aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure/DataStructure.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/DataStructure/DataStructure.cpp')
-rw-r--r--lib/Analysis/DataStructure/DataStructure.cpp2338
1 files changed, 2338 insertions, 0 deletions
diff --git a/lib/Analysis/DataStructure/DataStructure.cpp b/lib/Analysis/DataStructure/DataStructure.cpp
new file mode 100644
index 0000000000..904d8b10b7
--- /dev/null
+++ b/lib/Analysis/DataStructure/DataStructure.cpp
@@ -0,0 +1,2338 @@
+//===- DataStructure.cpp - Implement the core data structure analysis -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the core data structure functionality.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/DataStructure/DSGraphTraits.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Timer.h"
+#include <algorithm>
+using namespace llvm;
+
+#define COLLAPSE_ARRAYS_AGGRESSIVELY 0
+
+namespace {
+ Statistic<> NumFolds ("dsa", "Number of nodes completely folded");
+ Statistic<> NumCallNodesMerged("dsa", "Number of call nodes merged");
+ Statistic<> NumNodeAllocated ("dsa", "Number of nodes allocated");
+ Statistic<> NumDNE ("dsa", "Number of nodes removed by reachability");
+ Statistic<> NumTrivialDNE ("dsa", "Number of nodes trivially removed");
+ Statistic<> NumTrivialGlobalDNE("dsa", "Number of globals trivially removed");
+};
+
+#if 0
+#define TIME_REGION(VARNAME, DESC) \
+ NamedRegionTimer VARNAME(DESC)
+#else
+#define TIME_REGION(VARNAME, DESC)
+#endif
+
+using namespace DS;
+
+/// isForwarding - Return true if this NodeHandle is forwarding to another
+/// one.
+bool DSNodeHandle::isForwarding() const {
+ return N && N->isForwarding();
+}
+
+DSNode *DSNodeHandle::HandleForwarding() const {
+ assert(N->isForwarding() && "Can only be invoked if forwarding!");
+
+ // Handle node forwarding here!
+ DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage
+ Offset += N->ForwardNH.getOffset();
+
+ if (--N->NumReferrers == 0) {
+ // Removing the last referrer to the node, sever the forwarding link
+ N->stopForwarding();
+ }
+
+ N = Next;
+ N->NumReferrers++;
+ if (N->Size <= Offset) {
+ assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
+ Offset = 0;
+ }
+ return N;
+}
+
+//===----------------------------------------------------------------------===//
+// DSScalarMap Implementation
+//===----------------------------------------------------------------------===//
+
+DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) {
+ assert(ValueMap.count(GV) == 0 && "GV already exists!");
+
+ // If the node doesn't exist, check to see if it's a global that is
+ // equated to another global in the program.
+ EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV);
+ if (ECI != GlobalECs.end()) {
+ GlobalValue *Leader = *GlobalECs.findLeader(ECI);
+ if (Leader != GV) {
+ GV = Leader;
+ iterator I = ValueMap.find(GV);
+ if (I != ValueMap.end())
+ return I->second;
+ }
+ }
+
+ // Okay, this is either not an equivalenced global or it is the leader, it
+ // will be inserted into the scalar map now.
+ GlobalSet.insert(GV);
+
+ return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second;
+}
+
+
+//===----------------------------------------------------------------------===//
+// DSNode Implementation
+//===----------------------------------------------------------------------===//
+
+DSNode::DSNode(const Type *T, DSGraph *G)
+ : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
+ // Add the type entry if it is specified...
+ if (T) mergeTypeInfo(T, 0);
+ if (G) G->addNode(this);
+ ++NumNodeAllocated;
+}
+
+// DSNode copy constructor... do not copy over the referrers list!
+DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks)
+ : NumReferrers(0), Size(N.Size), ParentGraph(G),
+ Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) {
+ if (!NullLinks) {
+ Links = N.Links;
+ } else
+ Links.resize(N.Links.size()); // Create the appropriate number of null links
+ G->addNode(this);
+ ++NumNodeAllocated;
+}
+
+/// getTargetData - Get the target data object used to construct this node.
+///
+const TargetData &DSNode::getTargetData() const {
+ return ParentGraph->getTargetData();
+}
+
+void DSNode::assertOK() const {
+ assert((Ty != Type::VoidTy ||
+ Ty == Type::VoidTy && (Size == 0 ||
+ (NodeType & DSNode::Array))) &&
+ "Node not OK!");
+
+ assert(ParentGraph && "Node has no parent?");
+ const DSScalarMap &SM = ParentGraph->getScalarMap();
+ for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
+ assert(SM.global_count(Globals[i]));
+ assert(SM.find(Globals[i])->second.getNode() == this);
+ }
+}
+
+/// forwardNode - Mark this node as being obsolete, and all references to it
+/// should be forwarded to the specified node and offset.
+///
+void DSNode::forwardNode(DSNode *To, unsigned Offset) {
+ assert(this != To && "Cannot forward a node to itself!");
+ assert(ForwardNH.isNull() && "Already forwarding from this node!");
+ if (To->Size <= 1) Offset = 0;
+ assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
+ "Forwarded offset is wrong!");
+ ForwardNH.setTo(To, Offset);
+ NodeType = DEAD;
+ Size = 0;
+ Ty = Type::VoidTy;
+
+ // Remove this node from the parent graph's Nodes list.
+ ParentGraph->unlinkNode(this);
+ ParentGraph = 0;
+}
+
+// addGlobal - Add an entry for a global value to the Globals list. This also
+// marks the node with the 'G' flag if it does not already have it.
+//
+void DSNode::addGlobal(GlobalValue *GV) {
+ // First, check to make sure this is the leader if the global is in an
+ // equivalence class.
+ GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV);
+
+ // Keep the list sorted.
+ std::vector<GlobalValue*>::iterator I =
+ std::lower_bound(Globals.begin(), Globals.end(), GV);
+
+ if (I == Globals.end() || *I != GV) {
+ Globals.insert(I, GV);
+ NodeType |= GlobalNode;
+ }
+}
+
+// removeGlobal - Remove the specified global that is explicitly in the globals
+// list.
+void DSNode::removeGlobal(GlobalValue *GV) {
+ std::vector<GlobalValue*>::iterator I =
+ std::lower_bound(Globals.begin(), Globals.end(), GV);
+ assert(I != Globals.end() && *I == GV && "Global not in node!");
+ Globals.erase(I);
+}
+
+/// foldNodeCompletely - If we determine that this node has some funny
+/// behavior happening to it that we cannot represent, we fold it down to a
+/// single, completely pessimistic, node. This node is represented as a
+/// single byte with a single TypeEntry of "void".
+///
+void DSNode::foldNodeCompletely() {
+ if (isNodeCompletelyFolded()) return; // If this node is already folded...
+
+ ++NumFolds;
+
+ // If this node has a size that is <= 1, we don't need to create a forwarding
+ // node.
+ if (getSize() <= 1) {
+ NodeType |= DSNode::Array;
+ Ty = Type::VoidTy;
+ Size = 1;
+ assert(Links.size() <= 1 && "Size is 1, but has more links?");
+ Links.resize(1);
+ } else {
+ // Create the node we are going to forward to. This is required because
+ // some referrers may have an offset that is > 0. By forcing them to
+ // forward, the forwarder has the opportunity to correct the offset.
+ DSNode *DestNode = new DSNode(0, ParentGraph);
+ DestNode->NodeType = NodeType|DSNode::Array;
+ DestNode->Ty = Type::VoidTy;
+ DestNode->Size = 1;
+ DestNode->Globals.swap(Globals);
+
+ // Start forwarding to the destination node...
+ forwardNode(DestNode, 0);
+
+ if (!Links.empty()) {
+ DestNode->Links.reserve(1);
+
+ DSNodeHandle NH(DestNode);
+ DestNode->Links.push_back(Links[0]);
+
+ // If we have links, merge all of our outgoing links together...
+ for (unsigned i = Links.size()-1; i != 0; --i)
+ NH.getNode()->Links[0].mergeWith(Links[i]);
+ Links.clear();
+ } else {
+ DestNode->Links.resize(1);
+ }
+ }
+}
+
+/// isNodeCompletelyFolded - Return true if this node has been completely
+/// folded down to something that can never be expanded, effectively losing
+/// all of the field sensitivity that may be present in the node.
+///
+bool DSNode::isNodeCompletelyFolded() const {
+ return getSize() == 1 && Ty == Type::VoidTy && isArray();
+}
+
+/// addFullGlobalsList - Compute the full set of global values that are
+/// represented by this node. Unlike getGlobalsList(), this requires fair
+/// amount of work to compute, so don't treat this method call as free.
+void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const {
+ if (globals_begin() == globals_end()) return;
+
+ EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
+
+ for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
+ EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
+ if (ECI == EC.end())
+ List.push_back(*I);
+ else
+ List.insert(List.end(), EC.member_begin(ECI), EC.member_end());
+ }
+}
+
+/// addFullFunctionList - Identical to addFullGlobalsList, but only return the
+/// functions in the full list.
+void DSNode::addFullFunctionList(std::vector<Function*> &List) const {
+ if (globals_begin() == globals_end()) return;
+
+ EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
+
+ for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
+ EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
+ if (ECI == EC.end()) {
+ if (Function *F = dyn_cast<Function>(*I))
+ List.push_back(F);
+ } else {
+ for (EquivalenceClasses<GlobalValue*>::member_iterator MI =
+ EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI)
+ if (Function *F = dyn_cast<Function>(*MI))
+ List.push_back(F);
+ }
+ }
+}
+
+namespace {
+ /// TypeElementWalker Class - Used for implementation of physical subtyping...
+ ///
+ class TypeElementWalker {
+ struct StackState {
+ const Type *Ty;
+ unsigned Offset;
+ unsigned Idx;
+ StackState(const Type *T, unsigned Off = 0)
+ : Ty(T), Offset(Off), Idx(0) {}
+ };
+
+ std::vector<StackState> Stack;
+ const TargetData &TD;
+ public:
+ TypeElementWalker(const Type *T, const TargetData &td) : TD(td) {
+ Stack.push_back(T);
+ StepToLeaf();
+ }
+
+ bool isDone() const { return Stack.empty(); }
+ const Type *getCurrentType() const { return Stack.back().Ty; }
+ unsigned getCurrentOffset() const { return Stack.back().Offset; }
+
+ void StepToNextType() {
+ PopStackAndAdvance();
+ StepToLeaf();
+ }
+
+ private:
+ /// PopStackAndAdvance - Pop the current element off of the stack and
+ /// advance the underlying element to the next contained member.
+ void PopStackAndAdvance() {
+ assert(!Stack.empty() && "Cannot pop an empty stack!");
+ Stack.pop_back();
+ while (!Stack.empty()) {
+ StackState &SS = Stack.back();
+ if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
+ ++SS.Idx;
+ if (SS.Idx != ST->getNumElements()) {
+ const StructLayout *SL = TD.getStructLayout(ST);
+ SS.Offset +=
+ unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]);
+ return;
+ }
+ Stack.pop_back(); // At the end of the structure
+ } else {
+ const ArrayType *AT = cast<ArrayType>(SS.Ty);
+ ++SS.Idx;
+ if (SS.Idx != AT->getNumElements()) {
+ SS.Offset += unsigned(TD.getTypeSize(AT->getElementType()));
+ return;
+ }
+ Stack.pop_back(); // At the end of the array
+ }
+ }
+ }
+
+ /// StepToLeaf - Used by physical subtyping to move to the first leaf node
+ /// on the type stack.
+ void StepToLeaf() {
+ if (Stack.empty()) return;
+ while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
+ StackState &SS = Stack.back();
+ if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
+ if (ST->getNumElements() == 0) {
+ assert(SS.Idx == 0);
+ PopStackAndAdvance();
+ } else {
+ // Step into the structure...
+ assert(SS.Idx < ST->getNumElements());
+ const StructLayout *SL = TD.getStructLayout(ST);
+ Stack.push_back(StackState(ST->getElementType(SS.Idx),
+ SS.Offset+unsigned(SL->MemberOffsets[SS.Idx])));
+ }
+ } else {
+ const ArrayType *AT = cast<ArrayType>(SS.Ty);
+ if (AT->getNumElements() == 0) {
+ assert(SS.Idx == 0);
+ PopStackAndAdvance();
+ } else {
+ // Step into the array...
+ assert(SS.Idx < AT->getNumElements());
+ Stack.push_back(StackState(AT->getElementType(),
+ SS.Offset+SS.Idx*
+ unsigned(TD.getTypeSize(AT->getElementType()))));
+ }
+ }
+ }
+ }
+ };
+} // end anonymous namespace
+
+/// ElementTypesAreCompatible - Check to see if the specified types are
+/// "physically" compatible. If so, return true, else return false. We only
+/// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1
+/// is true, then we also allow a larger T1.
+///
+static bool ElementTypesAreCompatible(const Type *T1, const Type *T2,
+ bool AllowLargerT1, const TargetData &TD){
+ TypeElementWalker T1W(T1, TD), T2W(T2, TD);
+
+ while (!T1W.isDone() && !T2W.isDone()) {
+ if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
+ return false;
+
+ const Type *T1 = T1W.getCurrentType();
+ const Type *T2 = T2W.getCurrentType();
+ if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2))
+ return false;
+
+ T1W.StepToNextType();
+ T2W.StepToNextType();
+ }
+
+ return AllowLargerT1 || T1W.isDone();
+}
+
+
+/// mergeTypeInfo - This method merges the specified type into the current node
+/// at the specified offset. This may update the current node's type record if
+/// this gives more information to the node, it may do nothing to the node if
+/// this information is already known, or it may merge the node completely (and
+/// return true) if the information is incompatible with what is already known.
+///
+/// This method returns true if the node is completely folded, otherwise false.
+///
+bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
+ bool FoldIfIncompatible) {
+ const TargetData &TD = getTargetData();
+ // Check to make sure the Size member is up-to-date. Size can be one of the
+ // following:
+ // Size = 0, Ty = Void: Nothing is known about this node.
+ // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
+ // Size = 1, Ty = Void, Array = 1: The node is collapsed
+ // Otherwise, sizeof(Ty) = Size
+ //
+ assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
+ (Size == 0 && !Ty->isSized() && !isArray()) ||
+ (Size == 1 && Ty == Type::VoidTy && isArray()) ||
+ (Size == 0 && !Ty->isSized() && !isArray()) ||
+ (TD.getTypeSize(Ty) == Size)) &&
+ "Size member of DSNode doesn't match the type structure!");
+ assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
+
+ if (Offset == 0 && NewTy == Ty)
+ return false; // This should be a common case, handle it efficiently
+
+ // Return true immediately if the node is completely folded.
+ if (isNodeCompletelyFolded()) return true;
+
+ // If this is an array type, eliminate the outside arrays because they won't
+ // be used anyway. This greatly reduces the size of large static arrays used
+ // as global variables, for example.
+ //
+ bool WillBeArray = false;
+ while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
+ // FIXME: we might want to keep small arrays, but must be careful about
+ // things like: [2 x [10000 x int*]]
+ NewTy = AT->getElementType();
+ WillBeArray = true;
+ }
+
+ // Figure out how big the new type we're merging in is...
+ unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0;
+
+ // Otherwise check to see if we can fold this type into the current node. If
+ // we can't, we fold the node completely, if we can, we potentially update our
+ // internal state.
+ //
+ if (Ty == Type::VoidTy) {
+ // If this is the first type that this node has seen, just accept it without
+ // question....
+ assert(Offset == 0 && !isArray() &&
+ "Cannot have an offset into a void node!");
+
+ // If this node would have to have an unreasonable number of fields, just
+ // collapse it. This can occur for fortran common blocks, which have stupid
+ // things like { [100000000 x double], [1000000 x double] }.
+ unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift;
+ if (NumFields > 256) {
+ foldNodeCompletely();
+ return true;
+ }
+
+ Ty = NewTy;
+ NodeType &= ~Array;
+ if (WillBeArray) NodeType |= Array;
+ Size = NewTySize;
+
+ // Calculate the number of outgoing links from this node.
+ Links.resize(NumFields);
+ return false;
+ }
+
+ // Handle node expansion case here...
+ if (Offset+NewTySize > Size) {
+ // It is illegal to grow this node if we have treated it as an array of
+ // objects...
+ if (isArray()) {
+ if (FoldIfIncompatible) foldNodeCompletely();
+ return true;
+ }
+
+ if (Offset) { // We could handle this case, but we don't for now...
+ std::cerr << "UNIMP: Trying to merge a growth type into "
+ << "offset != 0: Collapsing!\n";
+ if (FoldIfIncompatible) foldNodeCompletely();
+ return true;
+ }
+
+ // Okay, the situation is nice and simple, we are trying to merge a type in
+ // at offset 0 that is bigger than our current type. Implement this by
+ // switching to the new type and then merge in the smaller one, which should
+ // hit the other code path here. If the other code path decides it's not
+ // ok, it will collapse the node as appropriate.
+ //
+
+ // If this node would have to have an unreasonable number of fields, just
+ // collapse it. This can occur for fortran common blocks, which have stupid
+ // things like { [100000000 x double], [1000000 x double] }.
+ unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift;
+ if (NumFields > 256) {
+ foldNodeCompletely();
+ return true;
+ }
+
+ const Type *OldTy = Ty;
+ Ty = NewTy;
+ NodeType &= ~Array;
+ if (WillBeArray) NodeType |= Array;
+ Size = NewTySize;
+
+ // Must grow links to be the appropriate size...
+ Links.resize(NumFields);
+
+ // Merge in the old type now... which is guaranteed to be smaller than the
+ // "current" type.
+ return mergeTypeInfo(OldTy, 0);
+ }
+
+ assert(Offset <= Size &&
+ "Cannot merge something into a part of our type that doesn't exist!");
+
+ // Find the section of Ty that NewTy overlaps with... first we find the
+ // type that starts at offset Offset.
+ //
+ unsigned O = 0;
+ const Type *SubType = Ty;
+ while (O < Offset) {
+ assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
+
+ switch (SubType->getTypeID()) {
+ case Type::StructTyID: {
+ const StructType *STy = cast<StructType>(SubType);
+ const StructLayout &SL = *TD.getStructLayout(STy);
+ unsigned i = SL.getElementContainingOffset(Offset-O);
+
+ // The offset we are looking for must be in the i'th element...
+ SubType = STy->getElementType(i);
+ O += (unsigned)SL.MemberOffsets[i];
+ break;
+ }
+ case Type::ArrayTyID: {
+ SubType = cast<ArrayType>(SubType)->getElementType();
+ unsigned ElSize = (unsigned)TD.getTypeSize(SubType);
+ unsigned Remainder = (Offset-O) % ElSize;
+ O = Offset-Remainder;
+ break;
+ }
+ default:
+ if (FoldIfIncompatible) foldNodeCompletely();
+ return true;
+ }
+ }
+
+ assert(O == Offset && "Could not achieve the correct offset!");
+
+ // If we found our type exactly, early exit
+ if (SubType == NewTy) return false;
+
+ // Differing function types don't require us to merge. They are not values
+ // anyway.
+ if (isa<FunctionType>(SubType) &&
+ isa<FunctionType>(NewTy)) return false;
+
+ unsigned SubTypeSize = SubType->isSized() ?
+ (unsigned)TD.getTypeSize(SubType) : 0;
+
+ // Ok, we are getting desperate now. Check for physical subtyping, where we
+ // just require each element in the node to be compatible.
+ if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
+ SubTypeSize && SubTypeSize < 256 &&
+ ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD))
+ return false;
+
+ // Okay, so we found the leader type at the offset requested. Search the list
+ // of types that starts at this offset. If SubType is currently an array or
+ // structure, the type desired may actually be the first element of the
+ // composite type...
+ //
+ unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
+ while (SubType != NewTy) {
+ const Type *NextSubType = 0;
+ unsigned NextSubTypeSize = 0;
+ unsigned NextPadSize = 0;
+ switch (SubType->getTypeID()) {
+ case Type::StructTyID: {
+ const StructType *STy = cast<StructType>(SubType);
+ const StructLayout &SL = *TD.getStructLayout(STy);
+ if (SL.MemberOffsets.size() > 1)
+ NextPadSize = (unsigned)SL.MemberOffsets[1];
+ else
+ NextPadSize = SubTypeSize;
+ NextSubType = STy->getElementType(0);
+ NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
+ break;
+ }
+ case Type::ArrayTyID:
+ NextSubType = cast<ArrayType>(SubType)->getElementType();
+ NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
+ NextPadSize = NextSubTypeSize;
+ break;
+ default: ;
+ // fall out
+ }
+
+ if (NextSubType == 0)
+ break; // In the default case, break out of the loop
+
+ if (NextPadSize < NewTySize)
+ break; // Don't allow shrinking to a smaller type than NewTySize
+ SubType = NextSubType;
+ SubTypeSize = NextSubTypeSize;
+ PadSize = NextPadSize;
+ }
+
+ // If we found the type exactly, return it...
+ if (SubType == NewTy)
+ return false;
+
+ // Check to see if we have a compatible, but different type...
+ if (NewTySize == SubTypeSize) {
+ // Check to see if this type is obviously convertible... int -> uint f.e.
+ if (NewTy->isLosslesslyConvertibleTo(SubType))
+ return false;
+
+ // Check to see if we have a pointer & integer mismatch going on here,
+ // loading a pointer as a long, for example.
+ //
+ if (SubType->isInteger() && isa<PointerType>(NewTy) ||
+ NewTy->isInteger() && isa<PointerType>(SubType))
+ return false;
+ } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
+ // We are accessing the field, plus some structure padding. Ignore the
+ // structure padding.
+ return false;
+ }
+
+ Module *M = 0;
+ if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end())
+ M = getParentGraph()->retnodes_begin()->first->getParent();
+ DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: ";
+ WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:";
+ WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n"
+ << "SubType: ";
+ WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n");
+
+ if (FoldIfIncompatible) foldNodeCompletely();
+ return true;
+}
+
+
+
+/// addEdgeTo - Add an edge from the current node to the specified node. This
+/// can cause merging of nodes in the graph.
+///
+void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
+ if (NH.isNull()) return; // Nothing to do
+
+ DSNodeHandle &ExistingEdge = getLink(Offset);
+ if (!ExistingEdge.isNull()) {
+ // Merge the two nodes...
+ ExistingEdge.mergeWith(NH);
+ } else { // No merging to perform...
+ setLink(Offset, NH); // Just force a link in there...
+ }
+}
+
+
+/// MergeSortedVectors - Efficiently merge a vector into another vector where
+/// duplicates are not allowed and both are sorted. This assumes that 'T's are
+/// efficiently copyable and have sane comparison semantics.
+///
+static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
+ const std::vector<GlobalValue*> &Src) {
+ // By far, the most common cases will be the simple ones. In these cases,
+ // avoid having to allocate a temporary vector...
+ //
+ if (Src.empty()) { // Nothing to merge in...
+ return;
+ } else if (Dest.empty()) { // Just copy the result in...
+ Dest = Src;
+ } else if (Src.size() == 1) { // Insert a single element...
+ const GlobalValue *V = Src[0];
+ std::vector<GlobalValue*>::iterator I =
+ std::lower_bound(Dest.begin(), Dest.end(), V);
+ if (I == Dest.end() || *I != Src[0]) // If not already contained...
+ Dest.insert(I, Src[0]);
+ } else if (Dest.size() == 1) {
+ GlobalValue *Tmp = Dest[0]; // Save value in temporary...
+ Dest = Src; // Copy over list...
+ std::vector<GlobalValue*>::iterator I =
+ std::lower_bound(Dest.begin(), Dest.end(), Tmp);
+ if (I == Dest.end() || *I != Tmp) // If not already contained...
+ Dest.insert(I, Tmp);
+
+ } else {
+ // Make a copy to the side of Dest...
+ std::vector<GlobalValue*> Old(Dest);
+
+ // Make space for all of the type entries now...
+ Dest.resize(Dest.size()+Src.size());
+
+ // Merge the two sorted ranges together... into Dest.
+ std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
+
+ // Now erase any duplicate entries that may have accumulated into the
+ // vectors (because they were in both of the input sets)
+ Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
+ }
+}
+
+void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) {
+ MergeSortedVectors(Globals, RHS);
+}
+
+// MergeNodes - Helper function for DSNode::mergeWith().
+// This function does the hard work of merging two nodes, CurNodeH
+// and NH after filtering out trivial cases and making sure that
+// CurNodeH.offset >= NH.offset.
+//
+// ***WARNING***
+// Since merging may cause either node to go away, we must always
+// use the node-handles to refer to the nodes. These node handles are
+// automatically updated during merging, so will always provide access
+// to the correct node after a merge.
+//
+void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
+ assert(CurNodeH.getOffset() >= NH.getOffset() &&
+ "This should have been enforced in the caller.");
+ assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() &&
+ "Cannot merge two nodes that are not in the same graph!");
+
+ // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
+ // respect to NH.Offset) is now zero. NOffset is the distance from the base
+ // of our object that N starts from.
+ //
+ unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
+ unsigned NSize = NH.getNode()->getSize();
+
+ // If the two nodes are of different size, and the smaller node has the array
+ // bit set, collapse!
+ if (NSize != CurNodeH.getNode()->getSize()) {
+#if COLLAPSE_ARRAYS_AGGRESSIVELY
+ if (NSize < CurNodeH.getNode()->getSize()) {
+ if (NH.getNode()->isArray())
+ NH.getNode()->foldNodeCompletely();
+ } else if (CurNodeH.getNode()->isArray()) {
+ NH.getNode()->foldNodeCompletely();
+ }
+#endif
+ }
+
+ // Merge the type entries of the two nodes together...
+ if (NH.getNode()->Ty != Type::VoidTy)
+ CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
+ assert(!CurNodeH.getNode()->isDeadNode());
+
+ // If we are merging a node with a completely folded node, then both nodes are
+ // now completely folded.
+ //
+ if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
+ if (!NH.getNode()->isNodeCompletelyFolded()) {
+ NH.getNode()->foldNodeCompletely();
+ assert(NH.getNode() && NH.getOffset() == 0 &&
+ "folding did not make offset 0?");
+ NOffset = NH.getOffset();
+ NSize = NH.getNode()->getSize();
+ assert(NOffset == 0 && NSize == 1);
+ }
+ } else if (NH.getNode()->isNodeCompletelyFolded()) {
+ CurNodeH.getNode()->foldNodeCompletely();
+ assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
+ "folding did not make offset 0?");
+ NSize = NH.getNode()->getSize();
+ NOffset = NH.getOffset();
+ assert(NOffset == 0 && NSize == 1);
+ }
+
+ DSNode *N = NH.getNode();
+ if (CurNodeH.getNode() == N || N == 0) return;
+ assert(!CurNodeH.getNode()->isDeadNode());
+
+ // Merge the NodeType information.
+ CurNodeH.getNode()->NodeType |= N->NodeType;
+
+ // Start forwarding to the new node!
+ N->forwardNode(CurNodeH.getNode(), NOffset);
+ assert(!CurNodeH.getNode()->isDeadNode());
+
+ // Make all of the outgoing links of N now be outgoing links of CurNodeH.
+ //
+ for (unsigned i = 0; i < N->getNumLinks(); ++i) {
+ DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
+ if (Link.getNode()) {
+ // Compute the offset into the current node at which to
+ // merge this link. In the common case, this is a linear
+ // relation to the offset in the original node (with
+ // wrapping), but if the current node gets collapsed due to
+ // recursive merging, we must make sure to merge in all remaining
+ // links at offset zero.
+ unsigned MergeOffset = 0;
+ DSNode *CN = CurNodeH.getNode();
+ if (CN->Size != 1)
+ MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
+ CN->addEdgeTo(MergeOffset, Link);
+ }
+ }
+
+ // Now that there are no outgoing edges, all of the Links are dead.
+ N->Links.clear();
+
+ // Merge the globals list...
+ if (!N->Globals.empty()) {
+ CurNodeH.getNode()->mergeGlobals(N->Globals);
+
+ // Delete the globals from the old node...
+ std::vector<GlobalValue*>().swap(N->Globals);
+ }
+}
+
+
+/// mergeWith - Merge this node and the specified node, moving all links to and
+/// from the argument node into the current node, deleting the node argument.
+/// Offset indicates what offset the specified node is to be merged into the
+/// current node.
+///
+/// The specified node may be a null pointer (in which case, we update it to
+/// point to this node).
+///
+void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
+ DSNode *N = NH.getNode();
+ if (N == this && NH.getOffset() == Offset)
+ return; // Noop
+
+ // If the RHS is a null node, make it point to this node!
+ if (N == 0) {
+ NH.mergeWith(DSNodeHandle(this, Offset));
+ return;
+ }
+
+ assert(!N->isDeadNode() && !isDeadNode());
+ assert(!hasNoReferrers() && "Should not try to fold a useless node!");
+
+ if (N == this) {
+ // We cannot merge two pieces of the same node together, collapse the node
+ // completely.
+ DEBUG(std::cerr << "Attempting to merge two chunks of"
+ << " the same node together!\n");
+ foldNodeCompletely();
+ return;
+ }
+
+ // If both nodes are not at offset 0, make sure that we are merging the node
+ // at an later offset into the node with the zero offset.
+ //
+ if (Offset < NH.getOffset()) {
+ N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
+ return;
+ } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
+ // If the offsets are the same, merge the smaller node into the bigger node
+ N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
+ return;
+ }
+
+ // Ok, now we can merge the two nodes. Use a static helper that works with
+ // two node handles, since "this" may get merged away at intermediate steps.
+ DSNodeHandle CurNodeH(this, Offset);
+ DSNodeHandle NHCopy(NH);
+ DSNode::MergeNodes(CurNodeH, NHCopy);
+}
+
+
+//===----------------------------------------------------------------------===//
+// ReachabilityCloner Implementation
+//===----------------------------------------------------------------------===//
+
+DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) {
+ if (SrcNH.isNull()) return DSNodeHandle();
+ const DSNode *SN = SrcNH.getNode();
+
+ DSNodeHandle &NH = NodeMap[SN];
+ if (!NH.isNull()) { // Node already mapped?
+ DSNode *NHN = NH.getNode();
+ return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
+ }
+
+ // If SrcNH has globals and the destination graph has one of the same globals,
+ // merge this node with the destination node, which is much more efficient.
+ if (SN->globals_begin() != SN->globals_end()) {
+ DSScalarMap &DestSM = Dest.getScalarMap();
+ for (DSNode::globals_iterator I = SN->globals_begin(),E = SN->globals_end();
+ I != E; ++I) {
+ GlobalValue *GV = *I;
+ DSScalarMap::iterator GI = DestSM.find(GV);
+ if (GI != DestSM.end() && !GI->second.isNull()) {
+ // We found one, use merge instead!
+ merge(GI->second, Src.getNodeForValue(GV));
+ assert(!NH.isNull() && "Didn't merge node!");
+ DSNode *NHN = NH.getNode();
+ return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
+ }
+ }
+ }
+
+ DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */);
+ DN->maskNodeTypes(BitsToKeep);
+ NH = DN;
+
+ // Next, recursively clone all outgoing links as necessary. Note that
+ // adding these links can cause the node to collapse itself at any time, and
+ // the current node may be merged with arbitrary other nodes. For this
+ // reason, we must always go through NH.
+ DN = 0;
+ for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
+ const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
+ if (!SrcEdge.isNull()) {
+ const DSNodeHandle &DestEdge = getClonedNH(SrcEdge);
+ // Compute the offset into the current node at which to
+ // merge this link. In the common case, this is a linear
+ // relation to the offset in the original node (with
+ // wrapping), but if the current node gets collapsed due to
+ // recursive merging, we must make sure to merge in all remaining
+ // links at offset zero.
+ unsigned MergeOffset = 0;
+ DSNode *CN = NH.getNode();
+ if (CN->getSize() != 1)
+ MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize();
+ CN->addEdgeTo(MergeOffset, DestEdge);
+ }
+ }
+
+ // If this node contains any globals, make sure they end up in the scalar
+ // map with the correct offset.
+ for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end();
+ I != E; ++I) {
+ GlobalValue *GV = *I;
+ const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
+ DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
+ assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent");
+ Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
+ DestGNH.getOffset()+SrcGNH.getOffset()));
+ }
+ NH.getNode()->mergeGlobals(SN->getGlobalsList());
+
+ return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset());
+}
+
+void ReachabilityCloner::merge(const DSNodeHandle &NH,
+ const DSNodeHandle &SrcNH) {
+ if (SrcNH.isNull()) return; // Noop
+ if (NH.isNull()) {
+ // If there is no destination node, just clone the source and assign the
+ // destination node to be it.
+ NH.mergeWith(getClonedNH(SrcNH));
+ return;
+ }
+
+ // Okay, at this point, we know that we have both a destination and a source
+ // node that need to be merged. Check to see if the source node has already
+ // been cloned.
+ const DSNode *SN = SrcNH.getNode();
+ DSNodeHandle &SCNH = NodeMap[SN]; // SourceClonedNodeHandle
+ if (!SCNH.isNull()) { // Node already cloned?
+ DSNode *SCNHN = SCNH.getNode();
+ NH.mergeWith(DSNodeHandle(SCNHN,
+ SCNH.getOffset()+SrcNH.getOffset()));
+ return; // Nothing to do!
+ }
+
+ // Okay, so the source node has not already been cloned. Instead of creating
+ // a new DSNode, only to merge it into the one we already have, try to perform
+ // the merge in-place. The only case we cannot handle here is when the offset
+ // into the existing node is less than the offset into the virtual node we are
+ // merging in. In this case, we have to extend the existing node, which
+ // requires an allocation anyway.
+ DSNode *DN = NH.getNode(); // Make sure the Offset is up-to-date
+ if (NH.getOffset() >= SrcNH.getOffset()) {
+ if (!DN->isNodeCompletelyFolded()) {
+ // Make sure the destination node is folded if the source node is folded.
+ if (SN->isNodeCompletelyFolded()) {
+ DN->foldNodeCompletely();
+ DN = NH.getNode();
+ } else if (SN->getSize() != DN->getSize()) {
+ // If the two nodes are of different size, and the smaller node has the
+ // array bit set, collapse!
+#if COLLAPSE_ARRAYS_AGGRESSIVELY
+ if (SN->getSize() < DN->getSize()) {
+ if (SN->isArray()) {
+ DN->foldNodeCompletely();
+ DN = NH.getNode();
+ }
+ } else if (DN->isArray()) {
+ DN->foldNodeCompletely();
+ DN = NH.getNode();
+ }
+#endif
+ }
+
+ // Merge the type entries of the two nodes together...
+ if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) {
+ DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset());
+ DN = NH.getNode();
+ }
+ }
+
+ assert(!DN->isDeadNode());
+
+ // Merge the NodeType information.
+ DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep);
+
+ // Before we start merging outgoing links and updating the scalar map, make
+ // sure it is known that this is the representative node for the src node.
+ SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset());
+
+ // If the source node contains any globals, make sure they end up in the
+ // scalar map with the correct offset.
+ if (SN->globals_begin() != SN->globals_end()) {
+ // Update the globals in the destination node itself.
+ DN->mergeGlobals(SN->getGlobalsList());
+
+ // Update the scalar map for the graph we are merging the source node
+ // into.
+ for (DSNode::globals_iterator I = SN->globals_begin(),
+ E = SN->globals_end(); I != E; ++I) {
+ GlobalValue *GV = *I;
+ const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
+ DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
+ assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
+ Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
+ DestGNH.getOffset()+SrcGNH.getOffset()));
+ }
+ NH.getNode()->mergeGlobals(SN->getGlobalsList());
+ }
+ } else {
+ // We cannot handle this case without allocating a temporary node. Fall
+ // back on being simple.
+ DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */);
+ NewDN->maskNodeTypes(BitsToKeep);
+
+ unsigned NHOffset = NH.getOffset();
+ NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset()));
+
+ assert(NH.getNode() &&
+ (NH.getOffset() > NHOffset ||
+ (NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) &&
+ "Merging did not adjust the offset!");
+
+ // Before we start merging outgoing links and updating the scalar map, make
+ // sure it is known that this is the representative node for the src node.
+ SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset());
+
+ // If the source node contained any globals, make sure to create entries
+ // in the scalar map for them!
+ for (DSNode::globals_iterator I = SN->globals_begin(),
+ E = SN->globals_end(); I != E; ++I) {
+ GlobalValue *GV = *I;
+ const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
+ DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
+ assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
+ assert(SrcGNH.getNode() == SN && "Global mapping inconsistent");
+ Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
+ DestGNH.getOffset()+SrcGNH.getOffset()));
+ }
+ }
+
+
+ // Next, recursively merge all outgoing links as necessary. Note that
+ // adding these links can cause the destination node to collapse itself at
+ // any time, and the current node may be merged with arbitrary other nodes.
+ // For this reason, we must always go through NH.
+ DN = 0;
+ for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
+ const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
+ if (!SrcEdge.isNull()) {
+ // Compute the offset into the current node at which to
+ // merge this link. In the common case, this is a linear
+ // relation to the offset in the original node (with
+ // wrapping), but if the current node gets collapsed due to
+ // recursive merging, we must make sure to merge in all remaining
+ // links at offset zero.
+ DSNode *CN = SCNH.getNode();
+ unsigned MergeOffset =
+ ((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize();
+
+ DSNodeHandle Tmp = CN->getLink(MergeOffset);
+ if (!Tmp.isNull()) {
+ // Perform the recursive merging. Make sure to create a temporary NH,
+ // because the Link can disappear in the process of recursive merging.
+ merge(Tmp, SrcEdge);
+ } else {
+ Tmp.mergeWith(getClonedNH(SrcEdge));
+ // Merging this could cause all kinds of recursive things to happen,
+ // culminating in the current node being eliminated. Since this is
+ // possible, make sure to reaquire the link from 'CN'.
+
+ unsigned MergeOffset = 0;
+ CN = SCNH.getNode();
+ MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize();
+ CN->getLink(MergeOffset).mergeWith(Tmp);
+ }
+ }
+ }
+}
+
+/// mergeCallSite - Merge the nodes reachable from the specified src call
+/// site into the nodes reachable from DestCS.
+void ReachabilityCloner::mergeCallSite(DSCallSite &DestCS,
+ const DSCallSite &SrcCS) {
+ merge(DestCS.getRetVal(), SrcCS.getRetVal());
+ unsigned MinArgs = DestCS.getNumPtrArgs();
+ if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs();
+
+ for (unsigned a = 0; a != MinArgs; ++a)
+ merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a));
+
+ for (unsigned a = MinArgs, e = SrcCS.getNumPtrArgs(); a != e; ++a)
+ DestCS.addPtrArg(getClonedNH(SrcCS.getPtrArg(a)));
+}
+
+
+//===----------------------------------------------------------------------===//
+// DSCallSite Implementation
+//===----------------------------------------------------------------------===//
+
+// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
+Function &DSCallSite::getCaller() const {
+ return *Site.getInstruction()->getParent()->getParent();
+}
+
+void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
+ ReachabilityCloner &RC) {
+ NH = RC.getClonedNH(Src);
+}
+
+//===----------------------------------------------------------------------===//
+// DSGraph Implementation
+//===----------------------------------------------------------------------===//
+
+/// getFunctionNames - Return a space separated list of the name of the
+/// functions in this graph (if any)
+std::string DSGraph::getFunctionNames() const {
+ switch (getReturnNodes().size()) {
+ case 0: return "Globals graph";
+ case 1: return retnodes_begin()->first->getName();
+ default:
+ std::string Return;
+ for (DSGraph::retnodes_iterator I = retnodes_begin();
+ I != retnodes_end(); ++I)
+ Return += I->first->getName() + " ";
+ Return.erase(Return.end()-1, Return.end()); // Remove last space character
+ return Return;
+ }
+}
+
+
+DSGraph::DSGraph(const DSGraph &G, EquivalenceClasses<GlobalValue*> &ECs,
+ unsigned CloneFlags)
+ : GlobalsGraph(0), ScalarMap(ECs), TD(G.TD) {
+ PrintAuxCalls = false;
+ cloneInto(G, CloneFlags);
+}
+
+DSGraph::~DSGraph() {
+ FunctionCalls.clear();
+ AuxFunctionCalls.clear();
+ ScalarMap.clear();
+ ReturnNodes.clear();
+
+ // Drop all intra-node references, so that assertions don't fail...
+ for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
+ NI->dropAllReferences();
+
+ // Free all of the nodes.
+ Nodes.clear();
+}
+
+// dump - Allow inspection of graph in a debugger.
+void DSGraph::dump() const { print(std::cerr); }
+
+
+/// remapLinks - Change all of the Links in the current node according to the
+/// specified mapping.
+///
+void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) {
+ for (unsigned i = 0, e = Links.size(); i != e; ++i)
+ if (DSNode *N = Links[i].getNode()) {
+ DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N);
+ if (ONMI != OldNodeMap.end()) {
+ DSNode *ONMIN = ONMI->second.getNode();
+ Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset());
+ }
+ }
+}
+
+/// addObjectToGraph - This method can be used to add global, stack, and heap
+/// objects to the graph. This can be used when updating DSGraphs due to the
+/// introduction of new temporary objects. The new object is not pointed to
+/// and does not point to any other objects in the graph.
+DSNode *DSGraph::addObjectToGraph(Value *Ptr, bool UseDeclaredType) {
+ assert(isa<PointerType>(Ptr->getType()) && "Ptr is not a pointer!");
+ const Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
+ DSNode *N = new DSNode(UseDeclaredType ? Ty : 0, this);
+ assert(ScalarMap[Ptr].isNull() && "Object already in this graph!");
+ ScalarMap[Ptr] = N;
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(Ptr)) {
+ N->addGlobal(GV);
+ } else if (MallocInst *MI = dyn_cast<MallocInst>(Ptr)) {
+ N->setHeapNodeMarker();
+ } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Ptr)) {
+ N->setAllocaNodeMarker();
+ } else {
+ assert(0 && "Illegal memory object input!");
+ }
+ return N;
+}
+
+
+/// cloneInto - Clone the specified DSGraph into the current graph. The
+/// translated ScalarMap for the old function is filled into the ScalarMap
+/// for the graph, and the translated ReturnNodes map is returned into
+/// ReturnNodes.
+///
+/// The CloneFlags member controls various aspects of the cloning process.
+///
+void DSGraph::cloneInto(const DSGraph &G, unsigned CloneFlags) {
+ TIME_REGION(X, "cloneInto");
+ assert(&G != this && "Cannot clone graph into itself!");
+
+ NodeMapTy OldNodeMap;
+
+ // Remove alloca or mod/ref bits as specified...
+ unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0)
+ | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0)
+ | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0);
+ BitsToClear |= DSNode::DEAD; // Clear dead flag...
+
+ for (node_const_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) {
+ assert(!I->isForwarding() &&
+ "Forward nodes shouldn't be in node list!");
+ DSNode *New = new DSNode(*I, this);
+ New->maskNodeTypes(~BitsToClear);
+ OldNodeMap[I] = New;
+ }
+
+#ifndef NDEBUG
+ Timer::addPeakMemoryMeasurement();
+#endif
+
+ // Rewrite the links in the new nodes to point into the current graph now.
+ // Note that we don't loop over the node's list to do this. The problem is
+ // that remaping links can cause recursive merging to happen, which means
+ // that node_iterator's can get easily invalidated! Because of this, we
+ // loop over the OldNodeMap, which contains all of the new nodes as the
+ // .second element of the map elements. Also note that if we remap a node
+ // more than once, we won't break anything.
+ for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end();
+ I != E; ++I)
+ I->second.getNode()->remapLinks(OldNodeMap);
+
+ // Copy the scalar map... merging all of the global nodes...
+ for (DSScalarMap::const_iterator I = G.ScalarMap.begin(),
+ E = G.ScalarMap.end(); I != E; ++I) {
+ DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
+ DSNodeHandle &H = ScalarMap.getRawEntryRef(I->first);
+ DSNode *MappedNodeN = MappedNode.getNode();
+ H.mergeWith(DSNodeHandle(MappedNodeN,
+ I->second.getOffset()+MappedNode.getOffset()));
+ }
+
+ if (!(CloneFlags & DontCloneCallNodes)) {
+ // Copy the function calls list.
+ for (fc_iterator I = G.fc_begin(), E = G.fc_end(); I != E; ++I)
+ FunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
+ }
+
+ if (!(CloneFlags & DontCloneAuxCallNodes)) {
+ // Copy the auxiliary function calls list.
+ for (afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I)
+ AuxFunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
+ }
+
+ // Map the return node pointers over...
+ for (retnodes_iterator I = G.retnodes_begin(),
+ E = G.retnodes_end(); I != E; ++I) {
+ const DSNodeHandle &Ret = I->second;
+ DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()];
+ DSNode *MappedRetN = MappedRet.getNode();
+ ReturnNodes.insert(std::make_pair(I->first,
+ DSNodeHandle(MappedRetN,
+ MappedRet.getOffset()+Ret.getOffset())));
+ }
+}
+
+/// spliceFrom - Logically perform the operation of cloning the RHS graph into
+/// this graph, then clearing the RHS graph. Instead of performing this as
+/// two seperate operations, do it as a single, much faster, one.
+///
+void DSGraph::spliceFrom(DSGraph &RHS) {
+ // Change all of the nodes in RHS to think we are their parent.
+ for (NodeListTy::iterator I = RHS.Nodes.begin(), E = RHS.Nodes.end();
+ I != E; ++I)
+ I->setParentGraph(this);
+ // Take all of the nodes.
+ Nodes.splice(Nodes.end(), RHS.Nodes);
+
+ // Take all of the calls.
+ FunctionCalls.splice(FunctionCalls.end(), RHS.FunctionCalls);
+ AuxFunctionCalls.splice(AuxFunctionCalls.end(), RHS.AuxFunctionCalls);
+
+ // Take all of the return nodes.
+ if (ReturnNodes.empty()) {
+ ReturnNodes.swap(RHS.ReturnNodes);
+ } else {
+ ReturnNodes.insert(RHS.ReturnNodes.begin(), RHS.ReturnNodes.end());
+ RHS.ReturnNodes.clear();
+ }
+
+ // Merge the scalar map in.
+ ScalarMap.spliceFrom(RHS.ScalarMap);
+}
+
+/// spliceFrom - Copy all entries from RHS, then clear RHS.
+///
+void DSScalarMap::spliceFrom(DSScalarMap &RHS) {
+ // Special case if this is empty.
+ if (ValueMap.empty()) {
+ ValueMap.swap(RHS.ValueMap);
+ GlobalSet.swap(RHS.GlobalSet);
+ } else {
+ GlobalSet.insert(RHS.GlobalSet.begin(), RHS.GlobalSet.end());
+ for (ValueMapTy::iterator I = RHS.ValueMap.begin(), E = RHS.ValueMap.end();
+ I != E; ++I)
+ ValueMap[I->first].mergeWith(I->second);
+ RHS.ValueMap.clear();
+ }
+}
+
+
+/// getFunctionArgumentsForCall - Given a function that is currently in this
+/// graph, return the DSNodeHandles that correspond to the pointer-compatible
+/// function arguments. The vector is filled in with the return value (or
+/// null if it is not pointer compatible), followed by all of the
+/// pointer-compatible arguments.
+void DSGraph::getFunctionArgumentsForCall(Function *F,
+ std::vector<DSNodeHandle> &Args) const {
+ Args.push_back(getReturnNodeFor(*F));
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI)
+ if (isPointerType(AI->getType())) {
+ Args.push_back(getNodeForValue(AI));
+ assert(!Args.back().isNull() && "Pointer argument w/o scalarmap entry!?");
+ }
+}
+
+namespace {
+ // HackedGraphSCCFinder - This is used to find nodes that have a path from the
+ // node to a node cloned by the ReachabilityCloner object contained. To be
+ // extra obnoxious it ignores edges from nodes that are globals, and truncates
+ // search at RC marked nodes. This is designed as an object so that
+ // intermediate results can be memoized across invocations of
+ // PathExistsToClonedNode.
+ struct HackedGraphSCCFinder {
+ ReachabilityCloner &RC;
+ unsigned CurNodeId;
+ std::vector<const DSNode*> SCCStack;
+ std::map<const DSNode*, std::pair<unsigned, bool> > NodeInfo;
+
+ HackedGraphSCCFinder(ReachabilityCloner &rc) : RC(rc), CurNodeId(1) {
+ // Remove null pointer as a special case.
+ NodeInfo[0] = std::make_pair(0, false);
+ }
+
+ std::pair<unsigned, bool> &VisitForSCCs(const DSNode *N);
+
+ bool PathExistsToClonedNode(const DSNode *N) {
+ return VisitForSCCs(N).second;
+ }
+
+ bool PathExistsToClonedNode(const DSCallSite &CS) {
+ if (PathExistsToClonedNode(CS.getRetVal().getNode()))
+ return true;
+ for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
+ if (PathExistsToClonedNode(CS.getPtrArg(i).getNode()))
+ return true;
+ return false;
+ }
+ };
+}
+
+std::pair<unsigned, bool> &HackedGraphSCCFinder::
+VisitForSCCs(const DSNode *N) {
+ std::map<const DSNode*, std::pair<unsigned, bool> >::iterator
+ NodeInfoIt = NodeInfo.lower_bound(N);
+ if (NodeInfoIt != NodeInfo.end() && NodeInfoIt->first == N)
+ return NodeInfoIt->second;
+
+ unsigned Min = CurNodeId++;
+ unsigned MyId = Min;
+ std::pair<unsigned, bool> &ThisNodeInfo =
+ NodeInfo.insert(NodeInfoIt,
+ std::make_pair(N, std::make_pair(MyId, false)))->second;
+
+ // Base case: if we find a global, this doesn't reach the cloned graph
+ // portion.
+ if (N->isGlobalNode()) {
+ ThisNodeInfo.second = false;
+ return ThisNodeInfo;
+ }
+
+ // Base case: if this does reach the cloned graph portion... it does. :)
+ if (RC.hasClonedNode(N)) {
+ ThisNodeInfo.second = true;
+ return ThisNodeInfo;
+ }
+
+ SCCStack.push_back(N);
+
+ // Otherwise, check all successors.
+ bool AnyDirectSuccessorsReachClonedNodes = false;
+ for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
+ EI != EE; ++EI)
+ if (DSNode *Succ = EI->getNode()) {
+ std::pair<unsigned, bool> &SuccInfo = VisitForSCCs(Succ);
+ if (SuccInfo.first < Min) Min = SuccInfo.first;
+ AnyDirectSuccessorsReachClonedNodes |= SuccInfo.second;
+ }
+
+ if (Min != MyId)
+ return ThisNodeInfo; // Part of a large SCC. Leave self on stack.
+
+ if (SCCStack.back() == N) { // Special case single node SCC.
+ SCCStack.pop_back();
+ ThisNodeInfo.second = AnyDirectSuccessorsReachClonedNodes;
+ return ThisNodeInfo;
+ }
+
+ // Find out if any direct successors of any node reach cloned nodes.
+ if (!AnyDirectSuccessorsReachClonedNodes)
+ for (unsigned i = SCCStack.size()-1; SCCStack[i] != N; --i)
+ for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
+ EI != EE; ++EI)
+ if (DSNode *N = EI->getNode())
+ if (NodeInfo[N].second) {
+ AnyDirectSuccessorsReachClonedNodes = true;
+ goto OutOfLoop;
+ }
+OutOfLoop:
+ // If any successor reaches a cloned node, mark all nodes in this SCC as
+ // reaching the cloned node.
+ if (AnyDirectSuccessorsReachClonedNodes)
+ while (SCCStack.back() != N) {
+ NodeInfo[SCCStack.back()].second = true;
+ SCCStack.pop_back();
+ }
+ SCCStack.pop_back();
+ ThisNodeInfo.second = true;
+ return ThisNodeInfo;
+}
+
+/// mergeInCallFromOtherGraph - This graph merges in the minimal number of
+/// nodes from G2 into 'this' graph, merging the bindings specified by the
+/// call site (in this graph) with the bindings specified by the vector in G2.
+/// The two DSGraphs must be different.
+///
+void DSGraph::mergeInGraph(const DSCallSite &CS,
+ std::vector<DSNodeHandle> &Args,
+ const DSGraph &Graph, unsigned CloneFlags) {
+ TIME_REGION(X, "mergeInGraph");
+
+ assert((CloneFlags & DontCloneCallNodes) &&
+ "Doesn't support copying of call nodes!");
+
+ // If this is not a recursive call, clone the graph into this graph...
+ if (&Graph == this) {
+ // Merge the return value with the return value of the context.
+ Args[0].mergeWith(CS.getRetVal());
+
+ // Resolve all of the function arguments.
+ for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
+ if (i == Args.size()-1)
+ break;
+
+ // Add the link from the argument scalar to the provided value.
+ Args[i+1].mergeWith(CS.getPtrArg(i));
+ }
+ return;
+ }
+
+ // Clone the callee's graph into the current graph, keeping track of where
+ // scalars in the old graph _used_ to point, and of the new nodes matching
+ // nodes of the old graph.
+ ReachabilityCloner RC(*this, Graph, CloneFlags);
+
+ // Map the return node pointer over.
+ if (!CS.getRetVal().isNull())
+ RC.merge(CS.getRetVal(), Args[0]);
+
+ // Map over all of the arguments.
+ for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
+ if (i == Args.size()-1)
+ break;
+
+ // Add the link from the argument scalar to the provided value.
+ RC.merge(CS.getPtrArg(i), Args[i+1]);
+ }
+
+ // We generally don't want to copy global nodes or aux calls from the callee
+ // graph to the caller graph. However, we have to copy them if there is a
+ // path from the node to a node we have already copied which does not go
+ // through another global. Compute the set of node that can reach globals and
+ // aux call nodes to copy over, then do it.
+ std::vector<const DSCallSite*> AuxCallToCopy;
+ std::vector<GlobalValue*> GlobalsToCopy;
+
+ // NodesReachCopiedNodes - Memoize results for efficiency. Contains a
+ // true/false value for every visited node that reaches a copied node without
+ // going through a global.
+ HackedGraphSCCFinder SCCFinder(RC);
+
+ if (!(CloneFlags & DontCloneAuxCallNodes))
+ for (afc_iterator I = Graph.afc_begin(), E = Graph.afc_end(); I!=E; ++I)
+ if (SCCFinder.PathExistsToClonedNode(*I))
+ AuxCallToCopy.push_back(&*I);
+
+ const DSScalarMap &GSM = Graph.getScalarMap();
+ for (DSScalarMap::global_iterator GI = GSM.global_begin(),
+ E = GSM.global_end(); GI != E; ++GI) {
+ DSNode *GlobalNode = Graph.getNodeForValue(*GI).getNode();
+ for (DSNode::edge_iterator EI = GlobalNode->edge_begin(),
+ EE = GlobalNode->edge_end(); EI != EE; ++EI)
+ if (SCCFinder.PathExistsToClonedNode(EI->getNode())) {
+ GlobalsToCopy.push_back(*GI);
+ break;
+ }
+ }
+
+ // Copy aux calls that are needed.
+ for (unsigned i = 0, e = AuxCallToCopy.size(); i != e; ++i)
+ AuxFunctionCalls.push_back(DSCallSite(*AuxCallToCopy[i], RC));
+
+ // Copy globals that are needed.
+ for (unsigned i = 0, e = GlobalsToCopy.size(); i != e; ++i)
+ RC.getClonedNH(Graph.getNodeForValue(GlobalsToCopy[i]));
+}
+
+
+
+/// mergeInGraph - The method is used for merging graphs together. If the
+/// argument graph is not *this, it makes a clone of the specified graph, then
+/// merges the nodes specified in the call site with the formal arguments in the
+/// graph.
+///
+void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F,
+ const DSGraph &Graph, unsigned CloneFlags) {
+ // Set up argument bindings.
+ std::vector<DSNodeHandle> Args;
+ Graph.getFunctionArgumentsForCall(&F, Args);
+
+ mergeInGraph(CS, Args, Graph, CloneFlags);
+}
+
+/// getCallSiteForArguments - Get the arguments and return value bindings for
+/// the specified function in the current graph.
+///
+DSCallSite DSGraph::getCallSiteForArguments(Function &F) const {
+ std::vector<DSNodeHandle> Args;
+
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
+ if (isPointerType(I->getType()))
+ Args.push_back(getNodeForValue(I));
+
+ return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args);
+}
+
+/// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in
+/// the context of this graph, return the DSCallSite for it.
+DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const {
+ DSNodeHandle RetVal;
+ Instruction *I = CS.getInstruction();
+ if (isPointerType(I->getType()))
+ RetVal = getNodeForValue(I);
+
+ std::vector<DSNodeHandle> Args;
+ Args.reserve(CS.arg_end()-CS.arg_begin());
+
+ // Calculate the arguments vector...
+ for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
+ if (isPointerType((*I)->getType()))
+ if (isa<ConstantPointerNull>(*I))
+ Args.push_back(DSNodeHandle());
+ else
+ Args.push_back(getNodeForValue(*I));
+
+ // Add a new function call entry...
+ if (Function *F = CS.getCalledFunction())
+ return DSCallSite(CS, RetVal, F, Args);
+ else
+ return DSCallSite(CS, RetVal,
+ getNodeForValue(CS.getCalledValue()).getNode(), Args);
+}
+
+
+
+// markIncompleteNodes - Mark the specified node as having contents that are not
+// known with the current analysis we have performed. Because a node makes all
+// of the nodes it can reach incomplete if the node itself is incomplete, we
+// must recursively traverse the data structure graph, marking all reachable
+// nodes as incomplete.
+//
+static void markIncompleteNode(DSNode *N) {
+ // Stop recursion if no node, or if node already marked...
+ if (N == 0 || N->isIncomplete()) return;
+
+ // Actually mark the node
+ N->setIncompleteMarker();
+
+ // Recursively process children...
+ for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
+ if (DSNode *DSN = I->getNode())
+ markIncompleteNode(DSN);
+}
+
+static void markIncomplete(DSCallSite &Call) {
+ // Then the return value is certainly incomplete!
+ markIncompleteNode(Call.getRetVal().getNode());
+
+ // All objects pointed to by function arguments are incomplete!
+ for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
+ markIncompleteNode(Call.getPtrArg(i).getNode());
+}
+
+// markIncompleteNodes - Traverse the graph, identifying nodes that may be
+// modified by other functions that have not been resolved yet. This marks
+// nodes that are reachable through three sources of "unknownness":
+//
+// Global Variables, Function Calls, and Incoming Arguments
+//
+// For any node that may have unknown components (because something outside the
+// scope of current analysis may have modified it), the 'Incomplete' flag is
+// added to the NodeType.
+//
+void DSGraph::markIncompleteNodes(unsigned Flags) {
+ // Mark any incoming arguments as incomplete.
+ if (Flags & DSGraph::MarkFormalArgs)
+ for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end();
+ FI != E; ++FI) {
+ Function &F = *FI->first;
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I)
+ if (isPointerType(I->getType()))
+ markIncompleteNode(getNodeForValue(I).getNode());
+ markIncompleteNode(FI->second.getNode());
+ }
+
+ // Mark stuff passed into functions calls as being incomplete.
+ if (!shouldPrintAuxCalls())
+ for (std::list<DSCallSite>::iterator I = FunctionCalls.begin(),
+ E = FunctionCalls.end(); I != E; ++I)
+ markIncomplete(*I);
+ else
+ for (std::list<DSCallSite>::iterator I = AuxFunctionCalls.begin(),
+ E = AuxFunctionCalls.end(); I != E; ++I)
+ markIncomplete(*I);
+
+ // Mark all global nodes as incomplete.
+ for (DSScalarMap::global_iterator I = ScalarMap.global_begin(),
+ E = ScalarMap.global_end(); I != E; ++I)
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I))
+ if (!GV->hasInitializer() || // Always mark external globals incomp.
+ (!GV->isConstant() && (Flags & DSGraph::IgnoreGlobals) == 0))
+ markIncompleteNode(ScalarMap[GV].getNode());
+}
+
+static inline void killIfUselessEdge(DSNodeHandle &Edge) {
+ if (DSNode *N = Edge.getNode()) // Is there an edge?
+ if (N->getNumReferrers() == 1) // Does it point to a lonely node?
+ // No interesting info?
+ if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 &&
+ N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
+ Edge.setTo(0, 0); // Kill the edge!
+}
+
+static inline bool nodeContainsExternalFunction(const DSNode *N) {
+ std::vector<Function*> Funcs;
+ N->addFullFunctionList(Funcs);
+ for (unsigned i = 0, e = Funcs.size(); i != e; ++i)
+ if (Funcs[i]->isExternal()) return true;
+ return false;
+}
+
+static void removeIdenticalCalls(std::list<DSCallSite> &Calls) {
+ // Remove trivially identical function calls
+ Calls.sort(); // Sort by callee as primary key!
+
+ // Scan the call list cleaning it up as necessary...
+ DSNodeHandle LastCalleeNode;
+ Function *LastCalleeFunc = 0;
+ unsigned NumDuplicateCalls = 0;
+ bool LastCalleeContainsExternalFunction = false;
+
+ unsigned NumDeleted = 0;
+ for (std::list<DSCallSite>::iterator I = Calls.begin(), E = Calls.end();
+ I != E;) {
+ DSCallSite &CS = *I;
+ std::list<DSCallSite>::iterator OldIt = I++;
+
+ if (!CS.isIndirectCall()) {
+ LastCalleeNode = 0;
+ } else {
+ DSNode *Callee = CS.getCalleeNode();
+
+ // If the Callee is a useless edge, this must be an unreachable call site,
+ // eliminate it.
+ if (Callee->getNumReferrers() == 1 && Callee->isComplete() &&
+ Callee->getGlobalsList().empty()) { // No useful info?
+#ifndef NDEBUG
+ std::cerr << "WARNING: Useless call site found.\n";
+#endif
+ Calls.erase(OldIt);
+ ++NumDeleted;
+ continue;
+ }
+
+ // If the last call site in the list has the same callee as this one, and
+ // if the callee contains an external function, it will never be
+ // resolvable, just merge the call sites.
+ if (!LastCalleeNode.isNull() && LastCalleeNode.getNode() == Callee) {
+ LastCalleeContainsExternalFunction =
+ nodeContainsExternalFunction(Callee);
+
+ std::list<DSCallSite>::iterator PrevIt = OldIt;
+ --PrevIt;
+ PrevIt->mergeWith(CS);
+
+ // No need to keep this call anymore.
+ Calls.erase(OldIt);
+ ++NumDeleted;
+ continue;
+ } else {
+ LastCalleeNode = Callee;
+ }
+ }
+
+ // If the return value or any arguments point to a void node with no
+ // information at all in it, and the call node is the only node to point
+ // to it, remove the edge to the node (killing the node).
+ //
+ killIfUselessEdge(CS.getRetVal());
+ for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
+ killIfUselessEdge(CS.getPtrArg(a));
+
+#if 0
+ // If this call site calls the same function as the last call site, and if
+ // the function pointer contains an external function, this node will
+ // never be resolved. Merge the arguments of the call node because no
+ // information will be lost.
+ //
+ if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) ||
+ (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) {
+ ++NumDuplicateCalls;
+ if (NumDuplicateCalls == 1) {
+ if (LastCalleeNode)
+ LastCalleeContainsExternalFunction =
+ nodeContainsExternalFunction(LastCalleeNode);
+ else
+ LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal();
+ }
+
+ // It is not clear why, but enabling this code makes DSA really
+ // sensitive to node forwarding. Basically, with this enabled, DSA
+ // performs different number of inlinings based on which nodes are
+ // forwarding or not. This is clearly a problem, so this code is
+ // disabled until this can be resolved.
+#if 1
+ if (LastCalleeContainsExternalFunction
+#if 0
+ ||
+ // This should be more than enough context sensitivity!
+ // FIXME: Evaluate how many times this is tripped!
+ NumDuplicateCalls > 20
+#endif
+ ) {
+
+ std::list<DSCallSite>::iterator PrevIt = OldIt;
+ --PrevIt;
+ PrevIt->mergeWith(CS);
+
+ // No need to keep this call anymore.
+ Calls.erase(OldIt);
+ ++NumDeleted;
+ continue;
+ }
+#endif
+ } else {
+ if (CS.isDirectCall()) {
+ LastCalleeFunc = CS.getCalleeFunc();
+ LastCalleeNode = 0;
+ } else {
+ LastCalleeNode = CS.getCalleeNode();
+ LastCalleeFunc = 0;
+ }
+ NumDuplicateCalls = 0;
+ }
+#endif
+
+ if (I != Calls.end() && CS == *I) {
+ LastCalleeNode = 0;
+ Calls.erase(OldIt);
+ ++NumDeleted;
+ continue;
+ }
+ }
+
+ // Resort now that we simplified things.
+ Calls.sort();
+
+ // Now that we are in sorted order, eliminate duplicates.
+ std::list<DSCallSite>::iterator CI = Calls.begin(), CE = Calls.end();
+ if (CI != CE)
+ while (1) {
+ std::list<DSCallSite>::iterator OldIt = CI++;
+ if (CI == CE) break;
+
+ // If this call site is now the same as the previous one, we can delete it
+ // as a duplicate.
+ if (*OldIt == *CI) {
+ Calls.erase(CI);
+ CI = OldIt;
+ ++NumDeleted;
+ }
+ }
+
+ //Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end());
+
+ // Track the number of call nodes merged away...
+ NumCallNodesMerged += NumDeleted;
+
+ DEBUG(if (NumDeleted)
+ std::cerr << "Merged " << NumDeleted << " call nodes.\n";);
+}
+
+
+// removeTriviallyDeadNodes - After the graph has been constructed, this method
+// removes all unreachable nodes that are created because they got merged with
+// other nodes in the graph. These nodes will all be trivially unreachable, so
+// we don't have to perform any non-trivial analysis here.
+//
+void DSGraph::removeTriviallyDeadNodes() {
+ TIME_REGION(X, "removeTriviallyDeadNodes");
+
+#if 0
+ /// NOTE: This code is disabled. This slows down DSA on 177.mesa
+ /// substantially!
+
+ // Loop over all of the nodes in the graph, calling getNode on each field.
+ // This will cause all nodes to update their forwarding edges, causing
+ // forwarded nodes to be delete-able.
+ { TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate");
+ for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) {
+ DSNode &N = *NI;
+ for (unsigned l = 0, e = N.getNumLinks(); l != e; ++l)
+ N.getLink(l*N.getPointerSize()).getNode();
+ }
+ }
+
+ // NOTE: This code is disabled. Though it should, in theory, allow us to
+ // remove more nodes down below, the scan of the scalar map is incredibly
+ // expensive for certain programs (with large SCCs). In the future, if we can
+ // make the scalar map scan more efficient, then we can reenable this.
+ { TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap");
+
+ // Likewise, forward any edges from the scalar nodes. While we are at it,
+ // clean house a bit.
+ for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){
+ I->second.getNode();
+ ++I;
+ }
+ }
+#endif
+ bool isGlobalsGraph = !GlobalsGraph;
+
+ for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) {
+ DSNode &Node = *NI;
+
+ // Do not remove *any* global nodes in the globals graph.
+ // This is a special case because such nodes may not have I, M, R flags set.
+ if (Node.isGlobalNode() && isGlobalsGraph) {
+ ++NI;
+ continue;
+ }
+
+ if (Node.isComplete() && !Node.isModified() && !Node.isRead()) {
+ // This is a useless node if it has no mod/ref info (checked above),
+ // outgoing edges (which it cannot, as it is not modified in this
+ // context), and it has no incoming edges. If it is a global node it may
+ // have all of these properties and still have incoming edges, due to the
+ // scalar map, so we check those now.
+ //
+ if (Node.getNumReferrers() == Node.getGlobalsList().size()) {
+ const std::vector<GlobalValue*> &Globals = Node.getGlobalsList();
+
+ // Loop through and make sure all of the globals are referring directly
+ // to the node...
+ for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
+ DSNode *N = getNodeForValue(Globals[j]).getNode();
+ assert(N == &Node && "ScalarMap doesn't match globals list!");
+ }
+
+ // Make sure NumReferrers still agrees, if so, the node is truly dead.
+ if (Node.getNumReferrers() == Globals.size()) {
+ for (unsigned j = 0, e = Globals.size(); j != e; ++j)
+ ScalarMap.erase(Globals[j]);
+ Node.makeNodeDead();
+ ++NumTrivialGlobalDNE;
+ }
+ }
+ }
+
+ if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) {
+ // This node is dead!
+ NI = Nodes.erase(NI); // Erase & remove from node list.
+ ++NumTrivialDNE;
+ } else {
+ ++NI;
+ }
+ }
+
+ removeIdenticalCalls(FunctionCalls);
+ removeIdenticalCalls(AuxFunctionCalls);
+}
+
+
+/// markReachableNodes - This method recursively traverses the specified
+/// DSNodes, marking any nodes which are reachable. All reachable nodes it adds
+/// to the set, which allows it to only traverse visited nodes once.
+///
+void DSNode::markReachableNodes(hash_set<const DSNode*> &ReachableNodes) const {
+ if (this == 0) return;
+ assert(getForwardNode() == 0 && "Cannot mark a forwarded node!");
+ if (ReachableNodes.insert(this).second) // Is newly reachable?
+ for (DSNode::const_edge_iterator I = edge_begin(), E = edge_end();
+ I != E; ++I)
+ I->getNode()->markReachableNodes(ReachableNodes);
+}
+
+void DSCallSite::markReachableNodes(hash_set<const DSNode*> &Nodes) const {
+ getRetVal().getNode()->markReachableNodes(Nodes);
+ if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes);
+
+ for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
+ getPtrArg(i).getNode()->markReachableNodes(Nodes);
+}
+
+// CanReachAliveNodes - Simple graph walker that recursively traverses the graph
+// looking for a node that is marked alive. If an alive node is found, return
+// true, otherwise return false. If an alive node is reachable, this node is
+// marked as alive...
+//
+static bool CanReachAliveNodes(DSNode *N, hash_set<const DSNode*> &Alive,
+ hash_set<const DSNode*> &Visited,
+ bool IgnoreGlobals) {
+ if (N == 0) return false;
+ assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!");
+
+ // If this is a global node, it will end up in the globals graph anyway, so we
+ // don't need to worry about it.
+ if (IgnoreGlobals && N->isGlobalNode()) return false;
+
+ // If we know that this node is alive, return so!
+ if (Alive.count(N)) return true;
+
+ // Otherwise, we don't think the node is alive yet, check for infinite
+ // recursion.
+ if (Visited.count(N)) return false; // Found a cycle
+ Visited.insert(N); // No recursion, insert into Visited...
+
+ for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
+ if (CanReachAliveNodes(I->getNode(), Alive, Visited, IgnoreGlobals)) {
+ N->markReachableNodes(Alive);
+ return true;
+ }
+ return false;
+}
+
+// CallSiteUsesAliveArgs - Return true if the specified call site can reach any
+// alive nodes.
+//
+static bool CallSiteUsesAliveArgs(const DSCallSite &CS,
+ hash_set<const DSNode*> &Alive,
+ hash_set<const DSNode*> &Visited,
+ bool IgnoreGlobals) {
+ if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited,
+ IgnoreGlobals))
+ return true;
+ if (CS.isIndirectCall() &&
+ CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals))
+ return true;
+ for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
+ if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited,
+ IgnoreGlobals))
+ return true;
+ return false;
+}
+
+// removeDeadNodes - Use a more powerful reachability analysis to eliminate
+// subgraphs that are unreachable. This often occurs because the data
+// structure doesn't "escape" into it's caller, and thus should be eliminated
+// from the caller's graph entirely. This is only appropriate to use when
+// inlining graphs.
+//
+void DSGraph::removeDeadNodes(unsigned Flags) {
+ DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK());
+
+ // Reduce the amount of work we have to do... remove dummy nodes left over by
+ // merging...
+ removeTriviallyDeadNodes();
+
+ TIME_REGION(X, "removeDeadNodes");
+
+ // FIXME: Merge non-trivially identical call nodes...
+
+ // Alive - a set that holds all nodes found to be reachable/alive.
+ hash_set<const DSNode*> Alive;
+ std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
+
+ // Copy and merge all information about globals to the GlobalsGraph if this is
+ // not a final pass (where unreachable globals are removed).
+ //
+ // Strip all alloca bits since the current function is only for the BU pass.
+ // Strip all incomplete bits since they are short-lived properties and they
+ // will be correctly computed when rematerializing nodes into the functions.
+ //
+ ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit |
+ DSGraph::StripIncompleteBit);
+
+ // Mark all nodes reachable by (non-global) scalar nodes as alive...
+{ TIME_REGION(Y, "removeDeadNodes:scalarscan");
+ for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end();
+ I != E; ++I)
+ if (isa<GlobalValue>(I->first)) { // Keep track of global nodes
+ assert(!I->second.isNull() && "Null global node?");
+ assert(I->second.getNode()->isGlobalNode() && "Should be a global node!");
+ GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
+
+ // Make sure that all globals are cloned over as roots.
+ if (!(Flags & DSGraph::RemoveUnreachableGlobals) && GlobalsGraph) {
+ DSGraph::ScalarMapTy::iterator SMI =
+ GlobalsGraph->getScalarMap().find(I->first);
+ if (SMI != GlobalsGraph->getScalarMap().end())
+ GGCloner.merge(SMI->second, I->second);
+ else
+ GGCloner.getClonedNH(I->second);
+ }
+ } else {
+ I->second.getNode()->markReachableNodes(Alive);
+ }
+}
+
+ // The return values are alive as well.
+ for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end();
+ I != E; ++I)
+ I->second.getNode()->markReachableNodes(Alive);
+
+ // Mark any nodes reachable by primary calls as alive...
+ for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
+ I->markReachableNodes(Alive);
+
+
+ // Now find globals and aux call nodes that are already live or reach a live
+ // value (which makes them live in turn), and continue till no more are found.
+ //
+ bool Iterate;
+ hash_set<const DSNode*> Visited;
+ hash_set<const DSCallSite*> AuxFCallsAlive;
+ do {
+ Visited.clear();
+ // If any global node points to a non-global that is "alive", the global is
+ // "alive" as well... Remove it from the GlobalNodes list so we only have
+ // unreachable globals in the list.
+ //
+ Iterate = false;
+ if (!(Flags & DSGraph::RemoveUnreachableGlobals))
+ for (unsigned i = 0; i != GlobalNodes.size(); ++i)
+ if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited,
+ Flags & DSGraph::RemoveUnreachableGlobals)) {
+ std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to...
+ GlobalNodes.pop_back(); // erase efficiently
+ Iterate = true;
+ }
+
+ // Mark only unresolvable call nodes for moving to the GlobalsGraph since
+ // call nodes that get resolved will be difficult to remove from that graph.
+ // The final unresolved call nodes must be handled specially at the end of
+ // the BU pass (i.e., in main or other roots of the call graph).
+ for (afc_iterator CI = afc_begin(), E = afc_end(); CI != E; ++CI)
+ if (!AuxFCallsAlive.count(&*CI) &&
+ (CI->isIndirectCall()
+ || CallSiteUsesAliveArgs(*CI, Alive, Visited,
+ Flags & DSGraph::RemoveUnreachableGlobals))) {
+ CI->markReachableNodes(Alive);
+ AuxFCallsAlive.insert(&*CI);
+ Iterate = true;
+ }
+ } while (Iterate);
+
+ // Move dead aux function calls to the end of the list
+ unsigned CurIdx = 0;
+ for (std::list<DSCallSite>::iterator CI = AuxFunctionCalls.begin(),
+ E = AuxFunctionCalls.end(); CI != E; )
+ if (AuxFCallsAlive.count(&*CI))
+ ++CI;
+ else {
+ // Copy and merge global nodes and dead aux call nodes into the
+ // GlobalsGraph, and all nodes reachable from those nodes. Update their
+ // target pointers using the GGCloner.
+ //
+ if (!(Flags & DSGraph::RemoveUnreachableGlobals))
+ GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(*CI, GGCloner));
+
+ AuxFunctionCalls.erase(CI++);
+ }
+
+ // We are finally done with the GGCloner so we can destroy it.
+ GGCloner.destroy();
+
+ // At this point, any nodes which are visited, but not alive, are nodes
+ // which can be removed. Loop over all nodes, eliminating completely
+ // unreachable nodes.
+ //
+ std::vector<DSNode*> DeadNodes;
+ DeadNodes.reserve(Nodes.size());
+ for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) {
+ DSNode *N = NI++;
+ assert(!N->isForwarding() && "Forwarded node in nodes list?");
+
+ if (!Alive.count(N)) {
+ Nodes.remove(N);
+ assert(!N->isForwarding() && "Cannot remove a forwarding node!");
+ DeadNodes.push_back(N);
+ N->dropAllReferences();
+ ++NumDNE;
+ }
+ }
+
+ // Remove all unreachable globals from the ScalarMap.
+ // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes.
+ // In either case, the dead nodes will not be in the set Alive.
+ for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
+ if (!Alive.count(GlobalNodes[i].second))
+ ScalarMap.erase(GlobalNodes[i].first);
+ else
+ assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global");
+
+ // Delete all dead nodes now since their referrer counts are zero.
+ for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i)
+ delete DeadNodes[i];
+
+ DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
+}
+
+void DSGraph::AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const {
+ assert(std::find(N->globals_begin(),N->globals_end(), GV) !=
+ N->globals_end() && "Global value not in node!");
+}
+
+void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const {
+ if (CS.isIndirectCall()) {
+ AssertNodeInGraph(CS.getCalleeNode());
+#if 0
+ if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() &&
+ CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty())
+ std::cerr << "WARNING: WEIRD CALL SITE FOUND!\n";
+#endif
+ }
+ AssertNodeInGraph(CS.getRetVal().getNode());
+ for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
+ AssertNodeInGraph(CS.getPtrArg(j).getNode());
+}
+
+void DSGraph::AssertCallNodesInGraph() const {
+ for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
+ AssertCallSiteInGraph(*I);
+}
+void DSGraph::AssertAuxCallNodesInGraph() const {
+ for (afc_iterator I = afc_begin(), E = afc_end(); I != E; ++I)
+ AssertCallSiteInGraph(*I);
+}
+
+void DSGraph::AssertGraphOK() const {
+ for (node_const_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
+ NI->assertOK();
+
+ for (ScalarMapTy::const_iterator I = ScalarMap.begin(),
+ E = ScalarMap.end(); I != E; ++I) {
+ assert(!I->second.isNull() && "Null node in scalarmap!");
+ AssertNodeInGraph(I->second.getNode());
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
+ assert(I->second.getNode()->isGlobalNode() &&
+ "Global points to node, but node isn't global?");
+ AssertNodeContainsGlobal(I->second.getNode(), GV);
+ }
+ }
+ AssertCallNodesInGraph();
+ AssertAuxCallNodesInGraph();
+
+ // Check that all pointer arguments to any functions in this graph have
+ // destinations.
+ for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(),
+ E = ReturnNodes.end();
+ RI != E; ++RI) {
+ Function &F = *RI->first;
+ for (Function::arg_iterator AI = F.arg_begin(); AI != F.arg_end(); ++AI)
+ if (isPointerType(AI->getType()))
+ assert(!getNodeForValue(AI).isNull() &&
+ "Pointer argument must be in the scalar map!");
+ }
+}
+
+/// computeNodeMapping - Given roots in two different DSGraphs, traverse the
+/// nodes reachable from the two graphs, computing the mapping of nodes from the
+/// first to the second graph. This mapping may be many-to-one (i.e. the first
+/// graph may have multiple nodes representing one node in the second graph),
+/// but it will not work if there is a one-to-many or many-to-many mapping.
+///
+void DSGraph::computeNodeMapping(const DSNodeHandle &NH1,
+ const DSNodeHandle &NH2, NodeMapTy &NodeMap,
+ bool StrictChecking) {
+ DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode();
+ if (N1 == 0 || N2 == 0) return;
+
+ DSNodeHandle &Entry = NodeMap[N1];
+ if (!Entry.isNull()) {
+ // Termination of recursion!
+ if (StrictChecking) {
+ assert(Entry.getNode() == N2 && "Inconsistent mapping detected!");
+ assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) ||
+ Entry.getNode()->isNodeCompletelyFolded()) &&
+ "Inconsistent mapping detected!");
+ }
+ return;
+ }
+
+ Entry.setTo(N2, NH2.getOffset()-NH1.getOffset());
+
+ // Loop over all of the fields that N1 and N2 have in common, recursively
+ // mapping the edges together now.
+ int N2Idx = NH2.getOffset()-NH1.getOffset();
+ unsigned N2Size = N2->getSize();
+ if (N2Size == 0) return; // No edges to map to.
+
+ for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) {
+ const DSNodeHandle &N1NH = N1->getLink(i);
+ // Don't call N2->getLink if not needed (avoiding crash if N2Idx is not
+ // aligned right).
+ if (!N1NH.isNull()) {
+ if (unsigned(N2Idx)+i < N2Size)
+ computeNodeMapping(N1NH, N2->getLink(N2Idx+i), NodeMap);
+ else
+ computeNodeMapping(N1NH,
+ N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap);
+ }
+ }
+}
+
+
+/// computeGToGGMapping - Compute the mapping of nodes in the global graph to
+/// nodes in this graph.
+void DSGraph::computeGToGGMapping(NodeMapTy &NodeMap) {
+ DSGraph &GG = *getGlobalsGraph();
+
+ DSScalarMap &SM = getScalarMap();
+ for (DSScalarMap::global_iterator I = SM.global_begin(),
+ E = SM.global_end(); I != E; ++I)
+ DSGraph::computeNodeMapping(SM[*I], GG.getNodeForValue(*I), NodeMap);
+}
+
+/// computeGGToGMapping - Compute the mapping of nodes in the global graph to
+/// nodes in this graph. Note that any uses of this method are probably bugs,
+/// unless it is known that the globals graph has been merged into this graph!
+void DSGraph::computeGGToGMapping(InvNodeMapTy &InvNodeMap) {
+ NodeMapTy NodeMap;
+ computeGToGGMapping(NodeMap);
+
+ while (!NodeMap.empty()) {
+ InvNodeMap.insert(std::make_pair(NodeMap.begin()->second,
+ NodeMap.begin()->first));
+ NodeMap.erase(NodeMap.begin());
+ }
+}
+
+
+/// computeCalleeCallerMapping - Given a call from a function in the current
+/// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the
+/// mapping of nodes from the callee to nodes in the caller.
+void DSGraph::computeCalleeCallerMapping(DSCallSite CS, const Function &Callee,
+ DSGraph &CalleeGraph,
+ NodeMapTy &NodeMap) {
+
+ DSCallSite CalleeArgs =
+ CalleeGraph.getCallSiteForArguments(const_cast<Function&>(Callee));
+
+ computeNodeMapping(CalleeArgs.getRetVal(), CS.getRetVal(), NodeMap);
+
+ unsigned NumArgs = CS.getNumPtrArgs();
+ if (NumArgs > CalleeArgs.getNumPtrArgs())
+ NumArgs = CalleeArgs.getNumPtrArgs();
+
+ for (unsigned i = 0; i != NumArgs; ++i)
+ computeNodeMapping(CalleeArgs.getPtrArg(i), CS.getPtrArg(i), NodeMap);
+
+ // Map the nodes that are pointed to by globals.
+ DSScalarMap &CalleeSM = CalleeGraph.getScalarMap();
+ DSScalarMap &CallerSM = getScalarMap();
+
+ if (CalleeSM.global_size() >= CallerSM.global_size()) {
+ for (DSScalarMap::global_iterator GI = CallerSM.global_begin(),
+ E = CallerSM.global_end(); GI != E; ++GI)
+ if (CalleeSM.global_count(*GI))
+ computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
+ } else {
+ for (DSScalarMap::global_iterator GI = CalleeSM.global_begin(),
+ E = CalleeSM.global_end(); GI != E; ++GI)
+ if (CallerSM.global_count(*GI))
+ computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
+ }
+}