aboutsummaryrefslogtreecommitdiff
path: root/docs/ProgrammersManual.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/ProgrammersManual.html')
-rw-r--r--docs/ProgrammersManual.html2282
1 files changed, 2282 insertions, 0 deletions
diff --git a/docs/ProgrammersManual.html b/docs/ProgrammersManual.html
new file mode 100644
index 0000000000..e4d50039f6
--- /dev/null
+++ b/docs/ProgrammersManual.html
@@ -0,0 +1,2282 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+ <title>LLVM Programmer's Manual</title>
+ <link rel="stylesheet" href="llvm.css" type="text/css">
+</head>
+<body>
+
+<div class="doc_title">
+ LLVM Programmer's Manual
+</div>
+
+<ol>
+ <li><a href="#introduction">Introduction</a></li>
+ <li><a href="#general">General Information</a>
+ <ul>
+ <li><a href="#stl">The C++ Standard Template Library</a></li>
+<!--
+ <li>The <tt>-time-passes</tt> option</li>
+ <li>How to use the LLVM Makefile system</li>
+ <li>How to write a regression test</li>
+
+-->
+ </ul>
+ </li>
+ <li><a href="#apis">Important and useful LLVM APIs</a>
+ <ul>
+ <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
+and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
+ <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt>
+option</a>
+ <ul>
+ <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
+and the <tt>-debug-only</tt> option</a> </li>
+ </ul>
+ </li>
+ <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
+option</a></li>
+<!--
+ <li>The <tt>InstVisitor</tt> template
+ <li>The general graph API
+-->
+ <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
+ </ul>
+ </li>
+ <li><a href="#common">Helpful Hints for Common Operations</a>
+ <ul>
+ <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
+ <ul>
+ <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
+in a <tt>Function</tt></a> </li>
+ <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
+in a <tt>BasicBlock</tt></a> </li>
+ <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
+in a <tt>Function</tt></a> </li>
+ <li><a href="#iterate_convert">Turning an iterator into a
+class pointer</a> </li>
+ <li><a href="#iterate_complex">Finding call sites: a more
+complex example</a> </li>
+ <li><a href="#calls_and_invokes">Treating calls and invokes
+the same way</a> </li>
+ <li><a href="#iterate_chains">Iterating over def-use &amp;
+use-def chains</a> </li>
+ </ul>
+ </li>
+ <li><a href="#simplechanges">Making simple changes</a>
+ <ul>
+ <li><a href="#schanges_creating">Creating and inserting new
+ <tt>Instruction</tt>s</a> </li>
+ <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
+ <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
+with another <tt>Value</tt></a> </li>
+ </ul>
+ </li>
+<!--
+ <li>Working with the Control Flow Graph
+ <ul>
+ <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
+ <li>
+ <li>
+ </ul>
+-->
+ </ul>
+ </li>
+
+ <li><a href="#advanced">Advanced Topics</a>
+ <ul>
+ <li><a href="#TypeResolve">LLVM Type Resolution</a>
+ <ul>
+ <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
+ <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
+ <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
+ <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
+ </ul></li>
+
+ <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
+ </ul></li>
+
+ <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
+ <ul>
+ <li><a href="#Value">The <tt>Value</tt> class</a>
+ <ul>
+ <li><a href="#User">The <tt>User</tt> class</a>
+ <ul>
+ <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
+ <ul>
+ <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt> class</a></li>
+ </ul>
+ </li>
+ <li><a href="#Module">The <tt>Module</tt> class</a></li>
+ <li><a href="#Constant">The <tt>Constant</tt> class</a>
+ <ul>
+ <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
+ <ul>
+ <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
+ <li><a href="#Function">The <tt>Function</tt> class</a></li>
+ <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
+ </ul>
+ </li>
+ </ul>
+ </li>
+ </ul>
+ </li>
+ <li><a href="#Type">The <tt>Type</tt> class</a> </li>
+ <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
+ </ul>
+ </li>
+ </ul>
+ </li>
+</ol>
+
+<div class="doc_author">
+ <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
+ <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
+ <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>, and
+ <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="introduction">Introduction </a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This document is meant to highlight some of the important classes and
+interfaces available in the LLVM source-base. This manual is not
+intended to explain what LLVM is, how it works, and what LLVM code looks
+like. It assumes that you know the basics of LLVM and are interested
+in writing transformations or otherwise analyzing or manipulating the
+code.</p>
+
+<p>This document should get you oriented so that you can find your
+way in the continuously growing source code that makes up the LLVM
+infrastructure. Note that this manual is not intended to serve as a
+replacement for reading the source code, so if you think there should be
+a method in one of these classes to do something, but it's not listed,
+check the source. Links to the <a href="/doxygen/">doxygen</a> sources
+are provided to make this as easy as possible.</p>
+
+<p>The first section of this document describes general information that is
+useful to know when working in the LLVM infrastructure, and the second describes
+the Core LLVM classes. In the future this manual will be extended with
+information describing how to use extension libraries, such as dominator
+information, CFG traversal routines, and useful utilities like the <tt><a
+href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="general">General Information</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This section contains general information that is useful if you are working
+in the LLVM source-base, but that isn't specific to any particular API.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="stl">The C++ Standard Template Library</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
+perhaps much more than you are used to, or have seen before. Because of
+this, you might want to do a little background reading in the
+techniques used and capabilities of the library. There are many good
+pages that discuss the STL, and several books on the subject that you
+can get, so it will not be discussed in this document.</p>
+
+<p>Here are some useful links:</p>
+
+<ol>
+
+<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
+reference</a> - an excellent reference for the STL and other parts of the
+standard C++ library.</li>
+
+<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
+O'Reilly book in the making. It has a decent
+Standard Library
+Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been
+published.</li>
+
+<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
+Questions</a></li>
+
+<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
+Contains a useful <a
+href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
+STL</a>.</li>
+
+<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
+Page</a></li>
+
+<li><a href="http://64.78.49.204/">
+Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
+the book).</a></li>
+
+</ol>
+
+<p>You are also encouraged to take a look at the <a
+href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
+to write maintainable code more than where to put your curly braces.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="stl">Other useful references</a>
+</div>
+
+<div class="doc_text">
+
+<ol>
+<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
+Branch and Tag Primer</a></li>
+<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
+static and shared libraries across platforms</a></li>
+</ol>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="apis">Important and useful LLVM APIs</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Here we highlight some LLVM APIs that are generally useful and good to
+know about when writing transformations.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
+</div>
+
+<div class="doc_text">
+
+<p>The LLVM source-base makes extensive use of a custom form of RTTI.
+These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
+operator, but they don't have some drawbacks (primarily stemming from
+the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
+have a v-table). Because they are used so often, you must know what they
+do and how they work. All of these templates are defined in the <a
+ href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
+file (note that you very rarely have to include this file directly).</p>
+
+<dl>
+ <dt><tt>isa&lt;&gt;</tt>: </dt>
+
+ <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
+ "<tt>instanceof</tt>" operator. It returns true or false depending on whether
+ a reference or pointer points to an instance of the specified class. This can
+ be very useful for constraint checking of various sorts (example below).</dd>
+
+ <dt><tt>cast&lt;&gt;</tt>: </dt>
+
+ <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
+ converts a pointer or reference from a base class to a derived cast, causing
+ an assertion failure if it is not really an instance of the right type. This
+ should be used in cases where you have some information that makes you believe
+ that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
+ and <tt>cast&lt;&gt;</tt> template is:
+
+ <pre>
+ static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
+ if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
+ return true;
+
+ <i>// Otherwise, it must be an instruction...</i>
+ return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
+ }
+ </pre>
+
+ <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
+ by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
+ operator.</p>
+
+ </dd>
+
+ <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
+
+ <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
+ checks to see if the operand is of the specified type, and if so, returns a
+ pointer to it (this operator does not work with references). If the operand is
+ not of the correct type, a null pointer is returned. Thus, this works very
+ much like the <tt>dynamic_cast</tt> operator in C++, and should be used in the
+ same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used
+ in an <tt>if</tt> statement or some other flow control statement like this:
+
+ <pre>
+ if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
+ ...
+ }
+ </pre>
+
+ <p> This form of the <tt>if</tt> statement effectively combines together a
+ call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
+ statement, which is very convenient.</p>
+
+ <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
+ <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.
+ In particular you should not use big chained <tt>if/then/else</tt> blocks to
+ check for lots of different variants of classes. If you find yourself
+ wanting to do this, it is much cleaner and more efficient to use the
+ <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
+
+ </dd>
+
+ <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
+
+ <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
+ <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
+ an argument (which it then propagates). This can sometimes be useful,
+ allowing you to combine several null checks into one.</dd>
+
+ <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
+
+ <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
+ <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
+ as an argument (which it then propagates). This can sometimes be useful,
+ allowing you to combine several null checks into one.</dd>
+
+ </dl>
+
+<p>These five templates can be used with any classes, whether they have a
+v-table or not. To add support for these templates, you simply need to add
+<tt>classof</tt> static methods to the class you are interested casting
+to. Describing this is currently outside the scope of this document, but there
+are lots of examples in the LLVM source base.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
+</div>
+
+<div class="doc_text">
+
+<p>Often when working on your pass you will put a bunch of debugging printouts
+and other code into your pass. After you get it working, you want to remove
+it... but you may need it again in the future (to work out new bugs that you run
+across).</p>
+
+<p> Naturally, because of this, you don't want to delete the debug printouts,
+but you don't want them to always be noisy. A standard compromise is to comment
+them out, allowing you to enable them if you need them in the future.</p>
+
+<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
+file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
+this problem. Basically, you can put arbitrary code into the argument of the
+<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
+tool) is run with the '<tt>-debug</tt>' command line argument:</p>
+
+ <pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
+
+<p>Then you can run your pass like this:</p>
+
+ <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
+
+<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
+to not have to create "yet another" command line option for the debug output for
+your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
+so they do not cause a performance impact at all (for the same reason, they
+should also not contain side-effects!).</p>
+
+<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
+enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
+"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
+program hasn't been started yet, you can always just run it with
+<tt>-debug</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
+ the <tt>-debug-only</tt> option</a>
+</div>
+
+<div class="doc_text">
+
+<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
+just turns on <b>too much</b> information (such as when working on the code
+generator). If you want to enable debug information with more fine-grained
+control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
+option as follows:</p>
+
+ <pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
+
+<p>Then you can run your pass like this:</p>
+
+ <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
+
+<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
+a file, to specify the debug type for the entire module (if you do this before
+you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
+<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
+"bar", because there is no system in place to ensure that names do not
+conflict. If two different modules use the same string, they will all be turned
+on when the name is specified. This allows, for example, all debug information
+for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
+even if the source lives in multiple files.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
+ option</a>
+</div>
+
+<div class="doc_text">
+
+<p>The "<tt><a
+href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
+provides a template named <tt>Statistic</tt> that is used as a unified way to
+keep track of what the LLVM compiler is doing and how effective various
+optimizations are. It is useful to see what optimizations are contributing to
+making a particular program run faster.</p>
+
+<p>Often you may run your pass on some big program, and you're interested to see
+how many times it makes a certain transformation. Although you can do this with
+hand inspection, or some ad-hoc method, this is a real pain and not very useful
+for big programs. Using the <tt>Statistic</tt> template makes it very easy to
+keep track of this information, and the calculated information is presented in a
+uniform manner with the rest of the passes being executed.</p>
+
+<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
+it are as follows:</p>
+
+<ol>
+ <li>Define your statistic like this:
+ <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
+
+ <p>The <tt>Statistic</tt> template can emulate just about any data-type,
+ but if you do not specify a template argument, it defaults to acting like
+ an unsigned int counter (this is usually what you want).</p></li>
+
+ <li>Whenever you make a transformation, bump the counter:
+ <pre> ++NumXForms; // I did stuff<br></pre>
+ </li>
+ </ol>
+
+ <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
+ statistics gathered, use the '<tt>-stats</tt>' option:</p>
+
+ <pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
+
+ <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
+suite, it gives a report that looks like this:</p>
+
+ <pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
+
+<p>Obviously, with so many optimizations, having a unified framework for this
+stuff is very nice. Making your pass fit well into the framework makes it more
+maintainable and useful.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="ViewGraph">Viewing graphs while debugging code</a>
+</div>
+
+<div class="doc_text">
+
+<p>Several of the important data structures in LLVM are graphs: for example
+CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
+LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
+<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
+DAGs</a>. In many cases, while debugging various parts of the compiler, it is
+nice to instantly visualize these graphs.</p>
+
+<p>LLVM provides several callbacks that are available in a debug build to do
+exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
+the current LLVM tool will pop up a window containing the CFG for the function
+where each basic block is a node in the graph, and each node contains the
+instructions in the block. Similarly, there also exists
+<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
+<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
+and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
+you can usually use something like "<tt>call DAG.viewGraph()</tt>" to pop
+up a window. Alternatively, you can sprinkle calls to these functions in your
+code in places you want to debug.</p>
+
+<p>Getting this to work requires a small amount of configuration. On Unix
+systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
+toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
+Mac OS/X, download and install the Mac OS/X <a
+href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
+<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or whereever you install
+it) to your path. Once in your system and path are set up, rerun the LLVM
+configure script and rebuild LLVM to enable this functionality.</p>
+
+</div>
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="common">Helpful Hints for Common Operations</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This section describes how to perform some very simple transformations of
+LLVM code. This is meant to give examples of common idioms used, showing the
+practical side of LLVM transformations. <p> Because this is a "how-to" section,
+you should also read about the main classes that you will be working with. The
+<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
+and descriptions of the main classes that you should know about.</p>
+
+</div>
+
+<!-- NOTE: this section should be heavy on example code -->
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="inspection">Basic Inspection and Traversal Routines</a>
+</div>
+
+<div class="doc_text">
+
+<p>The LLVM compiler infrastructure have many different data structures that may
+be traversed. Following the example of the C++ standard template library, the
+techniques used to traverse these various data structures are all basically the
+same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
+method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
+function returns an iterator pointing to one past the last valid element of the
+sequence, and there is some <tt>XXXiterator</tt> data type that is common
+between the two operations.</p>
+
+<p>Because the pattern for iteration is common across many different aspects of
+the program representation, the standard template library algorithms may be used
+on them, and it is easier to remember how to iterate. First we show a few common
+examples of the data structures that need to be traversed. Other data
+structures are traversed in very similar ways.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="iterate_function">Iterating over the </a><a
+ href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
+ href="#Function"><tt>Function</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
+transform in some way; in particular, you'd like to manipulate its
+<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
+the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
+an example that prints the name of a <tt>BasicBlock</tt> and the number of
+<tt>Instruction</tt>s it contains:</p>
+
+ <pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
+
+<p>Note that i can be used as if it were a pointer for the purposes of
+invoking member functions of the <tt>Instruction</tt> class. This is
+because the indirection operator is overloaded for the iterator
+classes. In the above code, the expression <tt>i-&gt;size()</tt> is
+exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="iterate_basicblock">Iterating over the </a><a
+ href="#Instruction"><tt>Instruction</tt></a>s in a <a
+ href="#BasicBlock"><tt>BasicBlock</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
+easy to iterate over the individual instructions that make up
+<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
+a <tt>BasicBlock</tt>:</p>
+
+<pre>
+ // blk is a pointer to a BasicBlock instance
+ for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
+ // the next statement works since operator&lt;&lt;(ostream&amp;,...)
+ // is overloaded for Instruction&amp;
+ std::cerr &lt;&lt; *i &lt;&lt; "\n";
+</pre>
+
+<p>However, this isn't really the best way to print out the contents of a
+<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
+anything you'll care about, you could have just invoked the print routine on the
+basic block itself: <tt>std::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="iterate_institer">Iterating over the </a><a
+ href="#Instruction"><tt>Instruction</tt></a>s in a <a
+ href="#Function"><tt>Function</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
+<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
+<tt>InstIterator</tt> should be used instead. You'll need to include <a
+href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
+and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
+small example that shows how to dump all instructions in a function to the standard error stream:<p>
+
+ <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
+Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
+worklist with its initial contents. For example, if you wanted to
+initialize a worklist to contain all instructions in a <tt>Function</tt>
+F, all you would need to do is something like:
+ <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
+
+<p>The STL set <tt>worklist</tt> would now contain all instructions in the
+<tt>Function</tt> pointed to by F.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="iterate_convert">Turning an iterator into a class pointer (and
+ vice-versa)</a>
+</div>
+
+<div class="doc_text">
+
+<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
+instance when all you've got at hand is an iterator. Well, extracting
+a reference or a pointer from an iterator is very straight-forward.
+Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
+is a <tt>BasicBlock::const_iterator</tt>:</p>
+
+ <pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
+
+<p>However, the iterators you'll be working with in the LLVM framework are
+special: they will automatically convert to a ptr-to-instance type whenever they
+need to. Instead of dereferencing the iterator and then taking the address of
+the result, you can simply assign the iterator to the proper pointer type and
+you get the dereference and address-of operation as a result of the assignment
+(behind the scenes, this is a result of overloading casting mechanisms). Thus
+the last line of the last example,</p>
+
+ <pre>Instruction* pinst = &amp;*i;</pre>
+
+<p>is semantically equivalent to</p>
+
+ <pre>Instruction* pinst = i;</pre>
+
+<p>It's also possible to turn a class pointer into the corresponding iterator,
+and this is a constant time operation (very efficient). The following code
+snippet illustrates use of the conversion constructors provided by LLVM
+iterators. By using these, you can explicitly grab the iterator of something
+without actually obtaining it via iteration over some structure:</p>
+
+ <pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+ <a name="iterate_complex">Finding call sites: a slightly more complex
+ example</a>
+</div>
+
+<div class="doc_text">
+
+<p>Say that you're writing a FunctionPass and would like to count all the
+locations in the entire module (that is, across every <tt>Function</tt>) where a
+certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
+learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
+much more straight-forward manner, but this example will allow us to explore how
+you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
+is what we want to do:</p>
+
+ <pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
+
+<p>And the actual code is (remember, since we're writing a
+<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
+override the <tt>runOnFunction</tt> method...):</p>
+
+ <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
+ href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
+ href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+ <a name="calls_and_invokes">Treating calls and invokes the same way</a>
+</div>
+
+<div class="doc_text">
+
+<p>You may have noticed that the previous example was a bit oversimplified in
+that it did not deal with call sites generated by 'invoke' instructions. In
+this, and in other situations, you may find that you want to treat
+<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
+most-specific common base class is <tt>Instruction</tt>, which includes lots of
+less closely-related things. For these cases, LLVM provides a handy wrapper
+class called <a
+href="http://llvm.cs.uiuc.edu/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
+It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
+methods that provide functionality common to <tt>CallInst</tt>s and
+<tt>InvokeInst</tt>s.</p>
+
+<p>This class has "value semantics": it should be passed by value, not by
+reference and it should not be dynamically allocated or deallocated using
+<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
+assignable and constructable, with costs equivalents to that of a bare pointer.
+If you look at its definition, it has only a single pointer member.</p>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+ <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
+</div>
+
+<div class="doc_text">
+
+<p>Frequently, we might have an instance of the <a
+href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
+determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
+<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
+For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
+particular function <tt>foo</tt>. Finding all of the instructions that
+<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
+of <tt>F</tt>:</p>
+
+ <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> cerr &lt;&lt; "F is used in instruction:\n";<br> cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
+
+<p>Alternately, it's common to have an instance of the <a
+href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
+<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
+<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
+<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
+all of the values that a particular instruction uses (that is, the operands of
+the particular <tt>Instruction</tt>):</p>
+
+ <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
+
+<!--
+ def-use chains ("finding all users of"): Value::use_begin/use_end
+ use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
+-->
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="simplechanges">Making simple changes</a>
+</div>
+
+<div class="doc_text">
+
+<p>There are some primitive transformation operations present in the LLVM
+infrastructure that are worth knowing about. When performing
+transformations, it's fairly common to manipulate the contents of basic
+blocks. This section describes some of the common methods for doing so
+and gives example code.</p>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+ <a name="schanges_creating">Creating and inserting new
+ <tt>Instruction</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p><i>Instantiating Instructions</i></p>
+
+<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
+constructor for the kind of instruction to instantiate and provide the necessary
+parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
+(const-ptr-to) <tt>Type</tt>. Thus:</p>
+
+<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
+
+<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
+one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
+subclass is likely to have varying default parameters which change the semantics
+of the instruction, so refer to the <a
+href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
+Instruction</a> that you're interested in instantiating.</p>
+
+<p><i>Naming values</i></p>
+
+<p>It is very useful to name the values of instructions when you're able to, as
+this facilitates the debugging of your transformations. If you end up looking
+at generated LLVM machine code, you definitely want to have logical names
+associated with the results of instructions! By supplying a value for the
+<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
+associate a logical name with the result of the instruction's execution at
+runtime. For example, say that I'm writing a transformation that dynamically
+allocates space for an integer on the stack, and that integer is going to be
+used as some kind of index by some other code. To accomplish this, I place an
+<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
+<tt>Function</tt>, and I'm intending to use it within the same
+<tt>Function</tt>. I might do:</p>
+
+ <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
+
+<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
+execution value, which is a pointer to an integer on the runtime stack.</p>
+
+<p><i>Inserting instructions</i></p>
+
+<p>There are essentially two ways to insert an <tt>Instruction</tt>
+into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
+
+<ul>
+ <li>Insertion into an explicit instruction list
+
+ <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
+ <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
+ before <tt>*pi</tt>, we do the following: </p>
+
+ <pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
+
+ <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
+ the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
+ classes provide constructors which take a pointer to a
+ <tt>BasicBlock</tt> to be appended to. For example code that
+ looked like: </p>
+
+ <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().push_back(newInst); // appends newInst to pb<br></pre>
+
+ <p>becomes: </p>
+
+ <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(..., pb);<br></pre>
+
+ <p>which is much cleaner, especially if you are creating
+ long instruction streams.</p></li>
+
+ <li>Insertion into an implicit instruction list
+
+ <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
+ are implicitly associated with an existing instruction list: the instruction
+ list of the enclosing basic block. Thus, we could have accomplished the same
+ thing as the above code without being given a <tt>BasicBlock</tt> by doing:
+ </p>
+
+ <pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
+
+ <p>In fact, this sequence of steps occurs so frequently that the
+ <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
+ constructors which take (as a default parameter) a pointer to an
+ <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
+ precede. That is, <tt>Instruction</tt> constructors are capable of
+ inserting the newly-created instance into the <tt>BasicBlock</tt> of a
+ provided instruction, immediately before that instruction. Using an
+ <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
+ parameter, the above code becomes:</p>
+
+ <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
+
+ <p>which is much cleaner, especially if you're creating a lot of
+instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
+</ul>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+ <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
+</div>
+
+<div class="doc_text">
+
+<p>Deleting an instruction from an existing sequence of instructions that form a
+<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
+you must have a pointer to the instruction that you wish to delete. Second, you
+need to obtain the pointer to that instruction's basic block. You use the
+pointer to the basic block to get its list of instructions and then use the
+erase function to remove your instruction. For example:</p>
+
+ <pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
+ href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
+
+</div>
+
+<!--_______________________________________________________________________-->
+<div class="doc_subsubsection">
+ <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
+ <tt>Value</tt></a>
+</div>
+
+<div class="doc_text">
+
+<p><i>Replacing individual instructions</i></p>
+
+<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
+permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
+and <tt>ReplaceInstWithInst</tt>.</p>
+
+<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
+
+<ul>
+ <li><tt>ReplaceInstWithValue</tt>
+
+ <p>This function replaces all uses (within a basic block) of a given
+ instruction with a value, and then removes the original instruction. The
+ following example illustrates the replacement of the result of a particular
+ <tt>AllocaInst</tt> that allocates memory for a single integer with a null
+ pointer to an integer.</p>
+
+ <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
+
+ <li><tt>ReplaceInstWithInst</tt>
+
+ <p>This function replaces a particular instruction with another
+ instruction. The following example illustrates the replacement of one
+ <tt>AllocaInst</tt> with another.</p>
+
+ <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
+</ul>
+
+<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
+
+<p>You can use <tt>Value::replaceAllUsesWith</tt> and
+<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
+doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
+and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
+information.</p>
+
+<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
+include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
+ReplaceInstWithValue, ReplaceInstWithInst -->
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="advanced">Advanced Topics</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+<p>
+This section describes some of the advanced or obscure API's that most clients
+do not need to be aware of. These API's tend manage the inner workings of the
+LLVM system, and only need to be accessed in unusual circumstances.
+</p>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="TypeResolve">LLVM Type Resolution</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The LLVM type system has a very simple goal: allow clients to compare types for
+structural equality with a simple pointer comparison (aka a shallow compare).
+This goal makes clients much simpler and faster, and is used throughout the LLVM
+system.
+</p>
+
+<p>
+Unfortunately achieving this goal is not a simple matter. In particular,
+recursive types and late resolution of opaque types makes the situation very
+difficult to handle. Fortunately, for the most part, our implementation makes
+most clients able to be completely unaware of the nasty internal details. The
+primary case where clients are exposed to the inner workings of it are when
+building a recursive type. In addition to this case, the LLVM bytecode reader,
+assembly parser, and linker also have to be aware of the inner workings of this
+system.
+</p>
+
+<p>
+For our purposes below, we need three concepts. First, an "Opaque Type" is
+exactly as defined in the <a href="LangRef.html#t_opaque">language
+reference</a>. Second an "Abstract Type" is any type which includes an
+opaque type as part of its type graph (for example "<tt>{ opaque, int }</tt>").
+Third, a concrete type is a type that is not an abstract type (e.g. "<tt>[ int,
+float }</tt>").
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="BuildRecType">Basic Recursive Type Construction</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Because the most common question is "how do I build a recursive type with LLVM",
+we answer it now and explain it as we go. Here we include enough to cause this
+to be emitted to an output .ll file:
+</p>
+
+<pre>
+ %mylist = type { %mylist*, int }
+</pre>
+
+<p>
+To build this, use the following LLVM APIs:
+</p>
+
+<pre>
+ //<i> Create the initial outer struct.</i>
+ <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
+ std::vector&lt;const Type*&gt; Elts;
+ Elts.push_back(PointerType::get(StructTy));
+ Elts.push_back(Type::IntTy);
+ StructType *NewSTy = StructType::get(Elts);
+
+ //<i> At this point, NewSTy = "{ opaque*, int }". Tell VMCore that</i>
+ //<i> the struct and the opaque type are actually the same.</i>
+ cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
+
+ // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
+ // <i>kept up-to-date.</i>
+ NewSTy = cast&lt;StructType&gt;(StructTy.get());
+
+ // <i>Add a name for the type to the module symbol table (optional).</i>
+ MyModule-&gt;addTypeName("mylist", NewSTy);
+</pre>
+
+<p>
+This code shows the basic approach used to build recursive types: build a
+non-recursive type using 'opaque', then use type unification to close the cycle.
+The type unification step is performed by the <tt><a
+ref="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
+described next. After that, we describe the <a
+href="#PATypeHolder">PATypeHolder class</a>.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
+</div>
+
+<div class="doc_text">
+<p>
+The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
+While this method is actually a member of the DerivedType class, it is most
+often used on OpaqueType instances. Type unification is actually a recursive
+process. After unification, types can become structurally isomorphic to
+existing types, and all duplicates are deleted (to preserve pointer equality).
+</p>
+
+<p>
+In the example above, the OpaqueType object is definitely deleted.
+Additionally, if there is an "{ \2*, int}" type already created in the system,
+the pointer and struct type created are <b>also</b> deleted. Obviously whenever
+a type is deleted, any "Type*" pointers in the program are invalidated. As
+such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
+live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
+types can never move or be deleted). To deal with this, the <a
+href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
+reference to a possibly refined type, and the <a
+href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
+complex datastructures.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="PATypeHolder">The PATypeHolder Class</a>
+</div>
+
+<div class="doc_text">
+<p>
+PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
+happily goes about nuking types that become isomorphic to existing types, it
+automatically updates all PATypeHolder objects to point to the new type. In the
+example above, this allows the code to maintain a pointer to the resultant
+resolved recursive type, even though the Type*'s are potentially invalidated.
+</p>
+
+<p>
+PATypeHolder is an extremely light-weight object that uses a lazy union-find
+implementation to update pointers. For example the pointer from a Value to its
+Type is maintained by PATypeHolder objects.
+</p>
+
+</div>
+
+<!-- ______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+Some data structures need more to perform more complex updates when types get
+resolved. The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
+move and potentially merge type planes in its representation when a pointer
+changes.</p>
+
+<p>
+To support this, a class can derive from the AbstractTypeUser class. This class
+allows it to get callbacks when certain types are resolved. To register to get
+callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
+methods can be called on a type. Note that these methods only work for <i>
+abstract</i> types. Concrete types (those that do not include an opaque objects
+somewhere) can never be refined.
+</p>
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
+</div>
+
+<div class="doc_text">
+<p>This class provides a symbol table that the <a
+href="#Function"><tt>Function</tt></a> and <a href="#Module">
+<tt>Module</tt></a> classes use for naming definitions. The symbol table can
+provide a name for any <a href="#Value"><tt>Value</tt></a> or <a
+href="#Type"><tt>Type</tt></a>. <tt>SymbolTable</tt> is an abstract data
+type. It hides the data it contains and provides access to it through a
+controlled interface.</p>
+
+<p>Note that the symbol table class is should not be directly accessed by most
+clients. It should only be used when iteration over the symbol table names
+themselves are required, which is very special purpose. Note that not all LLVM
+<a href="#Value">Value</a>s have names, and those without names (i.e. they have
+an empty name) do not exist in the symbol table.
+</p>
+
+<p>To use the <tt>SymbolTable</tt> well, you need to understand the
+structure of the information it holds. The class contains two
+<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of
+<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>.
+The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
+are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
+however, are stored in a single dimension and accessed only by name.</p>
+
+<p>The interface of this class provides three basic types of operations:
+<ol>
+ <li><em>Accessors</em>. Accessors provide read-only access to information
+ such as finding a value for a name with the
+ <a href="#SymbolTable_lookup">lookup</a> method.</li>
+ <li><em>Mutators</em>. Mutators allow the user to add information to the
+ <tt>SymbolTable</tt> with methods like
+ <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
+ <li><em>Iterators</em>. Iterators allow the user to traverse the content
+ of the symbol table in well defined ways, such as the method
+ <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
+</ol>
+
+<h3>Accessors</h3>
+<dl>
+ <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
+ </dt>
+ <dd>The <tt>lookup</tt> method searches the type plane given by the
+ <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
+ If a suitable <tt>Value</tt> is not found, null is returned.</dd>
+
+ <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
+ <dd>The <tt>lookupType</tt> method searches through the types for a
+ <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
+ is not found, null is returned.</dd>
+
+ <dt><tt>bool hasTypes() const</tt>:</dt>
+ <dd>This function returns true if an entry has been made into the type
+ map.</dd>
+
+ <dt><tt>bool isEmpty() const</tt>:</dt>
+ <dd>This function returns true if both the value and types maps are
+ empty</dd>
+</dl>
+
+<h3>Mutators</h3>
+<dl>
+ <dt><tt>void insert(Value *Val)</tt>:</dt>
+ <dd>This method adds the provided value to the symbol table. The Value must
+ have both a name and a type which are extracted and used to place the value
+ in the correct type plane under the value's name.</dd>
+
+ <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
+ <dd> Inserts a constant or type into the symbol table with the specified
+ name. There can be a many to one mapping between names and constants
+ or types.</dd>
+
+ <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
+ <dd> Inserts a type into the symbol table with the specified name. There
+ can be a many-to-one mapping between names and types. This method
+ allows a type with an existing entry in the symbol table to get
+ a new name.</dd>
+
+ <dt><tt>void remove(Value* Val)</tt>:</dt>
+ <dd> This method removes a named value from the symbol table. The
+ type and name of the Value are extracted from \p N and used to
+ lookup the Value in the correct type plane. If the Value is
+ not in the symbol table, this method silently ignores the
+ request.</dd>
+
+ <dt><tt>void remove(Type* Typ)</tt>:</dt>
+ <dd> This method removes a named type from the symbol table. The
+ name of the type is extracted from \P T and used to look up
+ the Type in the type map. If the Type is not in the symbol
+ table, this method silently ignores the request.</dd>
+
+ <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
+ <dd> Remove a constant or type with the specified name from the
+ symbol table.</dd>
+
+ <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
+ <dd> Remove a type with the specified name from the symbol table.
+ Returns the removed Type.</dd>
+
+ <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
+ <dd> Removes a specific value from the symbol table.
+ Returns the removed value.</dd>
+
+ <dt><tt>bool strip()</tt>:</dt>
+ <dd> This method will strip the symbol table of its names leaving
+ the type and values. </dd>
+
+ <dt><tt>void clear()</tt>:</dt>
+ <dd>Empty the symbol table completely.</dd>
+</dl>
+
+<h3>Iteration</h3>
+<p>The following functions describe three types of iterators you can obtain
+the beginning or end of the sequence for both const and non-const. It is
+important to keep track of the different kinds of iterators. There are
+three idioms worth pointing out:</p>
+<table>
+ <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
+ <tr>
+ <td align="left">Planes Of name/Value maps</td><td>PI</td>
+ <td align="left"><pre><tt>
+for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
+ PE = ST.plane_end(); PI != PE; ++PI ) {
+ PI-&gt;first // This is the Type* of the plane
+ PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
+ </tt></pre></td>
+ </tr>
+ <tr>
+ <td align="left">All name/Type Pairs</td><td>TI</td>
+ <td align="left"><pre><tt>
+for (SymbolTable::type_const_iterator TI = ST.type_begin(),
+ TE = ST.type_end(); TI != TE; ++TI )
+ TI-&gt;first // This is the name of the type
+ TI-&gt;second // This is the Type* value associated with the name
+ </tt></pre></td>
+ </tr>
+ <tr>
+ <td align="left">name/Value pairs in a plane</td><td>VI</td>
+ <td align="left"><pre><tt>
+for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
+ VE = ST.value_end(SomeType); VI != VE; ++VI )
+ VI-&gt;first // This is the name of the Value
+ VI-&gt;second // This is the Value* value associated with the name
+ </tt></pre></td>
+ </tr>
+</table>
+
+<p>Using the recommended iterator names and idioms will help you avoid
+making mistakes. Of particular note, make sure that whenever you use
+value_begin(SomeType) that you always compare the resulting iterator
+with value_end(SomeType) not value_end(SomeOtherType) or else you
+will loop infinitely.</p>
+
+<dl>
+
+ <dt><tt>plane_iterator plane_begin()</tt>:</dt>
+ <dd>Get an iterator that starts at the beginning of the type planes.
+ The iterator will iterate over the Type/ValueMap pairs in the
+ type planes. </dd>
+
+ <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
+ <dd>Get a const_iterator that starts at the beginning of the type
+ planes. The iterator will iterate over the Type/ValueMap pairs
+ in the type planes. </dd>
+
+ <dt><tt>plane_iterator plane_end()</tt>:</dt>
+ <dd>Get an iterator at the end of the type planes. This serves as
+ the marker for end of iteration over the type planes.</dd>
+
+ <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
+ <dd>Get a const_iterator at the end of the type planes. This serves as
+ the marker for end of iteration over the type planes.</dd>
+
+ <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
+ <dd>Get an iterator that starts at the beginning of a type plane.
+ The iterator will iterate over the name/value pairs in the type plane.
+ Note: The type plane must already exist before using this.</dd>
+
+ <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
+ <dd>Get a const_iterator that starts at the beginning of a type plane.
+ The iterator will iterate over the name/value pairs in the type plane.
+ Note: The type plane must already exist before using this.</dd>
+
+ <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
+ <dd>Get an iterator to the end of a type plane. This serves as the marker
+ for end of iteration of the type plane.
+ Note: The type plane must already exist before using this.</dd>
+
+ <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
+ <dd>Get a const_iterator to the end of a type plane. This serves as the
+ marker for end of iteration of the type plane.
+ Note: the type plane must already exist before using this.</dd>
+
+ <dt><tt>type_iterator type_begin()</tt>:</dt>
+ <dd>Get an iterator to the start of the name/Type map.</dd>
+
+ <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
+ <dd> Get a const_iterator to the start of the name/Type map.</dd>
+
+ <dt><tt>type_iterator type_end()</tt>:</dt>
+ <dd>Get an iterator to the end of the name/Type map. This serves as the
+ marker for end of iteration of the types.</dd>
+
+ <dt><tt>type_const_iterator type_end() const</tt>:</dt>
+ <dd>Get a const-iterator to the end of the name/Type map. This serves
+ as the marker for end of iteration of the types.</dd>
+
+ <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
+ <dd>This method returns a plane_const_iterator for iteration over
+ the type planes starting at a specific plane, given by \p Ty.</dd>
+
+ <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
+ <dd>This method returns a plane_iterator for iteration over the
+ type planes starting at a specific plane, given by \p Ty.</dd>
+
+</dl>
+</div>
+
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The Core LLVM classes are the primary means of representing the program
+being inspected or transformed. The core LLVM classes are defined in
+header files in the <tt>include/llvm/</tt> directory, and implemented in
+the <tt>lib/VMCore</tt> directory.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Value">The <tt>Value</tt> class</a>
+</div>
+
+<div>
+
+<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
+<br>
+doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
+
+<p>The <tt>Value</tt> class is the most important class in the LLVM Source
+base. It represents a typed value that may be used (among other things) as an
+operand to an instruction. There are many different types of <tt>Value</tt>s,
+such as <a href="#Constant"><tt>Constant</tt></a>s,<a
+href="#Argument"><tt>Argument</tt></a>s. Even <a
+href="#Instruction"><tt>Instruction</tt></a>s and <a
+href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
+
+<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
+for a program. For example, an incoming argument to a function (represented
+with an instance of the <a href="#Argument">Argument</a> class) is "used" by
+every instruction in the function that references the argument. To keep track
+of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
+href="#User"><tt>User</tt></a>s that is using it (the <a
+href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
+graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
+def-use information in the program, and is accessible through the <tt>use_</tt>*
+methods, shown below.</p>
+
+<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
+and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
+method. In addition, all LLVM values can be named. The "name" of the
+<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
+
+ <pre> %<b>foo</b> = add int 1, 2<br></pre>
+
+<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
+that the name of any value may be missing (an empty string), so names should
+<b>ONLY</b> be used for debugging (making the source code easier to read,
+debugging printouts), they should not be used to keep track of values or map
+between them. For this purpose, use a <tt>std::map</tt> of pointers to the
+<tt>Value</tt> itself instead.</p>
+
+<p>One important aspect of LLVM is that there is no distinction between an SSA
+variable and the operation that produces it. Because of this, any reference to
+the value produced by an instruction (or the value available as an incoming
+argument, for example) is represented as a direct pointer to the instance of
+the class that
+represents this value. Although this may take some getting used to, it
+simplifies the representation and makes it easier to manipulate.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+ <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
+use-list<br>
+ <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
+the use-list<br>
+ <tt>unsigned use_size()</tt> - Returns the number of users of the
+value.<br>
+ <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
+ <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
+the use-list.<br>
+ <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
+use-list.<br>
+ <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
+element in the list.
+ <p> These methods are the interface to access the def-use
+information in LLVM. As with all other iterators in LLVM, the naming
+conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
+ </li>
+ <li><tt><a href="#Type">Type</a> *getType() const</tt>
+ <p>This method returns the Type of the Value.</p>
+ </li>
+ <li><tt>bool hasName() const</tt><br>
+ <tt>std::string getName() const</tt><br>
+ <tt>void setName(const std::string &amp;Name)</tt>
+ <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
+be aware of the <a href="#nameWarning">precaution above</a>.</p>
+ </li>
+ <li><tt>void replaceAllUsesWith(Value *V)</tt>
+
+ <p>This method traverses the use list of a <tt>Value</tt> changing all <a
+ href="#User"><tt>User</tt>s</a> of the current value to refer to
+ "<tt>V</tt>" instead. For example, if you detect that an instruction always
+ produces a constant value (for example through constant folding), you can
+ replace all uses of the instruction with the constant like this:</p>
+
+ <pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="User">The <tt>User</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
+Superclass: <a href="#Value"><tt>Value</tt></a></p>
+
+<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
+refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
+that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
+referring to. The <tt>User</tt> class itself is a subclass of
+<tt>Value</tt>.</p>
+
+<p>The operands of a <tt>User</tt> point directly to the LLVM <a
+href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
+Single Assignment (SSA) form, there can only be one definition referred to,
+allowing this direct connection. This connection provides the use-def
+information in LLVM.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>User</tt> class exposes the operand list in two ways: through
+an index access interface and through an iterator based interface.</p>
+
+<ul>
+ <li><tt>Value *getOperand(unsigned i)</tt><br>
+ <tt>unsigned getNumOperands()</tt>
+ <p> These two methods expose the operands of the <tt>User</tt> in a
+convenient form for direct access.</p></li>
+
+ <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
+list<br>
+ <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
+the operand list.<br>
+ <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
+operand list.
+ <p> Together, these methods make up the iterator based interface to
+the operands of a <tt>User</tt>.</p></li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Instruction">The <tt>Instruction</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "</tt><tt><a
+href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
+Superclasses: <a href="#User"><tt>User</tt></a>, <a
+href="#Value"><tt>Value</tt></a></p>
+
+<p>The <tt>Instruction</tt> class is the common base class for all LLVM
+instructions. It provides only a few methods, but is a very commonly used
+class. The primary data tracked by the <tt>Instruction</tt> class itself is the
+opcode (instruction type) and the parent <a
+href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
+into. To represent a specific type of instruction, one of many subclasses of
+<tt>Instruction</tt> are used.</p>
+
+<p> Because the <tt>Instruction</tt> class subclasses the <a
+href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
+way as for other <a href="#User"><tt>User</tt></a>s (with the
+<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
+<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
+the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
+file contains some meta-data about the various different types of instructions
+in LLVM. It describes the enum values that are used as opcodes (for example
+<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
+concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
+example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
+href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
+this file confuses doxygen, so these enum values don't show up correctly in the
+<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
+ class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+ <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
+ <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
+this <tt>Instruction</tt> is embedded into.</p></li>
+ <li><tt>bool mayWriteToMemory()</tt>
+ <p>Returns true if the instruction writes to memory, i.e. it is a
+ <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
+ <li><tt>unsigned getOpcode()</tt>
+ <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
+ <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
+ <p>Returns another instance of the specified instruction, identical
+in all ways to the original except that the instruction has no parent
+(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
+and it has no name</p></li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "<a
+href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
+Class</a><br>
+Superclass: <a href="#Value"><tt>Value</tt></a></p>
+
+<p>This class represents a single entry multiple exit section of the code,
+commonly known as a basic block by the compiler community. The
+<tt>BasicBlock</tt> class maintains a list of <a
+href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
+Matching the language definition, the last element of this list of instructions
+is always a terminator instruction (a subclass of the <a
+href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
+
+<p>In addition to tracking the list of instructions that make up the block, the
+<tt>BasicBlock</tt> class also keeps track of the <a
+href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
+
+<p>Note that <tt>BasicBlock</tt>s themselves are <a
+href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
+like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
+<tt>label</tt>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
+ class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+
+<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
+ href="#Function">Function</a> *Parent = 0)</tt>
+
+<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
+insertion into a function. The constructor optionally takes a name for the new
+block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
+the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
+automatically inserted at the end of the specified <a
+href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
+manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
+
+<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
+<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
+<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
+<tt>size()</tt>, <tt>empty()</tt>
+STL-style functions for accessing the instruction list.
+
+<p>These methods and typedefs are forwarding functions that have the same
+semantics as the standard library methods of the same names. These methods
+expose the underlying instruction list of a basic block in a way that is easy to
+manipulate. To get the full complement of container operations (including
+operations to update the list), you must use the <tt>getInstList()</tt>
+method.</p></li>
+
+<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
+
+<p>This method is used to get access to the underlying container that actually
+holds the Instructions. This method must be used when there isn't a forwarding
+function in the <tt>BasicBlock</tt> class for the operation that you would like
+to perform. Because there are no forwarding functions for "updating"
+operations, you need to use this if you want to update the contents of a
+<tt>BasicBlock</tt>.</p></li>
+
+<li><tt><a href="#Function">Function</a> *getParent()</tt>
+
+<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
+embedded into, or a null pointer if it is homeless.</p></li>
+
+<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
+
+<p> Returns a pointer to the terminator instruction that appears at the end of
+the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
+instruction in the block is not a terminator, then a null pointer is
+returned.</p></li>
+
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "<a
+href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
+doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
+Class</a><br>
+Superclasses: <a href="#User"><tt>User</tt></a>, <a
+href="#Value"><tt>Value</tt></a></p>
+
+<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
+href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
+visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
+Because they are visible at global scope, they are also subject to linking with
+other globals defined in different translation units. To control the linking
+process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
+<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
+defined by the <tt>LinkageTypes</tt> enumeration.</p>
+
+<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
+<tt>static</tt> in C), it is not visible to code outside the current translation
+unit, and does not participate in linking. If it has external linkage, it is
+visible to external code, and does participate in linking. In addition to
+linkage information, <tt>GlobalValue</tt>s keep track of which <a
+href="#Module"><tt>Module</tt></a> they are currently part of.</p>
+
+<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
+by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
+global is always a pointer to its contents. It is important to remember this
+when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
+be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
+subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
+int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
+the address of the first element of this array and the value of the
+<tt>GlobalVariable</tt> are the same, they have different types. The
+<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
+is <tt>int.</tt> Because of this, accessing a global value requires you to
+dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
+can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
+Language Reference Manual</a>.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
+ class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+ <li><tt>bool hasInternalLinkage() const</tt><br>
+ <tt>bool hasExternalLinkage() const</tt><br>
+ <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
+ <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
+ <p> </p>
+ </li>
+ <li><tt><a href="#Module">Module</a> *getParent()</tt>
+ <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
+GlobalValue is currently embedded into.</p></li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Function">The <tt>Function</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "<a
+href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
+info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
+Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
+href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
+
+<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
+actually one of the more complex classes in the LLVM heirarchy because it must
+keep track of a large amount of data. The <tt>Function</tt> class keeps track
+of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
+href="#Argument"><tt>Argument</tt></a>s, and a <a
+href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
+
+<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
+commonly used part of <tt>Function</tt> objects. The list imposes an implicit
+ordering of the blocks in the function, which indicate how the code will be
+layed out by the backend. Additionally, the first <a
+href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
+<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
+block. There are no implicit exit nodes, and in fact there may be multiple exit
+nodes from a single <tt>Function</tt>. If the <a
+href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
+the <tt>Function</tt> is actually a function declaration: the actual body of the
+function hasn't been linked in yet.</p>
+
+<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
+<tt>Function</tt> class also keeps track of the list of formal <a
+href="#Argument"><tt>Argument</tt></a>s that the function receives. This
+container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
+nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
+the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
+
+<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
+LLVM feature that is only used when you have to look up a value by name. Aside
+from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
+internally to make sure that there are not conflicts between the names of <a
+href="#Instruction"><tt>Instruction</tt></a>s, <a
+href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
+href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
+
+<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
+and therefore also a <a href="#Constant">Constant</a>. The value of the function
+is its address (after linking) which is guaranteed to be constant.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_Function">Important Public Members of the <tt>Function</tt>
+ class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+ <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
+ *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
+
+ <p>Constructor used when you need to create new <tt>Function</tt>s to add
+ the the program. The constructor must specify the type of the function to
+ create and what type of linkage the function should have. The <a
+ href="#FunctionType"><tt>FunctionType</tt></a> argument
+ specifies the formal arguments and return value for the function. The same
+ <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
+ create multiple functions. The <tt>Parent</tt> argument specifies the Module
+ in which the function is defined. If this argument is provided, the function
+ will automatically be inserted into that module's list of
+ functions.</p></li>
+
+ <li><tt>bool isExternal()</tt>
+
+ <p>Return whether or not the <tt>Function</tt> has a body defined. If the
+ function is "external", it does not have a body, and thus must be resolved
+ by linking with a function defined in a different translation unit.</p></li>
+
+ <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
+ <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
+
+ <tt>begin()</tt>, <tt>end()</tt>
+ <tt>size()</tt>, <tt>empty()</tt>
+
+ <p>These are forwarding methods that make it easy to access the contents of
+ a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
+ list.</p></li>
+
+ <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
+
+ <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
+ is necessary to use when you need to update the list or perform a complex
+ action that doesn't have a forwarding method.</p></li>
+
+ <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
+iterator<br>
+ <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
+
+ <tt>arg_begin()</tt>, <tt>arg_end()</tt>
+ <tt>arg_size()</tt>, <tt>arg_empty()</tt>
+
+ <p>These are forwarding methods that make it easy to access the contents of
+ a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
+ list.</p></li>
+
+ <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
+
+ <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
+ necessary to use when you need to update the list or perform a complex
+ action that doesn't have a forwarding method.</p></li>
+
+ <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
+
+ <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
+ function. Because the entry block for the function is always the first
+ block, this returns the first block of the <tt>Function</tt>.</p></li>
+
+ <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
+ <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
+
+ <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
+ <tt>Function</tt> and returns the return type of the function, or the <a
+ href="#FunctionType"><tt>FunctionType</tt></a> of the actual
+ function.</p></li>
+
+ <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
+
+ <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+ for this <tt>Function</tt>.</p></li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "<a
+href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
+<br>
+doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
+Class</a><br> Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
+href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
+
+<p>Global variables are represented with the (suprise suprise)
+<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
+subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
+always referenced by their address (global values must live in memory, so their
+"name" refers to their address). See <a
+href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global variables
+may have an initial value (which must be a <a
+href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, they
+may be marked as "constant" themselves (indicating that their contents never
+change at runtime).</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_GlobalVariable">Important Public Members of the
+ <tt>GlobalVariable</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+ <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
+ isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
+ *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
+
+ <p>Create a new global variable of the specified type. If
+ <tt>isConstant</tt> is true then the global variable will be marked as
+ unchanging for the program. The Linkage parameter specifies the type of
+ linkage (internal, external, weak, linkonce, appending) for the variable. If
+ the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
+ the resultant global variable will have internal linkage. AppendingLinkage
+ concatenates together all instances (in different translation units) of the
+ variable into a single variable but is only applicable to arrays. &nbsp;See
+ the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
+ further details on linkage types. Optionally an initializer, a name, and the
+ module to put the variable into may be specified for the global variable as
+ well.</p></li>
+
+ <li><tt>bool isConstant() const</tt>
+
+ <p>Returns true if this is a global variable that is known not to
+ be modified at runtime.</p></li>
+
+ <li><tt>bool hasInitializer()</tt>
+
+ <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
+
+ <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
+
+ <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
+ to call this method if there is no initializer.</p></li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Module">The <tt>Module</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>#include "<a
+href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
+<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
+
+<p>The <tt>Module</tt> class represents the top level structure present in LLVM
+programs. An LLVM module is effectively either a translation unit of the
+original program or a combination of several translation units merged by the
+linker. The <tt>Module</tt> class keeps track of a list of <a
+href="#Function"><tt>Function</tt></a>s, a list of <a
+href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
+href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
+helpful member functions that try to make common operations easy.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+ <li><tt>Module::Module(std::string name = "")</tt></li>
+</ul>
+
+<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
+provide a name for it (probably based on the name of the translation unit).</p>
+
+<ul>
+ <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
+ <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
+
+ <tt>begin()</tt>, <tt>end()</tt>
+ <tt>size()</tt>, <tt>empty()</tt>
+
+ <p>These are forwarding methods that make it easy to access the contents of
+ a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
+ list.</p></li>
+
+ <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
+
+ <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
+ necessary to use when you need to update the list or perform a complex
+ action that doesn't have a forwarding method.</p>
+
+ <p><!-- Global Variable --></p></li>
+</ul>
+
+<hr>
+
+<ul>
+ <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
+
+ <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
+
+ <tt>global_begin()</tt>, <tt>global_end()</tt>
+ <tt>global_size()</tt>, <tt>global_empty()</tt>
+
+ <p> These are forwarding methods that make it easy to access the contents of
+ a <tt>Module</tt> object's <a
+ href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
+
+ <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
+
+ <p>Returns the list of <a
+ href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
+ use when you need to update the list or perform a complex action that
+ doesn't have a forwarding method.</p>
+
+ <p><!-- Symbol table stuff --> </p></li>
+</ul>
+
+<hr>
+
+<ul>
+ <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
+
+ <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+ for this <tt>Module</tt>.</p>
+
+ <p><!-- Convenience methods --></p></li>
+</ul>
+
+<hr>
+
+<ul>
+ <li><tt><a href="#Function">Function</a> *getFunction(const std::string
+ &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
+
+ <p>Look up the specified function in the <tt>Module</tt> <a
+ href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
+ <tt>null</tt>.</p></li>
+
+ <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
+ std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
+
+ <p>Look up the specified function in the <tt>Module</tt> <a
+ href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
+ external declaration for the function and return it.</p></li>
+
+ <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
+
+ <p>If there is at least one entry in the <a
+ href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
+ href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
+ string.</p></li>
+
+ <li><tt>bool addTypeName(const std::string &amp;Name, const <a
+ href="#Type">Type</a> *Ty)</tt>
+
+ <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
+ mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
+ name, true is returned and the <a
+ href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
+</div>
+
+<div class="doc_text">
+
+<p>Constant represents a base class for different types of constants. It
+is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
+ConstantArray etc for representing the various types of Constants.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_Constant">Important Public Methods</a>
+</div>
+<div class="doc_text">
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">Important Subclasses of Constant </div>
+<div class="doc_text">
+<ul>
+ <li>ConstantSInt : This subclass of Constant represents a signed integer
+ constant.
+ <ul>
+ <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
+ this constant. </li>
+ </ul>
+ </li>
+ <li>ConstantUInt : This class represents an unsigned integer.
+ <ul>
+ <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of
+ this constant. </li>
+ </ul>
+ </li>
+ <li>ConstantFP : This class represents a floating point constant.
+ <ul>
+ <li><tt>double getValue() const</tt>: Returns the underlying value of
+ this constant. </li>
+ </ul>
+ </li>
+ <li>ConstantBool : This represents a boolean constant.
+ <ul>
+ <li><tt>bool getValue() const</tt>: Returns the underlying value of this
+ constant. </li>
+ </ul>
+ </li>
+ <li>ConstantArray : This represents a constant array.
+ <ul>
+ <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
+ a vector of component constants that makeup this array. </li>
+ </ul>
+ </li>
+ <li>ConstantStruct : This represents a constant struct.
+ <ul>
+ <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
+ a vector of component constants that makeup this array. </li>
+ </ul>
+ </li>
+ <li>GlobalValue : This represents either a global variable or a function. In
+ either case, the value is a constant fixed address (after linking).
+ </li>
+</ul>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Type">The <tt>Type</tt> class and Derived Types</a>
+</div>
+
+<div class="doc_text">
+
+<p>Type as noted earlier is also a subclass of a Value class. Any primitive
+type (like int, short etc) in LLVM is an instance of Type Class. All other
+types are instances of subclasses of type like FunctionType, ArrayType
+etc. DerivedType is the interface for all such dervied types including
+FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
+be recursive (StructType). There exists exactly one instance of any type
+structure at a time. This allows using pointer equality of Type *s for comparing
+types.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_Value">Important Public Methods</a>
+</div>
+
+<div class="doc_text">
+
+<ul>
+
+ <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
+ is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
+ not true for Float and Double. </li>
+
+ <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
+ unsigned. This is not quite the complement of isSigned... nonnumeric types
+ return false as they do with isSigned. This returns true for UByteTy,
+ UShortTy, UIntTy, and ULongTy. </li>
+
+ <li><tt>bool isInteger() const</tt>: Equivalent to isSigned() || isUnsigned().</li>
+
+ <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
+ type, which is either Bool type or one of the Integer types.</li>
+
+ <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
+ floating point types.</li>
+
+ <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
+ this type can be converted to 'Ty' without any reinterpretation of bits. For
+ example, uint to int or one pointer type to another.</li>
+</ul>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="m_Value">Important Derived Types</a>
+</div>
+<div class="doc_text">
+<ul>
+ <li>SequentialType : This is subclassed by ArrayType and PointerType
+ <ul>
+ <li><tt>const Type * getElementType() const</tt>: Returns the type of each
+ of the elements in the sequential type. </li>
+ </ul>
+ </li>
+ <li>ArrayType : This is a subclass of SequentialType and defines interface for
+ array types.
+ <ul>
+ <li><tt>unsigned getNumElements() const</tt>: Returns the number of
+ elements in the array. </li>
+ </ul>
+ </li>
+ <li>PointerType : Subclass of SequentialType for pointer types. </li>
+ <li>StructType : subclass of DerivedTypes for struct types </li>
+ <li>FunctionType : subclass of DerivedTypes for function types.
+ <ul>
+ <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
+ function</li>
+ <li><tt> const Type * getReturnType() const</tt>: Returns the
+ return type of the function.</li>
+ <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
+ the type of the ith parameter.</li>
+ <li><tt> const unsigned getNumParams() const</tt>: Returns the
+ number of formal parameters.</li>
+ </ul>
+ </li>
+</ul>
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="Argument">The <tt>Argument</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>This subclass of Value defines the interface for incoming formal
+arguments to a function. A Function maintains a list of its formal
+arguments. An argument has a pointer to the parent Function.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
+
+ <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
+ <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
+ <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
+ Last modified: $Date$
+</address>
+
+</body>
+</html>