aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure/Local.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/DataStructure/Local.cpp')
-rw-r--r--lib/Analysis/DataStructure/Local.cpp1206
1 files changed, 1206 insertions, 0 deletions
diff --git a/lib/Analysis/DataStructure/Local.cpp b/lib/Analysis/DataStructure/Local.cpp
new file mode 100644
index 0000000000..dfd34297f3
--- /dev/null
+++ b/lib/Analysis/DataStructure/Local.cpp
@@ -0,0 +1,1206 @@
+//===- Local.cpp - Compute a local data structure graph for a function ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Compute the local version of the data structure graph for a function. The
+// external interface to this file is the DSGraph constructor.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/DataStructure/DataStructure.h"
+#include "llvm/Analysis/DataStructure/DSGraph.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Timer.h"
+
+// FIXME: This should eventually be a FunctionPass that is automatically
+// aggregated into a Pass.
+//
+#include "llvm/Module.h"
+
+using namespace llvm;
+
+static RegisterAnalysis<LocalDataStructures>
+X("datastructure", "Local Data Structure Analysis");
+
+static cl::opt<bool>
+TrackIntegersAsPointers("dsa-track-integers", cl::Hidden,
+ cl::desc("If this is set, track integers as potential pointers"));
+
+namespace llvm {
+namespace DS {
+ // isPointerType - Return true if this type is big enough to hold a pointer.
+ bool isPointerType(const Type *Ty) {
+ if (isa<PointerType>(Ty))
+ return true;
+ else if (TrackIntegersAsPointers && Ty->isPrimitiveType() &&Ty->isInteger())
+ return Ty->getPrimitiveSize() >= PointerSize;
+ return false;
+ }
+}}
+
+using namespace DS;
+
+namespace {
+ cl::opt<bool>
+ DisableDirectCallOpt("disable-direct-call-dsopt", cl::Hidden,
+ cl::desc("Disable direct call optimization in "
+ "DSGraph construction"));
+ cl::opt<bool>
+ DisableFieldSensitivity("disable-ds-field-sensitivity", cl::Hidden,
+ cl::desc("Disable field sensitivity in DSGraphs"));
+
+ //===--------------------------------------------------------------------===//
+ // GraphBuilder Class
+ //===--------------------------------------------------------------------===//
+ //
+ /// This class is the builder class that constructs the local data structure
+ /// graph by performing a single pass over the function in question.
+ ///
+ class GraphBuilder : InstVisitor<GraphBuilder> {
+ DSGraph &G;
+ DSNodeHandle *RetNode; // Node that gets returned...
+ DSScalarMap &ScalarMap;
+ std::list<DSCallSite> *FunctionCalls;
+
+ public:
+ GraphBuilder(Function &f, DSGraph &g, DSNodeHandle &retNode,
+ std::list<DSCallSite> &fc)
+ : G(g), RetNode(&retNode), ScalarMap(G.getScalarMap()),
+ FunctionCalls(&fc) {
+
+ // Create scalar nodes for all pointer arguments...
+ for (Function::arg_iterator I = f.arg_begin(), E = f.arg_end();
+ I != E; ++I)
+ if (isPointerType(I->getType()))
+ getValueDest(*I);
+
+ visit(f); // Single pass over the function
+ }
+
+ // GraphBuilder ctor for working on the globals graph
+ GraphBuilder(DSGraph &g)
+ : G(g), RetNode(0), ScalarMap(G.getScalarMap()), FunctionCalls(0) {
+ }
+
+ void mergeInGlobalInitializer(GlobalVariable *GV);
+
+ private:
+ // Visitor functions, used to handle each instruction type we encounter...
+ friend class InstVisitor<GraphBuilder>;
+ void visitMallocInst(MallocInst &MI) { handleAlloc(MI, true); }
+ void visitAllocaInst(AllocaInst &AI) { handleAlloc(AI, false); }
+ void handleAlloc(AllocationInst &AI, bool isHeap);
+
+ void visitPHINode(PHINode &PN);
+ void visitSelectInst(SelectInst &SI);
+
+ void visitGetElementPtrInst(User &GEP);
+ void visitReturnInst(ReturnInst &RI);
+ void visitLoadInst(LoadInst &LI);
+ void visitStoreInst(StoreInst &SI);
+ void visitCallInst(CallInst &CI);
+ void visitInvokeInst(InvokeInst &II);
+ void visitSetCondInst(SetCondInst &SCI);
+ void visitFreeInst(FreeInst &FI);
+ void visitCastInst(CastInst &CI);
+ void visitInstruction(Instruction &I);
+
+ void visitCallSite(CallSite CS);
+ void visitVAArgInst(VAArgInst &I);
+
+ void MergeConstantInitIntoNode(DSNodeHandle &NH, Constant *C);
+ private:
+ // Helper functions used to implement the visitation functions...
+
+ /// createNode - Create a new DSNode, ensuring that it is properly added to
+ /// the graph.
+ ///
+ DSNode *createNode(const Type *Ty = 0) {
+ DSNode *N = new DSNode(Ty, &G); // Create the node
+ if (DisableFieldSensitivity) {
+ // Create node handle referring to the old node so that it is
+ // immediately removed from the graph when the node handle is destroyed.
+ DSNodeHandle OldNNH = N;
+ N->foldNodeCompletely();
+ if (DSNode *FN = N->getForwardNode())
+ N = FN;
+ }
+ return N;
+ }
+
+ /// setDestTo - Set the ScalarMap entry for the specified value to point to
+ /// the specified destination. If the Value already points to a node, make
+ /// sure to merge the two destinations together.
+ ///
+ void setDestTo(Value &V, const DSNodeHandle &NH);
+
+ /// getValueDest - Return the DSNode that the actual value points to.
+ ///
+ DSNodeHandle getValueDest(Value &V);
+
+ /// getLink - This method is used to return the specified link in the
+ /// specified node if one exists. If a link does not already exist (it's
+ /// null), then we create a new node, link it, then return it.
+ ///
+ DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link = 0);
+ };
+}
+
+using namespace DS;
+
+//===----------------------------------------------------------------------===//
+// DSGraph constructor - Simply use the GraphBuilder to construct the local
+// graph.
+DSGraph::DSGraph(EquivalenceClasses<GlobalValue*> &ECs, const TargetData &td,
+ Function &F, DSGraph *GG)
+ : GlobalsGraph(GG), ScalarMap(ECs), TD(td) {
+ PrintAuxCalls = false;
+
+ DEBUG(std::cerr << " [Loc] Calculating graph for: " << F.getName() << "\n");
+
+ // Use the graph builder to construct the local version of the graph
+ GraphBuilder B(F, *this, ReturnNodes[&F], FunctionCalls);
+#ifndef NDEBUG
+ Timer::addPeakMemoryMeasurement();
+#endif
+
+ // If there are any constant globals referenced in this function, merge their
+ // initializers into the local graph from the globals graph.
+ if (ScalarMap.global_begin() != ScalarMap.global_end()) {
+ ReachabilityCloner RC(*this, *GG, 0);
+
+ for (DSScalarMap::global_iterator I = ScalarMap.global_begin();
+ I != ScalarMap.global_end(); ++I)
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I))
+ if (!GV->isExternal() && GV->isConstant())
+ RC.merge(ScalarMap[GV], GG->ScalarMap[GV]);
+ }
+
+ markIncompleteNodes(DSGraph::MarkFormalArgs);
+
+ // Remove any nodes made dead due to merging...
+ removeDeadNodes(DSGraph::KeepUnreachableGlobals);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Helper method implementations...
+//
+
+/// getValueDest - Return the DSNode that the actual value points to.
+///
+DSNodeHandle GraphBuilder::getValueDest(Value &Val) {
+ Value *V = &Val;
+ if (isa<Constant>(V) && cast<Constant>(V)->isNullValue())
+ return 0; // Null doesn't point to anything, don't add to ScalarMap!
+
+ DSNodeHandle &NH = ScalarMap[V];
+ if (!NH.isNull())
+ return NH; // Already have a node? Just return it...
+
+ // Otherwise we need to create a new node to point to.
+ // Check first for constant expressions that must be traversed to
+ // extract the actual value.
+ DSNode* N;
+ if (GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
+ // Create a new global node for this global variable.
+ N = createNode(GV->getType()->getElementType());
+ N->addGlobal(GV);
+ } else if (Constant *C = dyn_cast<Constant>(V)) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::Cast) {
+ if (isa<PointerType>(CE->getOperand(0)->getType()))
+ NH = getValueDest(*CE->getOperand(0));
+ else
+ NH = createNode()->setUnknownNodeMarker();
+ } else if (CE->getOpcode() == Instruction::GetElementPtr) {
+ visitGetElementPtrInst(*CE);
+ DSScalarMap::iterator I = ScalarMap.find(CE);
+ assert(I != ScalarMap.end() && "GEP didn't get processed right?");
+ NH = I->second;
+ } else {
+ // This returns a conservative unknown node for any unhandled ConstExpr
+ return NH = createNode()->setUnknownNodeMarker();
+ }
+ if (NH.isNull()) { // (getelementptr null, X) returns null
+ ScalarMap.erase(V);
+ return 0;
+ }
+ return NH;
+ } else if (isa<UndefValue>(C)) {
+ ScalarMap.erase(V);
+ return 0;
+ } else {
+ assert(0 && "Unknown constant type!");
+ }
+ N = createNode(); // just create a shadow node
+ } else {
+ // Otherwise just create a shadow node
+ N = createNode();
+ }
+
+ NH.setTo(N, 0); // Remember that we are pointing to it...
+ return NH;
+}
+
+
+/// getLink - This method is used to return the specified link in the
+/// specified node if one exists. If a link does not already exist (it's
+/// null), then we create a new node, link it, then return it. We must
+/// specify the type of the Node field we are accessing so that we know what
+/// type should be linked to if we need to create a new node.
+///
+DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, unsigned LinkNo) {
+ DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
+ DSNodeHandle &Link = Node.getLink(LinkNo);
+ if (Link.isNull()) {
+ // If the link hasn't been created yet, make and return a new shadow node
+ Link = createNode();
+ }
+ return Link;
+}
+
+
+/// setDestTo - Set the ScalarMap entry for the specified value to point to the
+/// specified destination. If the Value already points to a node, make sure to
+/// merge the two destinations together.
+///
+void GraphBuilder::setDestTo(Value &V, const DSNodeHandle &NH) {
+ ScalarMap[&V].mergeWith(NH);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Specific instruction type handler implementations...
+//
+
+/// Alloca & Malloc instruction implementation - Simply create a new memory
+/// object, pointing the scalar to it.
+///
+void GraphBuilder::handleAlloc(AllocationInst &AI, bool isHeap) {
+ DSNode *N = createNode();
+ if (isHeap)
+ N->setHeapNodeMarker();
+ else
+ N->setAllocaNodeMarker();
+ setDestTo(AI, N);
+}
+
+// PHINode - Make the scalar for the PHI node point to all of the things the
+// incoming values point to... which effectively causes them to be merged.
+//
+void GraphBuilder::visitPHINode(PHINode &PN) {
+ if (!isPointerType(PN.getType())) return; // Only pointer PHIs
+
+ DSNodeHandle &PNDest = ScalarMap[&PN];
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+ PNDest.mergeWith(getValueDest(*PN.getIncomingValue(i)));
+}
+
+void GraphBuilder::visitSelectInst(SelectInst &SI) {
+ if (!isPointerType(SI.getType())) return; // Only pointer Selects
+
+ DSNodeHandle &Dest = ScalarMap[&SI];
+ Dest.mergeWith(getValueDest(*SI.getOperand(1)));
+ Dest.mergeWith(getValueDest(*SI.getOperand(2)));
+}
+
+void GraphBuilder::visitSetCondInst(SetCondInst &SCI) {
+ if (!isPointerType(SCI.getOperand(0)->getType()) ||
+ isa<ConstantPointerNull>(SCI.getOperand(1))) return; // Only pointers
+ ScalarMap[SCI.getOperand(0)].mergeWith(getValueDest(*SCI.getOperand(1)));
+}
+
+
+void GraphBuilder::visitGetElementPtrInst(User &GEP) {
+ DSNodeHandle Value = getValueDest(*GEP.getOperand(0));
+ if (Value.isNull())
+ Value = createNode();
+
+ // As a special case, if all of the index operands of GEP are constant zeros,
+ // handle this just like we handle casts (ie, don't do much).
+ bool AllZeros = true;
+ for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i)
+ if (GEP.getOperand(i) !=
+ Constant::getNullValue(GEP.getOperand(i)->getType())) {
+ AllZeros = false;
+ break;
+ }
+
+ // If all of the indices are zero, the result points to the operand without
+ // applying the type.
+ if (AllZeros || (!Value.isNull() &&
+ Value.getNode()->isNodeCompletelyFolded())) {
+ setDestTo(GEP, Value);
+ return;
+ }
+
+
+ const PointerType *PTy = cast<PointerType>(GEP.getOperand(0)->getType());
+ const Type *CurTy = PTy->getElementType();
+
+ if (Value.getNode()->mergeTypeInfo(CurTy, Value.getOffset())) {
+ // If the node had to be folded... exit quickly
+ setDestTo(GEP, Value); // GEP result points to folded node
+ return;
+ }
+
+ const TargetData &TD = Value.getNode()->getTargetData();
+
+#if 0
+ // Handle the pointer index specially...
+ if (GEP.getNumOperands() > 1 &&
+ (!isa<Constant>(GEP.getOperand(1)) ||
+ !cast<Constant>(GEP.getOperand(1))->isNullValue())) {
+
+ // If we already know this is an array being accessed, don't do anything...
+ if (!TopTypeRec.isArray) {
+ TopTypeRec.isArray = true;
+
+ // If we are treating some inner field pointer as an array, fold the node
+ // up because we cannot handle it right. This can come because of
+ // something like this: &((&Pt->X)[1]) == &Pt->Y
+ //
+ if (Value.getOffset()) {
+ // Value is now the pointer we want to GEP to be...
+ Value.getNode()->foldNodeCompletely();
+ setDestTo(GEP, Value); // GEP result points to folded node
+ return;
+ } else {
+ // This is a pointer to the first byte of the node. Make sure that we
+ // are pointing to the outter most type in the node.
+ // FIXME: We need to check one more case here...
+ }
+ }
+ }
+#endif
+
+ // All of these subscripts are indexing INTO the elements we have...
+ unsigned Offset = 0;
+ for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
+ I != E; ++I)
+ if (const StructType *STy = dyn_cast<StructType>(*I)) {
+ unsigned FieldNo =
+ (unsigned)cast<ConstantUInt>(I.getOperand())->getValue();
+ Offset += (unsigned)TD.getStructLayout(STy)->MemberOffsets[FieldNo];
+ } else if (const PointerType *PTy = dyn_cast<PointerType>(*I)) {
+ if (!isa<Constant>(I.getOperand()) ||
+ !cast<Constant>(I.getOperand())->isNullValue())
+ Value.getNode()->setArrayMarker();
+ }
+
+
+#if 0
+ if (const SequentialType *STy = cast<SequentialType>(*I)) {
+ CurTy = STy->getElementType();
+ if (ConstantSInt *CS = dyn_cast<ConstantSInt>(GEP.getOperand(i))) {
+ Offset += CS->getValue()*TD.getTypeSize(CurTy);
+ } else {
+ // Variable index into a node. We must merge all of the elements of the
+ // sequential type here.
+ if (isa<PointerType>(STy))
+ std::cerr << "Pointer indexing not handled yet!\n";
+ else {
+ const ArrayType *ATy = cast<ArrayType>(STy);
+ unsigned ElSize = TD.getTypeSize(CurTy);
+ DSNode *N = Value.getNode();
+ assert(N && "Value must have a node!");
+ unsigned RawOffset = Offset+Value.getOffset();
+
+ // Loop over all of the elements of the array, merging them into the
+ // zeroth element.
+ for (unsigned i = 1, e = ATy->getNumElements(); i != e; ++i)
+ // Merge all of the byte components of this array element
+ for (unsigned j = 0; j != ElSize; ++j)
+ N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j);
+ }
+ }
+ }
+#endif
+
+ // Add in the offset calculated...
+ Value.setOffset(Value.getOffset()+Offset);
+
+ // Value is now the pointer we want to GEP to be...
+ setDestTo(GEP, Value);
+}
+
+void GraphBuilder::visitLoadInst(LoadInst &LI) {
+ DSNodeHandle Ptr = getValueDest(*LI.getOperand(0));
+ if (Ptr.isNull())
+ Ptr = createNode();
+
+ // Make that the node is read from...
+ Ptr.getNode()->setReadMarker();
+
+ // Ensure a typerecord exists...
+ Ptr.getNode()->mergeTypeInfo(LI.getType(), Ptr.getOffset(), false);
+
+ if (isPointerType(LI.getType()))
+ setDestTo(LI, getLink(Ptr));
+}
+
+void GraphBuilder::visitStoreInst(StoreInst &SI) {
+ const Type *StoredTy = SI.getOperand(0)->getType();
+ DSNodeHandle Dest = getValueDest(*SI.getOperand(1));
+ if (Dest.isNull()) return;
+
+ // Mark that the node is written to...
+ Dest.getNode()->setModifiedMarker();
+
+ // Ensure a type-record exists...
+ Dest.getNode()->mergeTypeInfo(StoredTy, Dest.getOffset());
+
+ // Avoid adding edges from null, or processing non-"pointer" stores
+ if (isPointerType(StoredTy))
+ Dest.addEdgeTo(getValueDest(*SI.getOperand(0)));
+}
+
+void GraphBuilder::visitReturnInst(ReturnInst &RI) {
+ if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType()))
+ RetNode->mergeWith(getValueDest(*RI.getOperand(0)));
+}
+
+void GraphBuilder::visitVAArgInst(VAArgInst &I) {
+ //FIXME: also updates the argument
+ DSNodeHandle Ptr = getValueDest(*I.getOperand(0));
+ if (Ptr.isNull()) return;
+
+ // Make that the node is read from.
+ Ptr.getNode()->setReadMarker();
+
+ // Ensure a type record exists.
+ DSNode *PtrN = Ptr.getNode();
+ PtrN->mergeTypeInfo(I.getType(), Ptr.getOffset(), false);
+
+ if (isPointerType(I.getType()))
+ setDestTo(I, getLink(Ptr));
+}
+
+
+void GraphBuilder::visitCallInst(CallInst &CI) {
+ visitCallSite(&CI);
+}
+
+void GraphBuilder::visitInvokeInst(InvokeInst &II) {
+ visitCallSite(&II);
+}
+
+void GraphBuilder::visitCallSite(CallSite CS) {
+ Value *Callee = CS.getCalledValue();
+
+ // Special case handling of certain libc allocation functions here.
+ if (Function *F = dyn_cast<Function>(Callee))
+ if (F->isExternal())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::vastart:
+ getValueDest(*CS.getInstruction()).getNode()->setAllocaNodeMarker();
+ return;
+ case Intrinsic::vacopy:
+ getValueDest(*CS.getInstruction()).
+ mergeWith(getValueDest(**(CS.arg_begin())));
+ return;
+ case Intrinsic::vaend:
+ return; // noop
+ case Intrinsic::memmove:
+ case Intrinsic::memcpy: {
+ // Merge the first & second arguments, and mark the memory read and
+ // modified.
+ DSNodeHandle RetNH = getValueDest(**CS.arg_begin());
+ RetNH.mergeWith(getValueDest(**(CS.arg_begin()+1)));
+ if (DSNode *N = RetNH.getNode())
+ N->setModifiedMarker()->setReadMarker();
+ return;
+ }
+ case Intrinsic::memset:
+ // Mark the memory modified.
+ if (DSNode *N = getValueDest(**CS.arg_begin()).getNode())
+ N->setModifiedMarker();
+ return;
+ default:
+ if (F->getName() == "calloc" || F->getName() == "posix_memalign" ||
+ F->getName() == "memalign" || F->getName() == "valloc") {
+ setDestTo(*CS.getInstruction(),
+ createNode()->setHeapNodeMarker()->setModifiedMarker());
+ return;
+ } else if (F->getName() == "realloc") {
+ DSNodeHandle RetNH = getValueDest(*CS.getInstruction());
+ if (CS.arg_begin() != CS.arg_end())
+ RetNH.mergeWith(getValueDest(**CS.arg_begin()));
+ if (DSNode *N = RetNH.getNode())
+ N->setHeapNodeMarker()->setModifiedMarker()->setReadMarker();
+ return;
+ } else if (F->getName() == "memmove") {
+ // Merge the first & second arguments, and mark the memory read and
+ // modified.
+ DSNodeHandle RetNH = getValueDest(**CS.arg_begin());
+ RetNH.mergeWith(getValueDest(**(CS.arg_begin()+1)));
+ if (DSNode *N = RetNH.getNode())
+ N->setModifiedMarker()->setReadMarker();
+ return;
+
+ } else if (F->getName() == "atoi" || F->getName() == "atof" ||
+ F->getName() == "atol" || F->getName() == "atoll" ||
+ F->getName() == "remove" || F->getName() == "unlink" ||
+ F->getName() == "rename" || F->getName() == "memcmp" ||
+ F->getName() == "strcmp" || F->getName() == "strncmp" ||
+ F->getName() == "execl" || F->getName() == "execlp" ||
+ F->getName() == "execle" || F->getName() == "execv" ||
+ F->getName() == "execvp" || F->getName() == "chmod" ||
+ F->getName() == "puts" || F->getName() == "write" ||
+ F->getName() == "open" || F->getName() == "create" ||
+ F->getName() == "truncate" || F->getName() == "chdir" ||
+ F->getName() == "mkdir" || F->getName() == "rmdir") {
+ // These functions read all of their pointer operands.
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI) {
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker();
+ }
+ return;
+ } else if (F->getName() == "read" || F->getName() == "pipe" ||
+ F->getName() == "wait" || F->getName() == "time") {
+ // These functions write all of their pointer operands.
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI) {
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setModifiedMarker();
+ }
+ return;
+ } else if (F->getName() == "stat" || F->getName() == "fstat" ||
+ F->getName() == "lstat") {
+ // These functions read their first operand if its a pointer.
+ CallSite::arg_iterator AI = CS.arg_begin();
+ if (isPointerType((*AI)->getType())) {
+ DSNodeHandle Path = getValueDest(**AI);
+ if (DSNode *N = Path.getNode()) N->setReadMarker();
+ }
+
+ // Then they write into the stat buffer.
+ DSNodeHandle StatBuf = getValueDest(**++AI);
+ if (DSNode *N = StatBuf.getNode()) {
+ N->setModifiedMarker();
+ const Type *StatTy = F->getFunctionType()->getParamType(1);
+ if (const PointerType *PTy = dyn_cast<PointerType>(StatTy))
+ N->mergeTypeInfo(PTy->getElementType(), StatBuf.getOffset());
+ }
+ return;
+ } else if (F->getName() == "strtod" || F->getName() == "strtof" ||
+ F->getName() == "strtold") {
+ // These functions read the first pointer
+ if (DSNode *Str = getValueDest(**CS.arg_begin()).getNode()) {
+ Str->setReadMarker();
+ // If the second parameter is passed, it will point to the first
+ // argument node.
+ const DSNodeHandle &EndPtrNH = getValueDest(**(CS.arg_begin()+1));
+ if (DSNode *End = EndPtrNH.getNode()) {
+ End->mergeTypeInfo(PointerType::get(Type::SByteTy),
+ EndPtrNH.getOffset(), false);
+ End->setModifiedMarker();
+ DSNodeHandle &Link = getLink(EndPtrNH);
+ Link.mergeWith(getValueDest(**CS.arg_begin()));
+ }
+ }
+
+ return;
+ } else if (F->getName() == "fopen" || F->getName() == "fdopen" ||
+ F->getName() == "freopen") {
+ // These functions read all of their pointer operands.
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI)
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker();
+
+ // fopen allocates in an unknown way and writes to the file
+ // descriptor. Also, merge the allocated type into the node.
+ DSNodeHandle Result = getValueDest(*CS.getInstruction());
+ if (DSNode *N = Result.getNode()) {
+ N->setModifiedMarker()->setUnknownNodeMarker();
+ const Type *RetTy = F->getFunctionType()->getReturnType();
+ if (const PointerType *PTy = dyn_cast<PointerType>(RetTy))
+ N->mergeTypeInfo(PTy->getElementType(), Result.getOffset());
+ }
+
+ // If this is freopen, merge the file descriptor passed in with the
+ // result.
+ if (F->getName() == "freopen") {
+ // ICC doesn't handle getting the iterator, decrementing and
+ // dereferencing it in one operation without error. Do it in 2 steps
+ CallSite::arg_iterator compit = CS.arg_end();
+ Result.mergeWith(getValueDest(**--compit));
+ }
+ return;
+ } else if (F->getName() == "fclose" && CS.arg_end()-CS.arg_begin() ==1){
+ // fclose reads and deallocates the memory in an unknown way for the
+ // file descriptor. It merges the FILE type into the descriptor.
+ DSNodeHandle H = getValueDest(**CS.arg_begin());
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker()->setUnknownNodeMarker();
+ const Type *ArgTy = F->getFunctionType()->getParamType(0);
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ return;
+ } else if (CS.arg_end()-CS.arg_begin() == 1 &&
+ (F->getName() == "fflush" || F->getName() == "feof" ||
+ F->getName() == "fileno" || F->getName() == "clearerr" ||
+ F->getName() == "rewind" || F->getName() == "ftell" ||
+ F->getName() == "ferror" || F->getName() == "fgetc" ||
+ F->getName() == "fgetc" || F->getName() == "_IO_getc")) {
+ // fflush reads and writes the memory for the file descriptor. It
+ // merges the FILE type into the descriptor.
+ DSNodeHandle H = getValueDest(**CS.arg_begin());
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker()->setModifiedMarker();
+
+ const Type *ArgTy = F->getFunctionType()->getParamType(0);
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ return;
+ } else if (CS.arg_end()-CS.arg_begin() == 4 &&
+ (F->getName() == "fwrite" || F->getName() == "fread")) {
+ // fread writes the first operand, fwrite reads it. They both
+ // read/write the FILE descriptor, and merges the FILE type.
+ CallSite::arg_iterator compit = CS.arg_end();
+ DSNodeHandle H = getValueDest(**--compit);
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker()->setModifiedMarker();
+ const Type *ArgTy = F->getFunctionType()->getParamType(3);
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+
+ H = getValueDest(**CS.arg_begin());
+ if (DSNode *N = H.getNode())
+ if (F->getName() == "fwrite")
+ N->setReadMarker();
+ else
+ N->setModifiedMarker();
+ return;
+ } else if (F->getName() == "fgets" && CS.arg_end()-CS.arg_begin() == 3){
+ // fgets reads and writes the memory for the file descriptor. It
+ // merges the FILE type into the descriptor, and writes to the
+ // argument. It returns the argument as well.
+ CallSite::arg_iterator AI = CS.arg_begin();
+ DSNodeHandle H = getValueDest(**AI);
+ if (DSNode *N = H.getNode())
+ N->setModifiedMarker(); // Writes buffer
+ H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer
+ ++AI; ++AI;
+
+ // Reads and writes file descriptor, merge in FILE type.
+ H = getValueDest(**AI);
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker()->setModifiedMarker();
+ const Type *ArgTy = F->getFunctionType()->getParamType(2);
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ return;
+ } else if (F->getName() == "ungetc" || F->getName() == "fputc" ||
+ F->getName() == "fputs" || F->getName() == "putc" ||
+ F->getName() == "ftell" || F->getName() == "rewind" ||
+ F->getName() == "_IO_putc") {
+ // These functions read and write the memory for the file descriptor,
+ // which is passes as the last argument.
+ CallSite::arg_iterator compit = CS.arg_end();
+ DSNodeHandle H = getValueDest(**--compit);
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker()->setModifiedMarker();
+ FunctionType::param_iterator compit2 = F->getFunctionType()->param_end();
+ const Type *ArgTy = *--compit2;
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+
+ // Any pointer arguments are read.
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI)
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker();
+ return;
+ } else if (F->getName() == "fseek" || F->getName() == "fgetpos" ||
+ F->getName() == "fsetpos") {
+ // These functions read and write the memory for the file descriptor,
+ // and read/write all other arguments.
+ DSNodeHandle H = getValueDest(**CS.arg_begin());
+ if (DSNode *N = H.getNode()) {
+ FunctionType::param_iterator compit2 = F->getFunctionType()->param_end();
+ const Type *ArgTy = *--compit2;
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+
+ // Any pointer arguments are read.
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI)
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker()->setModifiedMarker();
+ return;
+ } else if (F->getName() == "printf" || F->getName() == "fprintf" ||
+ F->getName() == "sprintf") {
+ CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+
+ if (F->getName() == "fprintf") {
+ // fprintf reads and writes the FILE argument, and applies the type
+ // to it.
+ DSNodeHandle H = getValueDest(**AI);
+ if (DSNode *N = H.getNode()) {
+ N->setModifiedMarker();
+ const Type *ArgTy = (*AI)->getType();
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ } else if (F->getName() == "sprintf") {
+ // sprintf writes the first string argument.
+ DSNodeHandle H = getValueDest(**AI++);
+ if (DSNode *N = H.getNode()) {
+ N->setModifiedMarker();
+ const Type *ArgTy = (*AI)->getType();
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ }
+
+ for (; AI != E; ++AI) {
+ // printf reads all pointer arguments.
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker();
+ }
+ return;
+ } else if (F->getName() == "vprintf" || F->getName() == "vfprintf" ||
+ F->getName() == "vsprintf") {
+ CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+
+ if (F->getName() == "vfprintf") {
+ // ffprintf reads and writes the FILE argument, and applies the type
+ // to it.
+ DSNodeHandle H = getValueDest(**AI);
+ if (DSNode *N = H.getNode()) {
+ N->setModifiedMarker()->setReadMarker();
+ const Type *ArgTy = (*AI)->getType();
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ ++AI;
+ } else if (F->getName() == "vsprintf") {
+ // vsprintf writes the first string argument.
+ DSNodeHandle H = getValueDest(**AI++);
+ if (DSNode *N = H.getNode()) {
+ N->setModifiedMarker();
+ const Type *ArgTy = (*AI)->getType();
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ }
+
+ // Read the format
+ if (AI != E) {
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker();
+ ++AI;
+ }
+
+ // Read the valist, and the pointed-to objects.
+ if (AI != E && isPointerType((*AI)->getType())) {
+ const DSNodeHandle &VAList = getValueDest(**AI);
+ if (DSNode *N = VAList.getNode()) {
+ N->setReadMarker();
+ N->mergeTypeInfo(PointerType::get(Type::SByteTy),
+ VAList.getOffset(), false);
+
+ DSNodeHandle &VAListObjs = getLink(VAList);
+ VAListObjs.getNode()->setReadMarker();
+ }
+ }
+
+ return;
+ } else if (F->getName() == "scanf" || F->getName() == "fscanf" ||
+ F->getName() == "sscanf") {
+ CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+
+ if (F->getName() == "fscanf") {
+ // fscanf reads and writes the FILE argument, and applies the type
+ // to it.
+ DSNodeHandle H = getValueDest(**AI);
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker();
+ const Type *ArgTy = (*AI)->getType();
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ } else if (F->getName() == "sscanf") {
+ // sscanf reads the first string argument.
+ DSNodeHandle H = getValueDest(**AI++);
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker();
+ const Type *ArgTy = (*AI)->getType();
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ }
+
+ for (; AI != E; ++AI) {
+ // scanf writes all pointer arguments.
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setModifiedMarker();
+ }
+ return;
+ } else if (F->getName() == "strtok") {
+ // strtok reads and writes the first argument, returning it. It reads
+ // its second arg. FIXME: strtok also modifies some hidden static
+ // data. Someday this might matter.
+ CallSite::arg_iterator AI = CS.arg_begin();
+ DSNodeHandle H = getValueDest(**AI++);
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker()->setModifiedMarker(); // Reads/Writes buffer
+ const Type *ArgTy = F->getFunctionType()->getParamType(0);
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer
+
+ H = getValueDest(**AI); // Reads delimiter
+ if (DSNode *N = H.getNode()) {
+ N->setReadMarker();
+ const Type *ArgTy = F->getFunctionType()->getParamType(1);
+ if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
+ N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
+ }
+ return;
+ } else if (F->getName() == "strchr" || F->getName() == "strrchr" ||
+ F->getName() == "strstr") {
+ // These read their arguments, and return the first one
+ DSNodeHandle H = getValueDest(**CS.arg_begin());
+ H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer
+
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI)
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker();
+
+ if (DSNode *N = H.getNode())
+ N->setReadMarker();
+ return;
+ } else if (F->getName() == "__assert_fail") {
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI)
+ if (isPointerType((*AI)->getType()))
+ if (DSNode *N = getValueDest(**AI).getNode())
+ N->setReadMarker();
+ return;
+ } else if (F->getName() == "modf" && CS.arg_end()-CS.arg_begin() == 2) {
+ // This writes its second argument, and forces it to double.
+ CallSite::arg_iterator compit = CS.arg_end();
+ DSNodeHandle H = getValueDest(**--compit);
+ if (DSNode *N = H.getNode()) {
+ N->setModifiedMarker();
+ N->mergeTypeInfo(Type::DoubleTy, H.getOffset());
+ }
+ return;
+ } else {
+ // Unknown function, warn if it returns a pointer type or takes a
+ // pointer argument.
+ bool Warn = isPointerType(CS.getInstruction()->getType());
+ if (!Warn)
+ for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ I != E; ++I)
+ if (isPointerType((*I)->getType())) {
+ Warn = true;
+ break;
+ }
+ if (Warn)
+ std::cerr << "WARNING: Call to unknown external function '"
+ << F->getName() << "' will cause pessimistic results!\n";
+ }
+ }
+
+
+ // Set up the return value...
+ DSNodeHandle RetVal;
+ Instruction *I = CS.getInstruction();
+ if (isPointerType(I->getType()))
+ RetVal = getValueDest(*I);
+
+ DSNode *CalleeNode = 0;
+ if (DisableDirectCallOpt || !isa<Function>(Callee)) {
+ CalleeNode = getValueDest(*Callee).getNode();
+ if (CalleeNode == 0) {
+ std::cerr << "WARNING: Program is calling through a null pointer?\n"<< *I;
+ return; // Calling a null pointer?
+ }
+ }
+
+ std::vector<DSNodeHandle> Args;
+ Args.reserve(CS.arg_end()-CS.arg_begin());
+
+ // Calculate the arguments vector...
+ for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
+ if (isPointerType((*I)->getType()))
+ Args.push_back(getValueDest(**I));
+
+ // Add a new function call entry...
+ if (CalleeNode)
+ FunctionCalls->push_back(DSCallSite(CS, RetVal, CalleeNode, Args));
+ else
+ FunctionCalls->push_back(DSCallSite(CS, RetVal, cast<Function>(Callee),
+ Args));
+}
+
+void GraphBuilder::visitFreeInst(FreeInst &FI) {
+ // Mark that the node is written to...
+ if (DSNode *N = getValueDest(*FI.getOperand(0)).getNode())
+ N->setModifiedMarker()->setHeapNodeMarker();
+}
+
+/// Handle casts...
+void GraphBuilder::visitCastInst(CastInst &CI) {
+ if (isPointerType(CI.getType()))
+ if (isPointerType(CI.getOperand(0)->getType())) {
+ DSNodeHandle Ptr = getValueDest(*CI.getOperand(0));
+ if (Ptr.getNode() == 0) return;
+
+ // Cast one pointer to the other, just act like a copy instruction
+ setDestTo(CI, Ptr);
+ } else {
+ // Cast something (floating point, small integer) to a pointer. We need
+ // to track the fact that the node points to SOMETHING, just something we
+ // don't know about. Make an "Unknown" node.
+ //
+ setDestTo(CI, createNode()->setUnknownNodeMarker());
+ }
+}
+
+
+// visitInstruction - For all other instruction types, if we have any arguments
+// that are of pointer type, make them have unknown composition bits, and merge
+// the nodes together.
+void GraphBuilder::visitInstruction(Instruction &Inst) {
+ DSNodeHandle CurNode;
+ if (isPointerType(Inst.getType()))
+ CurNode = getValueDest(Inst);
+ for (User::op_iterator I = Inst.op_begin(), E = Inst.op_end(); I != E; ++I)
+ if (isPointerType((*I)->getType()))
+ CurNode.mergeWith(getValueDest(**I));
+
+ if (DSNode *N = CurNode.getNode())
+ N->setUnknownNodeMarker();
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// LocalDataStructures Implementation
+//===----------------------------------------------------------------------===//
+
+// MergeConstantInitIntoNode - Merge the specified constant into the node
+// pointed to by NH.
+void GraphBuilder::MergeConstantInitIntoNode(DSNodeHandle &NH, Constant *C) {
+ // Ensure a type-record exists...
+ DSNode *NHN = NH.getNode();
+ NHN->mergeTypeInfo(C->getType(), NH.getOffset());
+
+ if (C->getType()->isFirstClassType()) {
+ if (isPointerType(C->getType()))
+ // Avoid adding edges from null, or processing non-"pointer" stores
+ NH.addEdgeTo(getValueDest(*C));
+ return;
+ }
+
+ const TargetData &TD = NH.getNode()->getTargetData();
+
+ if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
+ for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
+ // We don't currently do any indexing for arrays...
+ MergeConstantInitIntoNode(NH, cast<Constant>(CA->getOperand(i)));
+ } else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
+ const StructLayout *SL = TD.getStructLayout(CS->getType());
+ for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
+ DSNode *NHN = NH.getNode();
+ DSNodeHandle NewNH(NHN, NH.getOffset()+(unsigned)SL->MemberOffsets[i]);
+ MergeConstantInitIntoNode(NewNH, cast<Constant>(CS->getOperand(i)));
+ }
+ } else if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) {
+ // Noop
+ } else {
+ assert(0 && "Unknown constant type!");
+ }
+}
+
+void GraphBuilder::mergeInGlobalInitializer(GlobalVariable *GV) {
+ assert(!GV->isExternal() && "Cannot merge in external global!");
+ // Get a node handle to the global node and merge the initializer into it.
+ DSNodeHandle NH = getValueDest(*GV);
+ MergeConstantInitIntoNode(NH, GV->getInitializer());
+}
+
+
+/// BuildGlobalECs - Look at all of the nodes in the globals graph. If any node
+/// contains multiple globals, DSA will never, ever, be able to tell the globals
+/// apart. Instead of maintaining this information in all of the graphs
+/// throughout the entire program, store only a single global (the "leader") in
+/// the graphs, and build equivalence classes for the rest of the globals.
+static void BuildGlobalECs(DSGraph &GG, std::set<GlobalValue*> &ECGlobals) {
+ DSScalarMap &SM = GG.getScalarMap();
+ EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
+ for (DSGraph::node_iterator I = GG.node_begin(), E = GG.node_end();
+ I != E; ++I) {
+ if (I->getGlobalsList().size() <= 1) continue;
+
+ // First, build up the equivalence set for this block of globals.
+ const std::vector<GlobalValue*> &GVs = I->getGlobalsList();
+ GlobalValue *First = GVs[0];
+ for (unsigned i = 1, e = GVs.size(); i != e; ++i)
+ GlobalECs.unionSets(First, GVs[i]);
+
+ // Next, get the leader element.
+ assert(First == GlobalECs.getLeaderValue(First) &&
+ "First did not end up being the leader?");
+
+ // Next, remove all globals from the scalar map that are not the leader.
+ assert(GVs[0] == First && "First had to be at the front!");
+ for (unsigned i = 1, e = GVs.size(); i != e; ++i) {
+ ECGlobals.insert(GVs[i]);
+ SM.erase(SM.find(GVs[i]));
+ }
+
+ // Finally, change the global node to only contain the leader.
+ I->clearGlobals();
+ I->addGlobal(First);
+ }
+
+ DEBUG(GG.AssertGraphOK());
+}
+
+/// EliminateUsesOfECGlobals - Once we have determined that some globals are in
+/// really just equivalent to some other globals, remove the globals from the
+/// specified DSGraph (if present), and merge any nodes with their leader nodes.
+static void EliminateUsesOfECGlobals(DSGraph &G,
+ const std::set<GlobalValue*> &ECGlobals) {
+ DSScalarMap &SM = G.getScalarMap();
+ EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
+
+ bool MadeChange = false;
+ for (DSScalarMap::global_iterator GI = SM.global_begin(), E = SM.global_end();
+ GI != E; ) {
+ GlobalValue *GV = *GI++;
+ if (!ECGlobals.count(GV)) continue;
+
+ const DSNodeHandle &GVNH = SM[GV];
+ assert(!GVNH.isNull() && "Global has null NH!?");
+
+ // Okay, this global is in some equivalence class. Start by finding the
+ // leader of the class.
+ GlobalValue *Leader = GlobalECs.getLeaderValue(GV);
+
+ // If the leader isn't already in the graph, insert it into the node
+ // corresponding to GV.
+ if (!SM.global_count(Leader)) {
+ GVNH.getNode()->addGlobal(Leader);
+ SM[Leader] = GVNH;
+ } else {
+ // Otherwise, the leader is in the graph, make sure the nodes are the
+ // merged in the specified graph.
+ const DSNodeHandle &LNH = SM[Leader];
+ if (LNH.getNode() != GVNH.getNode())
+ LNH.mergeWith(GVNH);
+ }
+
+ // Next step, remove the global from the DSNode.
+ GVNH.getNode()->removeGlobal(GV);
+
+ // Finally, remove the global from the ScalarMap.
+ SM.erase(GV);
+ MadeChange = true;
+ }
+
+ DEBUG(if(MadeChange) G.AssertGraphOK());
+}
+
+bool LocalDataStructures::runOnModule(Module &M) {
+ const TargetData &TD = getAnalysis<TargetData>();
+
+ // First step, build the globals graph.
+ GlobalsGraph = new DSGraph(GlobalECs, TD);
+ {
+ GraphBuilder GGB(*GlobalsGraph);
+
+ // Add initializers for all of the globals to the globals graph.
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (!I->isExternal())
+ GGB.mergeInGlobalInitializer(I);
+ }
+
+ // Next step, iterate through the nodes in the globals graph, unioning
+ // together the globals into equivalence classes.
+ std::set<GlobalValue*> ECGlobals;
+ BuildGlobalECs(*GlobalsGraph, ECGlobals);
+ DEBUG(std::cerr << "Eliminating " << ECGlobals.size() << " EC Globals!\n");
+ ECGlobals.clear();
+
+ // Calculate all of the graphs...
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (!I->isExternal())
+ DSInfo.insert(std::make_pair(I, new DSGraph(GlobalECs, TD, *I,
+ GlobalsGraph)));
+
+ GlobalsGraph->removeTriviallyDeadNodes();
+ GlobalsGraph->markIncompleteNodes(DSGraph::MarkFormalArgs);
+
+ // Now that we've computed all of the graphs, and merged all of the info into
+ // the globals graph, see if we have further constrained the globals in the
+ // program if so, update GlobalECs and remove the extraneous globals from the
+ // program.
+ BuildGlobalECs(*GlobalsGraph, ECGlobals);
+ if (!ECGlobals.empty()) {
+ DEBUG(std::cerr << "Eliminating " << ECGlobals.size() << " EC Globals!\n");
+ for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
+ E = DSInfo.end(); I != E; ++I)
+ EliminateUsesOfECGlobals(*I->second, ECGlobals);
+ }
+
+ return false;
+}
+
+// releaseMemory - If the pass pipeline is done with this pass, we can release
+// our memory... here...
+//
+void LocalDataStructures::releaseMemory() {
+ for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
+ E = DSInfo.end(); I != E; ++I) {
+ I->second->getReturnNodes().erase(I->first);
+ if (I->second->getReturnNodes().empty())
+ delete I->second;
+ }
+
+ // Empty map so next time memory is released, data structures are not
+ // re-deleted.
+ DSInfo.clear();
+ delete GlobalsGraph;
+ GlobalsGraph = 0;
+}
+