aboutsummaryrefslogtreecommitdiff
path: root/docs/WritingAnLLVMPass.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/WritingAnLLVMPass.html')
-rw-r--r--docs/WritingAnLLVMPass.html1954
1 files changed, 0 insertions, 1954 deletions
diff --git a/docs/WritingAnLLVMPass.html b/docs/WritingAnLLVMPass.html
deleted file mode 100644
index af1ffa4fb7..0000000000
--- a/docs/WritingAnLLVMPass.html
+++ /dev/null
@@ -1,1954 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-<html>
-<head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Writing an LLVM Pass</title>
- <link rel="stylesheet" href="_static/llvm.css" type="text/css">
-</head>
-<body>
-
-<h1>
- Writing an LLVM Pass
-</h1>
-
-<ol>
- <li><a href="#introduction">Introduction - What is a pass?</a></li>
- <li><a href="#quickstart">Quick Start - Writing hello world</a>
- <ul>
- <li><a href="#makefile">Setting up the build environment</a></li>
- <li><a href="#basiccode">Basic code required</a></li>
- <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
- </ul></li>
- <li><a href="#passtype">Pass classes and requirements</a>
- <ul>
- <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
- <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
- <ul>
- <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
- </ul></li>
- <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
- <ul>
- <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
- &amp;)</tt> method</a></li>
- <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
- <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
- &amp;)</tt> method</a></li>
- </ul></li>
- <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
- <ul>
- <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
- &amp;)</tt> method</a></li>
- <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
- <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
- &amp;)</tt> method</a></li>
- </ul></li>
- <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
- <ul>
- <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
- LPPassManager &amp;)</tt> method</a></li>
- <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
- <li><a href="#doFinalization_loop">The <tt>doFinalization()
- </tt> method</a></li>
- </ul></li>
- <li><a href="#RegionPass">The <tt>RegionPass</tt> class</a>
- <ul>
- <li><a href="#doInitialization_region">The <tt>doInitialization(Region *,
- RGPassManager &amp;)</tt> method</a></li>
- <li><a href="#runOnRegion">The <tt>runOnRegion</tt> method</a></li>
- <li><a href="#doFinalization_region">The <tt>doFinalization()
- </tt> method</a></li>
- </ul></li>
- <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
- <ul>
- <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
- &amp;)</tt> method</a></li>
- <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
- method</a></li>
- <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
- &amp;)</tt> method</a></li>
- </ul></li>
- <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
- class</a>
- <ul>
- <li><a href="#runOnMachineFunction">The
- <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
- </ul></li>
- </ul>
- <li><a href="#registration">Pass Registration</a>
- <ul>
- <li><a href="#print">The <tt>print</tt> method</a></li>
- </ul></li>
- <li><a href="#interaction">Specifying interactions between passes</a>
- <ul>
- <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt>
- method</a></li>
- <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
- <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
- <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
- <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
-<tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a></li>
- </ul></li>
- <li><a href="#analysisgroup">Implementing Analysis Groups</a>
- <ul>
- <li><a href="#agconcepts">Analysis Group Concepts</a></li>
- <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
- </ul></li>
- <li><a href="#passStatistics">Pass Statistics</a>
- <li><a href="#passmanager">What PassManager does</a>
- <ul>
- <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
- </ul></li>
- <li><a href="#registering">Registering dynamically loaded passes</a>
- <ul>
- <li><a href="#registering_existing">Using existing registries</a></li>
- <li><a href="#registering_new">Creating new registries</a></li>
- </ul></li>
- <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
- <ul>
- <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
- <li><a href="#debugmisc">Miscellaneous Problems</a></li>
- </ul></li>
- <li><a href="#future">Future extensions planned</a>
- <ul>
- <li><a href="#SMP">Multithreaded LLVM</a></li>
- </ul></li>
-</ol>
-
-<div class="doc_author">
- <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
- <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="introduction">Introduction - What is a pass?</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
-passes are where most of the interesting parts of the compiler exist. Passes
-perform the transformations and optimizations that make up the compiler, they
-build the analysis results that are used by these transformations, and they are,
-above all, a structuring technique for compiler code.</p>
-
-<p>All LLVM passes are subclasses of the <tt><a
-href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
-class, which implement functionality by overriding virtual methods inherited
-from <tt>Pass</tt>. Depending on how your pass works, you should inherit from
-the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
-href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
-href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
-href="#LoopPass">LoopPass</a></tt>, or <tt><a
-href="#RegionPass">RegionPass</a></tt>, or <tt><a
-href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
-more information about what your pass does, and how it can be combined with
-other passes. One of the main features of the LLVM Pass Framework is that it
-schedules passes to run in an efficient way based on the constraints that your
-pass meets (which are indicated by which class they derive from).</p>
-
-<p>We start by showing you how to construct a pass, everything from setting up
-the code, to compiling, loading, and executing it. After the basics are down,
-more advanced features are discussed.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="quickstart">Quick Start - Writing hello world</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Here we describe how to write the "hello world" of passes. The "Hello" pass
-is designed to simply print out the name of non-external functions that exist in
-the program being compiled. It does not modify the program at all, it just
-inspects it. The source code and files for this pass are available in the LLVM
-source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="makefile">Setting up the build environment</a>
-</h3>
-
-<div>
-
- <p>First, configure and build LLVM. This needs to be done directly inside the
- LLVM source tree rather than in a separate objects directory.
- Next, you need to create a new directory somewhere in the LLVM source
- base. For this example, we'll assume that you made
- <tt>lib/Transforms/Hello</tt>. Finally, you must set up a build script
- (Makefile) that will compile the source code for the new pass. To do this,
- copy the following into <tt>Makefile</tt>:</p>
- <hr>
-
-<div class="doc_code"><pre>
-# Makefile for hello pass
-
-# Path to top level of LLVM hierarchy
-LEVEL = ../../..
-
-# Name of the library to build
-LIBRARYNAME = Hello
-
-# Make the shared library become a loadable module so the tools can
-# dlopen/dlsym on the resulting library.
-LOADABLE_MODULE = 1
-
-# Include the makefile implementation stuff
-include $(LEVEL)/Makefile.common
-</pre></div>
-
-<p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
-directory are to be compiled and linked together into a shared object
-<tt>$(LEVEL)/Debug+Asserts/lib/Hello.so</tt> that can be dynamically loaded by
-the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.
-If your operating system uses a suffix other than .so (such as windows or
-Mac OS/X), the appropriate extension will be used.</p>
-
-<p>If you are used CMake to build LLVM, see
-<a href="CMake.html#passdev">Developing an LLVM pass with CMake</a>.</p>
-
-<p>Now that we have the build scripts set up, we just need to write the code for
-the pass itself.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="basiccode">Basic code required</a>
-</h3>
-
-<div>
-
-<p>Now that we have a way to compile our new pass, we just have to write it.
-Start out with:</p>
-
-<div class="doc_code">
-<pre>
-<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
-<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
-<b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
-</pre>
-</div>
-
-<p>Which are needed because we are writing a <tt><a
-href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>,
-we are operating on <tt><a
-href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s,
-and we will be doing some printing.</p>
-
-<p>Next we have:</p>
-
-<div class="doc_code">
-<pre>
-<b>using namespace llvm;</b>
-</pre>
-</div>
-
-<p>... which is required because the functions from the include files
-live in the llvm namespace.</p>
-
-<p>Next we have:</p>
-
-<div class="doc_code">
-<pre>
-<b>namespace</b> {
-</pre>
-</div>
-
-<p>... which starts out an anonymous namespace. Anonymous namespaces are to C++
-what the "<tt>static</tt>" keyword is to C (at global scope). It makes the
-things declared inside of the anonymous namespace visible only to the current
-file. If you're not familiar with them, consult a decent C++ book for more
-information.</p>
-
-<p>Next, we declare our pass itself:</p>
-
-<div class="doc_code">
-<pre>
- <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
-</pre>
-</div>
-
-<p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
-href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
-The different builtin pass subclasses are described in detail <a
-href="#passtype">later</a>, but for now, know that <a
-href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate on a function at a
-time.</p>
-
-<div class="doc_code">
-<pre>
- static char ID;
- Hello() : FunctionPass(ID) {}
-</pre>
-</div>
-
-<p>This declares pass identifier used by LLVM to identify pass. This allows LLVM
-to avoid using expensive C++ runtime information.</p>
-
-<div class="doc_code">
-<pre>
- <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
- errs() &lt;&lt; "<i>Hello: </i>";
- errs().write_escaped(F.getName()) &lt;&lt; "\n";
- <b>return false</b>;
- }
- }; <i>// end of struct Hello</i>
-} <i>// end of anonymous namespace</i>
-</pre>
-</div>
-
-<p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
-which overloads an abstract virtual method inherited from <a
-href="#FunctionPass"><tt>FunctionPass</tt></a>. This is where we are supposed
-to do our thing, so we just print out our message with the name of each
-function.</p>
-
-<div class="doc_code">
-<pre>
-char Hello::ID = 0;
-</pre>
-</div>
-
-<p>We initialize pass ID here. LLVM uses ID's address to identify a pass, so
-initialization value is not important.</p>
-
-<div class="doc_code">
-<pre>
-static RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
- false /* Only looks at CFG */,
- false /* Analysis Pass */);
-</pre>
-</div>
-
-<p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>,
-giving it a command line argument "<tt>hello</tt>", and a name "<tt>Hello World
-Pass</tt>". The last two arguments describe its behavior: if a pass walks CFG
-without modifying it then the third argument is set to <tt>true</tt>; if a pass
-is an analysis pass, for example dominator tree pass, then <tt>true</tt> is
-supplied as the fourth argument.</p>
-
-<p>As a whole, the <tt>.cpp</tt> file looks like:</p>
-
-<div class="doc_code">
-<pre>
-<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
-<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
-<b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
-
-<b>using namespace llvm;</b>
-
-<b>namespace</b> {
- <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
-
- static char ID;
- Hello() : FunctionPass(ID) {}
-
- <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
- errs() &lt;&lt; "<i>Hello: </i>";
- errs().write_escaped(F.getName()) &lt;&lt; '\n';
- <b>return false</b>;
- }
-
- };
-}
-
-char Hello::ID = 0;
-static RegisterPass&lt;Hello&gt; X("hello", "Hello World Pass", false, false);
-</pre>
-</div>
-
-<p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
-command in the local directory and you should get a new file
-"<tt>Debug+Asserts/lib/Hello.so</tt>" under the top level directory of the LLVM
-source tree (not in the local directory). Note that everything in this file is
-contained in an anonymous namespace &mdash; this reflects the fact that passes
-are self contained units that do not need external interfaces (although they can
-have them) to be useful.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="running">Running a pass with <tt>opt</tt></a>
-</h3>
-
-<div>
-
-<p>Now that you have a brand new shiny shared object file, we can use the
-<tt>opt</tt> command to run an LLVM program through your pass. Because you
-registered your pass with <tt>RegisterPass</tt>, you will be able to
-use the <tt>opt</tt> tool to access it, once loaded.</p>
-
-<p>To test it, follow the example at the end of the <a
-href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
-LLVM. We can now run the bitcode file (<tt>hello.bc</tt>) for the program
-through our transformation like this (or course, any bitcode file will
-work):</p>
-
-<div class="doc_code"><pre>
-$ opt -load ../../../Debug+Asserts/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
-Hello: __main
-Hello: puts
-Hello: main
-</pre></div>
-
-<p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
-pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
-argument (which is one reason you need to <a href="#registration">register your
-pass</a>). Because the hello pass does not modify the program in any
-interesting way, we just throw away the result of <tt>opt</tt> (sending it to
-<tt>/dev/null</tt>).</p>
-
-<p>To see what happened to the other string you registered, try running
-<tt>opt</tt> with the <tt>-help</tt> option:</p>
-
-<div class="doc_code"><pre>
-$ opt -load ../../../Debug+Asserts/lib/Hello.so -help
-OVERVIEW: llvm .bc -&gt; .bc modular optimizer
-
-USAGE: opt [options] &lt;input bitcode&gt;
-
-OPTIONS:
- Optimizations available:
-...
- -globalopt - Global Variable Optimizer
- -globalsmodref-aa - Simple mod/ref analysis for globals
- -gvn - Global Value Numbering
- <b>-hello - Hello World Pass</b>
- -indvars - Induction Variable Simplification
- -inline - Function Integration/Inlining
- -insert-edge-profiling - Insert instrumentation for edge profiling
-...
-</pre></div>
-
-<p>The pass name gets added as the information string for your pass, giving some
-documentation to users of <tt>opt</tt>. Now that you have a working pass, you
-would go ahead and make it do the cool transformations you want. Once you get
-it all working and tested, it may become useful to find out how fast your pass
-is. The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
-line option (<tt>--time-passes</tt>) that allows you to get information about
-the execution time of your pass along with the other passes you queue up. For
-example:</p>
-
-<div class="doc_code"><pre>
-$ opt -load ../../../Debug+Asserts/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
-Hello: __main
-Hello: puts
-Hello: main
-===============================================================================
- ... Pass execution timing report ...
-===============================================================================
- Total Execution Time: 0.02 seconds (0.0479059 wall clock)
-
- ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass Name ---
- 0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode Writer
- 0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator Set Construction
- 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module Verifier
- <b> 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World Pass</b>
- 0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL
-</pre></div>
-
-<p>As you can see, our implementation above is pretty fast :). The additional
-passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
-that the LLVM emitted by your pass is still valid and well formed LLVM, which
-hasn't been broken somehow.</p>
-
-<p>Now that you have seen the basics of the mechanics behind passes, we can talk
-about some more details of how they work and how to use them.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="passtype">Pass classes and requirements</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>One of the first things that you should do when designing a new pass is to
-decide what class you should subclass for your pass. The <a
-href="#basiccode">Hello World</a> example uses the <tt><a
-href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
-did not discuss why or when this should occur. Here we talk about the classes
-available, from the most general to the most specific.</p>
-
-<p>When choosing a superclass for your Pass, you should choose the <b>most
-specific</b> class possible, while still being able to meet the requirements
-listed. This gives the LLVM Pass Infrastructure information necessary to
-optimize how passes are run, so that the resultant compiler isn't unnecessarily
-slow.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
-</h3>
-
-<div>
-
-<p>The most plain and boring type of pass is the "<tt><a
-href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
-class. This pass type is used for passes that do not have to be run, do not
-change state, and never need to be updated. This is not a normal type of
-transformation or analysis, but can provide information about the current
-compiler configuration.</p>
-
-<p>Although this pass class is very infrequently used, it is important for
-providing information about the current target machine being compiled for, and
-other static information that can affect the various transformations.</p>
-
-<p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
-invalidated, and are never "run".</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="ModulePass">The <tt>ModulePass</tt> class</a>
-</h3>
-
-<div>
-
-<p>The "<tt><a
-href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
-class is the most general of all superclasses that you can use. Deriving from
-<tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
-referring to function bodies in no predictable order, or adding and removing
-functions. Because nothing is known about the behavior of <tt>ModulePass</tt>
-subclasses, no optimization can be done for their execution.</p>
-
-<p>A module pass can use function level passes (e.g. dominators) using
-the getAnalysis interface
-<tt>getAnalysis&lt;DominatorTree&gt;(llvm::Function *)</tt> to provide the
-function to retrieve analysis result for, if the function pass does not require
-any module or immutable passes. Note that this can only be done for functions for which the
-analysis ran, e.g. in the case of dominators you should only ask for the
-DominatorTree for function definitions, not declarations.</p>
-
-<p>To write a correct <tt>ModulePass</tt> subclass, derive from
-<tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
-following signature:</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="runOnModule">The <tt>runOnModule</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> runOnModule(Module &amp;M) = 0;
-</pre></div>
-
-<p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
-It should return true if the module was modified by the transformation and
-false otherwise.</p>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
-</h3>
-
-<div>
-
-<p>The "<tt><a
-href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
-is used by passes that need to traverse the program bottom-up on the call graph
-(callees before callers). Deriving from CallGraphSCCPass provides some
-mechanics for building and traversing the CallGraph, but also allows the system
-to optimize execution of CallGraphSCCPass's. If your pass meets the
-requirements outlined below, and doesn't meet the requirements of a <tt><a
-href="#FunctionPass">FunctionPass</a></tt> or <tt><a
-href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
-<tt>CallGraphSCCPass</tt>.</p>
-
-<p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
-
-<p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
-
-<ol>
-
-<li>... <em>not allowed</em> to inspect or modify any <tt>Function</tt>s other
-than those in the current SCC and the direct callers and direct callees of the
-SCC.</li>
-
-<li>... <em>required</em> to preserve the current CallGraph object, updating it
-to reflect any changes made to the program.</li>
-
-<li>... <em>not allowed</em> to add or remove SCC's from the current Module,
-though they may change the contents of an SCC.</li>
-
-<li>... <em>allowed</em> to add or remove global variables from the current
-Module.</li>
-
-<li>... <em>allowed</em> to maintain state across invocations of
- <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
-</ol>
-
-<p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
-because it has to handle SCCs with more than one node in it. All of the virtual
-methods described below should return true if they modified the program, or
-false if they didn't.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doInitialization_scc">
- The <tt>doInitialization(CallGraph &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doInitialization(CallGraph &amp;CG);
-</pre></div>
-
-<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
-<tt>CallGraphSCCPass</tt>'s are not allowed to do. They can add and remove
-functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
-is designed to do simple initialization type of stuff that does not depend on
-the SCCs being processed. The <tt>doInitialization</tt> method call is not
-scheduled to overlap with any other pass executions (thus it should be very
-fast).</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> runOnSCC(CallGraphSCC &amp;SCC) = 0;
-</pre></div>
-
-<p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
-should return true if the module was modified by the transformation, false
-otherwise.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doFinalization_scc">
- The <tt>doFinalization(CallGraph &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doFinalization(CallGraph &amp;CG);
-</pre></div>
-
-<p>The <tt>doFinalization</tt> method is an infrequently used method that is
-called when the pass framework has finished calling <a
-href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
-program being compiled.</p>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
-</h3>
-
-<div>
-
-<p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
-href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
-subclasses do have a predictable, local behavior that can be expected by the
-system. All <tt>FunctionPass</tt> execute on each function in the program
-independent of all of the other functions in the program.
-<tt>FunctionPass</tt>'s do not require that they are executed in a particular
-order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
-
-<p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
-
-<ol>
-<li>Modify a Function other than the one currently being processed.</li>
-<li>Add or remove Function's from the current Module.</li>
-<li>Add or remove global variables from the current Module.</li>
-<li>Maintain state across invocations of
- <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
-</ol>
-
-<p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
-href="#basiccode">Hello World</a> pass for example). <tt>FunctionPass</tt>'s
-may overload three virtual methods to do their work. All of these methods
-should return true if they modified the program, or false if they didn't.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doInitialization_mod">
- The <tt>doInitialization(Module &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doInitialization(Module &amp;M);
-</pre></div>
-
-<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
-<tt>FunctionPass</tt>'s are not allowed to do. They can add and remove
-functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
-is designed to do simple initialization type of stuff that does not depend on
-the functions being processed. The <tt>doInitialization</tt> method call is not
-scheduled to overlap with any other pass executions (thus it should be very
-fast).</p>
-
-<p>A good example of how this method should be used is the <a
-href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
-pass. This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
-platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls. It
-uses the <tt>doInitialization</tt> method to get a reference to the malloc and
-free functions that it needs, adding prototypes to the module if necessary.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
-</pre></div><p>
-
-<p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
-the transformation or analysis work of your pass. As usual, a true value should
-be returned if the function is modified.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doFinalization_mod">
- The <tt>doFinalization(Module &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doFinalization(Module &amp;M);
-</pre></div>
-
-<p>The <tt>doFinalization</tt> method is an infrequently used method that is
-called when the pass framework has finished calling <a
-href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
-program being compiled.</p>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="LoopPass">The <tt>LoopPass</tt> class </a>
-</h3>
-
-<div>
-
-<p> All <tt>LoopPass</tt> execute on each loop in the function independent of
-all of the other loops in the function. <tt>LoopPass</tt> processes loops in
-loop nest order such that outer most loop is processed last. </p>
-
-<p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
-<tt>LPPassManager</tt> interface. Implementing a loop pass is usually
-straightforward. <tt>LoopPass</tt>'s may overload three virtual methods to
-do their work. All these methods should return true if they modified the
-program, or false if they didn't. </p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doInitialization_loop">
- The <tt>doInitialization(Loop *,LPPassManager &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
-</pre></div>
-
-<p>The <tt>doInitialization</tt> method is designed to do simple initialization
-type of stuff that does not depend on the functions being processed. The
-<tt>doInitialization</tt> method call is not scheduled to overlap with any
-other pass executions (thus it should be very fast). LPPassManager
-interface should be used to access Function or Module level analysis
-information.</p>
-
-</div>
-
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
-</pre></div><p>
-
-<p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
-the transformation or analysis work of your pass. As usual, a true value should
-be returned if the function is modified. <tt>LPPassManager</tt> interface
-should be used to update loop nest.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doFinalization();
-</pre></div>
-
-<p>The <tt>doFinalization</tt> method is an infrequently used method that is
-called when the pass framework has finished calling <a
-href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
-program being compiled. </p>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="RegionPass">The <tt>RegionPass</tt> class </a>
-</h3>
-
-<div>
-
-<p> <tt>RegionPass</tt> is similar to <a href="#LoopPass"><tt>LoopPass</tt></a>,
-but executes on each single entry single exit region in the function.
-<tt>RegionPass</tt> processes regions in nested order such that the outer most
-region is processed last. </p>
-
-<p> <tt>RegionPass</tt> subclasses are allowed to update the region tree by using
-the <tt>RGPassManager</tt> interface. You may overload three virtual methods of
-<tt>RegionPass</tt> to implement your own region pass. All these
-methods should return true if they modified the program, or false if they didn not.
-</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doInitialization_region">
- The <tt>doInitialization(Region *, RGPassManager &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doInitialization(Region *, RGPassManager &amp;RGM);
-</pre></div>
-
-<p>The <tt>doInitialization</tt> method is designed to do simple initialization
-type of stuff that does not depend on the functions being processed. The
-<tt>doInitialization</tt> method call is not scheduled to overlap with any
-other pass executions (thus it should be very fast). RPPassManager
-interface should be used to access Function or Module level analysis
-information.</p>
-
-</div>
-
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="runOnRegion">The <tt>runOnRegion</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> runOnRegion(Region *, RGPassManager &amp;RGM) = 0;
-</pre></div><p>
-
-<p>The <tt>runOnRegion</tt> method must be implemented by your subclass to do
-the transformation or analysis work of your pass. As usual, a true value should
-be returned if the region is modified. <tt>RGPassManager</tt> interface
-should be used to update region tree.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doFinalization_region">The <tt>doFinalization()</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doFinalization();
-</pre></div>
-
-<p>The <tt>doFinalization</tt> method is an infrequently used method that is
-called when the pass framework has finished calling <a
-href="#runOnRegion"><tt>runOnRegion</tt></a> for every region in the
-program being compiled. </p>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
-</h3>
-
-<div>
-
-<p><tt>BasicBlockPass</tt>'s are just like <a
-href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
-their scope of inspection and modification to a single basic block at a time.
-As such, they are <b>not</b> allowed to do any of the following:</p>
-
-<ol>
-<li>Modify or inspect any basic blocks outside of the current one</li>
-<li>Maintain state across invocations of
- <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
-<li>Modify the control flow graph (by altering terminator instructions)</li>
-<li>Any of the things forbidden for
- <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
-</ol>
-
-<p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
-optimizations. They may override the same <a
-href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
-href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
-href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doInitialization_fn">
- The <tt>doInitialization(Function &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doInitialization(Function &amp;F);
-</pre></div>
-
-<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
-<tt>BasicBlockPass</tt>'s are not allowed to do, but that
-<tt>FunctionPass</tt>'s can. The <tt>doInitialization</tt> method is designed
-to do simple initialization that does not depend on the
-BasicBlocks being processed. The <tt>doInitialization</tt> method call is not
-scheduled to overlap with any other pass executions (thus it should be very
-fast).</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
-</pre></div>
-
-<p>Override this function to do the work of the <tt>BasicBlockPass</tt>. This
-function is not allowed to inspect or modify basic blocks other than the
-parameter, and are not allowed to modify the CFG. A true value must be returned
-if the basic block is modified.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="doFinalization_fn">
- The <tt>doFinalization(Function &amp;)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> doFinalization(Function &amp;F);
-</pre></div>
-
-<p>The <tt>doFinalization</tt> method is an infrequently used method that is
-called when the pass framework has finished calling <a
-href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
-program being compiled. This can be used to perform per-function
-finalization.</p>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
-</h3>
-
-<div>
-
-<p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
-executes on the machine-dependent representation of each LLVM function in the
-program.</p>
-
-<p>Code generator passes are registered and initialized specially by
-<tt>TargetMachine::addPassesToEmitFile</tt> and similar routines, so they
-cannot generally be run from the <tt>opt</tt> or <tt>bugpoint</tt>
-commands.</p>
-
-<p>A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
-the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
-<tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
-<tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
-
-<ol>
-<li>Modify or create any LLVM IR Instructions, BasicBlocks, Arguments,
- Functions, GlobalVariables, GlobalAliases, or Modules.</li>
-<li>Modify a MachineFunction other than the one currently being processed.</li>
-<li>Maintain state across invocations of <a
-href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
-data)</li>
-</ol>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="runOnMachineFunction">
- The <tt>runOnMachineFunction(MachineFunction &amp;MF)</tt> method
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
-</pre></div>
-
-<p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
-<tt>MachineFunctionPass</tt>; that is, you should override this method to do the
-work of your <tt>MachineFunctionPass</tt>.</p>
-
-<p>The <tt>runOnMachineFunction</tt> method is called on every
-<tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
-<tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
-representation of the function. If you want to get at the LLVM <tt>Function</tt>
-for the <tt>MachineFunction</tt> you're working on, use
-<tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
-remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
-<tt>MachineFunctionPass</tt>.</p>
-
-</div>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="registration">Pass registration</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
-pass registration works, and discussed some of the reasons that it is used and
-what it does. Here we discuss how and why passes are registered.</p>
-
-<p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
-template. The template parameter is the name of the pass that is to be used on
-the command line to specify that the pass should be added to a program (for
-example, with <tt>opt</tt> or <tt>bugpoint</tt>). The first argument is the
-name of the pass, which is to be used for the <tt>-help</tt> output of
-programs, as
-well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
-
-<p>If you want your pass to be easily dumpable, you should
-implement the virtual <tt>print</tt> method:</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="print">The <tt>print</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
-</pre></div>
-
-<p>The <tt>print</tt> method must be implemented by "analyses" in order to print
-a human readable version of the analysis results. This is useful for debugging
-an analysis itself, as well as for other people to figure out how an analysis
-works. Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
-
-<p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
-and the <tt>Module</tt> parameter gives a pointer to the top level module of the
-program that has been analyzed. Note however that this pointer may be null in
-certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
-debugger), so it should only be used to enhance debug output, it should not be
-depended on.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="interaction">Specifying interactions between passes</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
-that passes interact with each other correctly. Because <tt>PassManager</tt>
-tries to <a href="#passmanager">optimize the execution of passes</a> it must
-know how the passes interact with each other and what dependencies exist between
-the various passes. To track this, each pass can declare the set of passes that
-are required to be executed before the current pass, and the passes which are
-invalidated by the current pass.</p>
-
-<p>Typically this functionality is used to require that analysis results are
-computed before your pass is run. Running arbitrary transformation passes can
-invalidate the computed analysis results, which is what the invalidation set
-specifies. If a pass does not implement the <tt><a
-href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
-having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
-</pre></div>
-
-<p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
-invalidated sets may be specified for your transformation. The implementation
-should fill in the <tt><a
-href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
-object with information about which passes are required and not invalidated. To
-do this, a pass may call any of the following methods on the AnalysisUsage
-object:</p>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="AU::addRequired">
- The <tt>AnalysisUsage::addRequired&lt;&gt;</tt>
- and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods
- </a>
-</h4>
-
-<div>
-<p>
-If your pass requires a previous pass to be executed (an analysis for example),
-it can use one of these methods to arrange for it to be run before your pass.
-LLVM has many different types of analyses and passes that can be required,
-spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
-Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
-be no critical edges in the CFG when your pass has been run.
-</p>
-
-<p>
-Some analyses chain to other analyses to do their job. For example, an <a
-href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
-href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes. In
-cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
-used instead of the <tt>addRequired</tt> method. This informs the PassManager
-that the transitively required pass should be alive as long as the requiring
-pass is.
-</p>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="AU::addPreserved">
- The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method
- </a>
-</h4>
-
-<div>
-<p>
-One of the jobs of the PassManager is to optimize how and when analyses are run.
-In particular, it attempts to avoid recomputing data unless it needs to. For
-this reason, passes are allowed to declare that they preserve (i.e., they don't
-invalidate) an existing analysis if it's available. For example, a simple
-constant folding pass would not modify the CFG, so it can't possibly affect the
-results of dominator analysis. By default, all passes are assumed to invalidate
-all others.
-</p>
-
-<p>
-The <tt>AnalysisUsage</tt> class provides several methods which are useful in
-certain circumstances that are related to <tt>addPreserved</tt>. In particular,
-the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
-not modify the LLVM program at all (which is true for analyses), and the
-<tt>setPreservesCFG</tt> method can be used by transformations that change
-instructions in the program but do not modify the CFG or terminator instructions
-(note that this property is implicitly set for <a
-href="#BasicBlockPass">BasicBlockPass</a>'s).
-</p>
-
-<p>
-<tt>addPreserved</tt> is particularly useful for transformations like
-<tt>BreakCriticalEdges</tt>. This pass knows how to update a small set of loop
-and dominator related analyses if they exist, so it can preserve them, despite
-the fact that it hacks on the CFG.
-</p>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="AU::examples">
- Example implementations of <tt>getAnalysisUsage</tt>
- </a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
-<i>// This example modifies the program, but does not modify the CFG</i>
-<b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
- AU.setPreservesCFG();
- AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
-}
-</pre></div>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="getAnalysis">
- The <tt>getAnalysis&lt;&gt;</tt> and
- <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods
- </a>
-</h4>
-
-<div>
-
-<p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
-your class, providing you with access to the passes that you declared that you
-required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
-method. It takes a single template argument that specifies which pass class you
-want, and returns a reference to that pass. For example:</p>
-
-<div class="doc_code"><pre>
-bool LICM::runOnFunction(Function &amp;F) {
- LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
- ...
-}
-</pre></div>
-
-<p>This method call returns a reference to the pass desired. You may get a
-runtime assertion failure if you attempt to get an analysis that you did not
-declare as required in your <a
-href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation. This
-method can be called by your <tt>run*</tt> method implementation, or by any
-other local method invoked by your <tt>run*</tt> method.
-
-A module level pass can use function level analysis info using this interface.
-For example:</p>
-
-<div class="doc_code"><pre>
-bool ModuleLevelPass::runOnModule(Module &amp;M) {
- ...
- DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
- ...
-}
-</pre></div>
-
-<p>In above example, runOnFunction for DominatorTree is called by pass manager
-before returning a reference to the desired pass.</p>
-
-<p>
-If your pass is capable of updating analyses if they exist (e.g.,
-<tt>BreakCriticalEdges</tt>, as described above), you can use the
-<tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis
-if it is active. For example:</p>
-
-<div class="doc_code"><pre>
-...
-if (DominatorSet *DS = getAnalysisIfAvailable&lt;DominatorSet&gt;()) {
- <i>// A DominatorSet is active. This code will update it.</i>
-}
-...
-</pre></div>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="analysisgroup">Implementing Analysis Groups</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Now that we understand the basics of how passes are defined, how they are
-used, and how they are required from other passes, it's time to get a little bit
-fancier. All of the pass relationships that we have seen so far are very
-simple: one pass depends on one other specific pass to be run before it can run.
-For many applications, this is great, for others, more flexibility is
-required.</p>
-
-<p>In particular, some analyses are defined such that there is a single simple
-interface to the analysis results, but multiple ways of calculating them.
-Consider alias analysis for example. The most trivial alias analysis returns
-"may alias" for any alias query. The most sophisticated analysis a
-flow-sensitive, context-sensitive interprocedural analysis that can take a
-significant amount of time to execute (and obviously, there is a lot of room
-between these two extremes for other implementations). To cleanly support
-situations like this, the LLVM Pass Infrastructure supports the notion of
-Analysis Groups.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="agconcepts">Analysis Group Concepts</a>
-</h4>
-
-<div>
-
-<p>An Analysis Group is a single simple interface that may be implemented by
-multiple different passes. Analysis Groups can be given human readable names
-just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
-class. An analysis group may have one or more implementations, one of which is
-the "default" implementation.</p>
-
-<p>Analysis groups are used by client passes just like other passes are: the
-<tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
-In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
-scans the available passes to see if any implementations of the analysis group
-are available. If none is available, the default implementation is created for
-the pass to use. All standard rules for <A href="#interaction">interaction
-between passes</a> still apply.</p>
-
-<p>Although <a href="#registration">Pass Registration</a> is optional for normal
-passes, all analysis group implementations must be registered, and must use the
-<A href="#registerag"><tt>INITIALIZE_AG_PASS</tt></a> template to join the
-implementation pool. Also, a default implementation of the interface
-<b>must</b> be registered with <A
-href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
-
-<p>As a concrete example of an Analysis Group in action, consider the <a
-href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
-analysis group. The default implementation of the alias analysis interface (the
-<tt><a
-href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
-pass) just does a few simple checks that don't require significant analysis to
-compute (such as: two different globals can never alias each other, etc).
-Passes that use the <tt><a
-href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
-interface (for example the <tt><a
-href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
-not care which implementation of alias analysis is actually provided, they just
-use the designated interface.</p>
-
-<p>From the user's perspective, commands work just like normal. Issuing the
-command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
-instantiated and added to the pass sequence. Issuing the command '<tt>opt
--somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
-<tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
-hypothetical example) instead.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
-</h4>
-
-<div>
-
-<p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
-group itself, while the <tt>INITIALIZE_AG_PASS</tt> is used to add pass
-implementations to the analysis group. First,
-an analysis group should be registered, with a human readable name
-provided for it.
-Unlike registration of passes, there is no command line argument to be specified
-for the Analysis Group Interface itself, because it is "abstract":</p>
-
-<div class="doc_code"><pre>
-<b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
-</pre></div>
-
-<p>Once the analysis is registered, passes can declare that they are valid
-implementations of the interface by using the following code:</p>
-
-<div class="doc_code"><pre>
-<b>namespace</b> {
- //<i> Declare that we implement the AliasAnalysis interface</i>
- INITIALIZE_AG_PASS(FancyAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>somefancyaa</i>",
- "<i>A more complex alias analysis implementation</i>",
- false, // <i>Is CFG Only?</i>
- true, // <i>Is Analysis?</i>
- false); // <i>Is default Analysis Group implementation?</i>
-}
-</pre></div>
-
-<p>This just shows a class <tt>FancyAA</tt> that
-uses the <tt>INITIALIZE_AG_PASS</tt> macro both to register and
-to "join" the <tt><a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
-analysis group. Every implementation of an analysis group should join using
-this macro.</p>
-
-<div class="doc_code"><pre>
-<b>namespace</b> {
- //<i> Declare that we implement the AliasAnalysis interface</i>
- INITIALIZE_AG_PASS(BasicAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>basicaa</i>",
- "<i>Basic Alias Analysis (default AA impl)</i>",
- false, // <i>Is CFG Only?</i>
- true, // <i>Is Analysis?</i>
- true); // <i>Is default Analysis Group implementation?</i>
-}
-</pre></div>
-
-<p>Here we show how the default implementation is specified (using the final
-argument to the <tt>INITIALIZE_AG_PASS</tt> template). There must be exactly
-one default implementation available at all times for an Analysis Group to be
-used. Only default implementation can derive from <tt>ImmutablePass</tt>.
-Here we declare that the
- <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
-pass is the default implementation for the interface.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="passStatistics">Pass Statistics</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-<p>The <a
-href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
-class is designed to be an easy way to expose various success
-metrics from passes. These statistics are printed at the end of a
-run, when the -stats command line option is enabled on the command
-line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details.
-
-</div>
-
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="passmanager">What PassManager does</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The <a
-href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
-<a
-href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
-takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
-are set up correctly, and then schedules passes to run efficiently. All of the
-LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
-passes.</p>
-
-<p>The <tt>PassManager</tt> does two main things to try to reduce the execution
-time of a series of passes:</p>
-
-<ol>
-<li><b>Share analysis results</b> - The PassManager attempts to avoid
-recomputing analysis results as much as possible. This means keeping track of
-which analyses are available already, which analyses get invalidated, and which
-analyses are needed to be run for a pass. An important part of work is that the
-<tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
-it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
-results as soon as they are no longer needed.</li>
-
-<li><b>Pipeline the execution of passes on the program</b> - The
-<tt>PassManager</tt> attempts to get better cache and memory usage behavior out
-of a series of passes by pipelining the passes together. This means that, given
-a series of consecutive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
-will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
-the first function, then all of the <a
-href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
-etc... until the entire program has been run through the passes.
-
-<p>This improves the cache behavior of the compiler, because it is only touching
-the LLVM program representation for a single function at a time, instead of
-traversing the entire program. It reduces the memory consumption of compiler,
-because, for example, only one <a
-href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
-needs to be calculated at a time. This also makes it possible to implement
-some <a
-href="#SMP">interesting enhancements</a> in the future.</p></li>
-
-</ol>
-
-<p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
-much information it has about the behaviors of the passes it is scheduling. For
-example, the "preserved" set is intentionally conservative in the face of an
-unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
-Not implementing when it should be implemented will have the effect of not
-allowing any analysis results to live across the execution of your pass.</p>
-
-<p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
-options that is useful for debugging pass execution, seeing how things work, and
-diagnosing when you should be preserving more analyses than you currently are
-(To get information about all of the variants of the <tt>--debug-pass</tt>
-option, just type '<tt>opt -help-hidden</tt>').</p>
-
-<p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
-how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
-Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
-
-<div class="doc_code"><pre>
-$ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
-Module Pass Manager
- Function Pass Manager
- Dominator Set Construction
- Immediate Dominators Construction
- Global Common Subexpression Elimination
--- Immediate Dominators Construction
--- Global Common Subexpression Elimination
- Natural Loop Construction
- Loop Invariant Code Motion
--- Natural Loop Construction
--- Loop Invariant Code Motion
- Module Verifier
--- Dominator Set Construction
--- Module Verifier
- Bitcode Writer
---Bitcode Writer
-</pre></div>
-
-<p>This output shows us when passes are constructed and when the analysis
-results are known to be dead (prefixed with '<tt>--</tt>'). Here we see that
-GCSE uses dominator and immediate dominator information to do its job. The LICM
-pass uses natural loop information, which uses dominator sets, but not immediate
-dominators. Because immediate dominators are no longer useful after the GCSE
-pass, it is immediately destroyed. The dominator sets are then reused to
-compute natural loop information, which is then used by the LICM pass.</p>
-
-<p>After the LICM pass, the module verifier runs (which is automatically added
-by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
-resultant LLVM code is well formed. After it finishes, the dominator set
-information is destroyed, after being computed once, and shared by three
-passes.</p>
-
-<p>Lets see how this changes when we run the <a href="#basiccode">Hello
-World</a> pass in between the two passes:</p>
-
-<div class="doc_code"><pre>
-$ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
-Module Pass Manager
- Function Pass Manager
- Dominator Set Construction
- Immediate Dominators Construction
- Global Common Subexpression Elimination
-<b>-- Dominator Set Construction</b>
--- Immediate Dominators Construction
--- Global Common Subexpression Elimination
-<b> Hello World Pass
--- Hello World Pass
- Dominator Set Construction</b>
- Natural Loop Construction
- Loop Invariant Code Motion
--- Natural Loop Construction
--- Loop Invariant Code Motion
- Module Verifier
--- Dominator Set Construction
--- Module Verifier
- Bitcode Writer
---Bitcode Writer
-Hello: __main
-Hello: puts
-Hello: main
-</pre></div>
-
-<p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
-Dominator Set pass, even though it doesn't modify the code at all! To fix this,
-we need to add the following <a
-href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
-
-<div class="doc_code"><pre>
-<i>// We don't modify the program, so we preserve all analyses</i>
-<b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
- AU.setPreservesAll();
-}
-</pre></div>
-
-<p>Now when we run our pass, we get this output:</p>
-
-<div class="doc_code"><pre>
-$ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
-Pass Arguments: -gcse -hello -licm
-Module Pass Manager
- Function Pass Manager
- Dominator Set Construction
- Immediate Dominators Construction
- Global Common Subexpression Elimination
--- Immediate Dominators Construction
--- Global Common Subexpression Elimination
- Hello World Pass
--- Hello World Pass
- Natural Loop Construction
- Loop Invariant Code Motion
--- Loop Invariant Code Motion
--- Natural Loop Construction
- Module Verifier
--- Dominator Set Construction
--- Module Verifier
- Bitcode Writer
---Bitcode Writer
-Hello: __main
-Hello: puts
-Hello: main
-</pre></div>
-
-<p>Which shows that we don't accidentally invalidate dominator information
-anymore, and therefore do not have to compute it twice.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
-</h4>
-
-<div>
-
-<div class="doc_code"><pre>
- <b>virtual void</b> releaseMemory();
-</pre></div>
-
-<p>The <tt>PassManager</tt> automatically determines when to compute analysis
-results, and how long to keep them around for. Because the lifetime of the pass
-object itself is effectively the entire duration of the compilation process, we
-need some way to free analysis results when they are no longer useful. The
-<tt>releaseMemory</tt> virtual method is the way to do this.</p>
-
-<p>If you are writing an analysis or any other pass that retains a significant
-amount of state (for use by another pass which "requires" your pass and uses the
-<a href="#getAnalysis">getAnalysis</a> method) you should implement
-<tt>releaseMemory</tt> to, well, release the memory allocated to maintain this
-internal state. This method is called after the <tt>run*</tt> method for the
-class, before the next call of <tt>run*</tt> in your pass.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="registering">Registering dynamically loaded passes</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p><i>Size matters</i> when constructing production quality tools using llvm,
-both for the purposes of distribution, and for regulating the resident code size
-when running on the target system. Therefore, it becomes desirable to
-selectively use some passes, while omitting others and maintain the flexibility
-to change configurations later on. You want to be able to do all this, and,
-provide feedback to the user. This is where pass registration comes into
-play.</p>
-
-<p>The fundamental mechanisms for pass registration are the
-<tt>MachinePassRegistry</tt> class and subclasses of
-<tt>MachinePassRegistryNode</tt>.</p>
-
-<p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
-<tt>MachinePassRegistryNode</tt> objects. This instance maintains the list and
-communicates additions and deletions to the command line interface.</p>
-
-<p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
-information provided about a particular pass. This information includes the
-command line name, the command help string and the address of the function used
-to create an instance of the pass. A global static constructor of one of these
-instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
-the static destructor <i>unregisters</i>. Thus a pass that is statically linked
-in the tool will be registered at start up. A dynamically loaded pass will
-register on load and unregister at unload.</p>
-
-<!-- _______________________________________________________________________ -->
-<h3>
- <a name="registering_existing">Using existing registries</a>
-</h3>
-
-<div>
-
-<p>There are predefined registries to track instruction scheduling
-(<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
-machine passes. Here we will describe how to <i>register</i> a register
-allocator machine pass.</p>
-
-<p>Implement your register allocator machine pass. In your register allocator
-<tt>.cpp</tt> file add the following include;</p>
-
-<div class="doc_code"><pre>
-#include "llvm/CodeGen/RegAllocRegistry.h"
-</pre></div>
-
-<p>Also in your register allocator .cpp file, define a creator function in the
-form; </p>
-
-<div class="doc_code"><pre>
-FunctionPass *createMyRegisterAllocator() {
- return new MyRegisterAllocator();
-}
-</pre></div>
-
-<p>Note that the signature of this function should match the type of
-<tt>RegisterRegAlloc::FunctionPassCtor</tt>. In the same file add the
-"installing" declaration, in the form;</p>
-
-<div class="doc_code"><pre>
-static RegisterRegAlloc myRegAlloc("myregalloc",
- "my register allocator help string",
- createMyRegisterAllocator);
-</pre></div>
-
-<p>Note the two spaces prior to the help string produces a tidy result on the
--help query.</p>
-
-<div class="doc_code"><pre>
-$ llc -help
- ...
- -regalloc - Register allocator to use (default=linearscan)
- =linearscan - linear scan register allocator
- =local - local register allocator
- =simple - simple register allocator
- =myregalloc - my register allocator help string
- ...
-</pre></div>
-
-<p>And that's it. The user is now free to use <tt>-regalloc=myregalloc</tt> as
-an option. Registering instruction schedulers is similar except use the
-<tt>RegisterScheduler</tt> class. Note that the
-<tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
-<tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
-
-<p>To force the load/linking of your register allocator into the llc/lli tools,
-add your creator function's global declaration to "Passes.h" and add a "pseudo"
-call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
-
-</div>
-
-
-<!-- _______________________________________________________________________ -->
-<h3>
- <a name="registering_new">Creating new registries</a>
-</h3>
-
-<div>
-
-<p>The easiest way to get started is to clone one of the existing registries; we
-recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>. The key things to modify
-are the class name and the <tt>FunctionPassCtor</tt> type.</p>
-
-<p>Then you need to declare the registry. Example: if your pass registry is
-<tt>RegisterMyPasses</tt> then define;</p>
-
-<div class="doc_code"><pre>
-MachinePassRegistry RegisterMyPasses::Registry;
-</pre></div>
-
-<p>And finally, declare the command line option for your passes. Example:</p>
-
-<div class="doc_code"><pre>
-cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
- RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
-MyPassOpt("mypass",
- cl::init(&amp;createDefaultMyPass),
- cl::desc("my pass option help"));
-</pre></div>
-
-<p>Here the command option is "mypass", with createDefaultMyPass as the default
-creator.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="debughints">Using GDB with dynamically loaded passes</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
-should be. First of all, you can't set a breakpoint in a shared object that has
-not been loaded yet, and second of all there are problems with inlined functions
-in shared objects. Here are some suggestions to debugging your pass with
-GDB.</p>
-
-<p>For sake of discussion, I'm going to assume that you are debugging a
-transformation invoked by <tt>opt</tt>, although nothing described here depends
-on that.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="breakpoint">Setting a breakpoint in your pass</a>
-</h4>
-
-<div>
-
-<p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
-
-<div class="doc_code"><pre>
-$ <b>gdb opt</b>
-GNU gdb 5.0
-Copyright 2000 Free Software Foundation, Inc.
-GDB is free software, covered by the GNU General Public License, and you are
-welcome to change it and/or distribute copies of it under certain conditions.
-Type "show copying" to see the conditions.
-There is absolutely no warranty for GDB. Type "show warranty" for details.
-This GDB was configured as "sparc-sun-solaris2.6"...
-(gdb)
-</pre></div>
-
-<p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
-time to load. Be patient. Since we cannot set a breakpoint in our pass yet
-(the shared object isn't loaded until runtime), we must execute the process, and
-have it stop before it invokes our pass, but after it has loaded the shared
-object. The most foolproof way of doing this is to set a breakpoint in
-<tt>PassManager::run</tt> and then run the process with the arguments you
-want:</p>
-
-<div class="doc_code"><pre>
-(gdb) <b>break llvm::PassManager::run</b>
-Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
-(gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]</b>
-Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
-Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
-70 bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
-(gdb)
-</pre></div>
-
-<p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
-now free to set breakpoints in your pass so that you can trace through execution
-or do other standard debugging stuff.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="debugmisc">Miscellaneous Problems</a>
-</h4>
-
-<div>
-
-<p>Once you have the basics down, there are a couple of problems that GDB has,
-some with solutions, some without.</p>
-
-<ul>
-<li>Inline functions have bogus stack information. In general, GDB does a
-pretty good job getting stack traces and stepping through inline functions.
-When a pass is dynamically loaded however, it somehow completely loses this
-capability. The only solution I know of is to de-inline a function (move it
-from the body of a class to a .cpp file).</li>
-
-<li>Restarting the program breaks breakpoints. After following the information
-above, you have succeeded in getting some breakpoints planted in your pass. Nex
-thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
-and you start getting errors about breakpoints being unsettable. The only way I
-have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
-already set in your pass, run the program, and re-set the breakpoints once
-execution stops in <tt>PassManager::run</tt>.</li>
-
-</ul>
-
-<p>Hopefully these tips will help with common case debugging situations. If
-you'd like to contribute some tips of your own, just contact <a
-href="mailto:sabre@nondot.org">Chris</a>.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="future">Future extensions planned</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
-some nifty stuff, there are things we'd like to add in the future. Here is
-where we are going:</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="SMP">Multithreaded LLVM</a>
-</h4>
-
-<div>
-
-<p>Multiple CPU machines are becoming more common and compilation can never be
-fast enough: obviously we should allow for a multithreaded compiler. Because of
-the semantics defined for passes above (specifically they cannot maintain state
-across invocations of their <tt>run*</tt> methods), a nice clean way to
-implement a multithreaded compiler would be for the <tt>PassManager</tt> class
-to create multiple instances of each pass object, and allow the separate
-instances to be hacking on different parts of the program at the same time.</p>
-
-<p>This implementation would prevent each of the passes from having to implement
-multithreaded constructs, requiring only the LLVM core to have locking in a few
-places (for global resources). Although this is a simple extension, we simply
-haven't had time (or multiprocessor machines, thus a reason) to implement this.
-Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
-
- <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
- <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
- Last modified: $Date$
-</address>
-
-</body>
-</html>