Function *F = (*I)[0]->getFunction()) {
+ if (!F->isExternal()) {
+ // Nonexternal function.
+ AnalyzeSCC(*I);
+ } else {
+ // Otherwise external function. Handle intrinsics and other special
+ // cases here.
+ if (getAnalysis<AliasAnalysis>().doesNotAccessMemory(F))
+ // If it does not access memory, process the function, causing us to
+ // realize it doesn't do anything (the body is empty).
+ AnalyzeSCC(*I);
+ else {
+ // Otherwise, don't process it. This will cause us to conservatively
+ // assume the worst.
+ }
+ }
+ } else {
+ // Do not process the external node, assume the worst.
+ }
+}
+
+void GlobalsModRef::AnalyzeSCC(std::vector<CallGraphNode *> &SCC) {
+ assert(!SCC.empty() && "SCC with no functions?");
+ FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
+
+ bool CallsExternal = false;
+ unsigned FunctionEffect = 0;
+
+ // Collect the mod/ref properties due to called functions. We only compute
+ // one mod-ref set
+ for (unsigned i = 0, e = SCC.size(); i != e && !CallsExternal; ++i)
+ for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
+ CI != E; ++CI)
+ if (Function *Callee = (*CI)->getFunction()) {
+ if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
+ // Propagate function effect up.
+ FunctionEffect |= CalleeFR->FunctionEffect;
+
+ // Incorporate callee's effects on globals into our info.
+ for (std::map<GlobalValue*, unsigned>::iterator GI =
+ CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
+ GI != E; ++GI)
+ FR.GlobalInfo[GI->first] |= GI->second;
+
+ } else {
+ // Okay, if we can't say anything about it, maybe some other alias
+ // analysis can.
+ ModRefBehavior MRB =
+ AliasAnalysis::getModRefBehavior(Callee, CallSite());
+ if (MRB != DoesNotAccessMemory) {
+ // FIXME: could make this more aggressive for functions that just
+ // read memory. We should just say they read all globals.
+ CallsExternal = true;
+ break;
+ }
+ }
+ } else {
+ CallsExternal = true;
+ break;
+ }
+
+ // If this SCC calls an external function, we can't say anything about it, so
+ // remove all SCC functions from the FunctionInfo map.
+ if (CallsExternal) {
+ for (unsigned i = 0, e = SCC.size(); i != e; ++i)
+ FunctionInfo.erase(SCC[i]->getFunction());
+ return;
+ }
+
+ // Otherwise, unless we already know that this function mod/refs memory, scan
+ // the function bodies to see if there are any explicit loads or stores.
+ if (FunctionEffect != ModRef) {
+ for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
+ for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
+ E = inst_end(SCC[i]->getFunction());
+ II != E && FunctionEffect != ModRef; ++II)
+ if (isa<LoadInst>(*II))
+ FunctionEffect |= Ref;
+ else if (isa<StoreInst>(*II))
+ FunctionEffect |= Mod;
+ else if (isa<MallocInst>(*II) || isa<FreeInst>(*II))
+ FunctionEffect |= ModRef;
+ }
+
+ if ((FunctionEffect & Mod) == 0)
+ ++NumReadMemFunctions;
+ if (FunctionEffect == 0)
+ ++NumNoMemFunctions;
+ FR.FunctionEffect = FunctionEffect;
+
+ // Finally, now that we know the full effect on this SCC, clone the
+ // information to each function in the SCC.
+ for (unsigned i = 1, e = SCC.size(); i != e; ++i)
+ FunctionInfo[SCC[i]->getFunction()] = FR;
+}
+
+
+
+/// getUnderlyingObject - This traverses the use chain to figure out what object
+/// the specified value points to. If the value points to, or is derived from,
+/// a global object, return it.
+static const GlobalValue *getUnderlyingObject(const Value *V) {
+ if (!isa<PointerType>(V->getType())) return 0;
+
+ // If we are at some type of object... return it.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
+
+ // Traverse through different addressing mechanisms...
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
+ return getUnderlyingObject(I->getOperand(0));
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (CE->getOpcode() == Instruction::Cast ||
+ CE->getOpcode() == Instruction::GetElementPtr)
+ return getUnderlyingObject(CE->getOperand(0));
+ }
+ return 0;
+}
+
+/// alias - If one of the pointers is to a global that we are tracking, and the
+/// other is some random pointer, we know there cannot be an alias, because the
+/// address of the global isn't taken.
+AliasAnalysis::AliasResult
+GlobalsModRef::alias(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size) {
+ GlobalValue *GV1 = const_cast<GlobalValue*>(getUnderlyingObject(V1));
+ GlobalValue *GV2 = const_cast<GlobalValue*>(getUnderlyingObject(V2));
+
+ // If the global's address is taken, pretend we don't know it's a pointer to
+ // the global.
+ if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
+ if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
+
+ if ((GV1 || GV2) && GV1 != GV2)
+ return NoAlias;
+
+ return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
+}
+
+AliasAnalysis::ModRefResult
+GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
+ unsigned Known = ModRef;
+
+ // If we are asking for mod/ref info of a direct call with a pointer to a
+ // global we are tracking, return information if we have it.
+ if (GlobalValue *GV = const_cast<GlobalValue*>(getUnderlyingObject(P)))
+ if (GV->hasInternalLinkage())
+ if (Function *F = CS.getCalledFunction())
+ if (NonAddressTakenGlobals.count(GV))
+ if (FunctionRecord *FR = getFunctionInfo(F))
+ Known = FR->getInfoForGlobal(GV);
+
+ if (Known == NoModRef)
+ return NoModRef; // No need to query other mod/ref analyses
+ return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Methods to update the analysis as a result of the client transformation.
+//
+void GlobalsModRef::deleteValue(Value *V) {
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ NonAddressTakenGlobals.erase(GV);
+}
+
+void GlobalsModRef::copyValue(Value *From, Value *To) {
+}