aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--tools/llvm-upgrade/UpgradeInternals.h161
-rw-r--r--tools/llvm-upgrade/UpgradeLexer.l43
-rw-r--r--tools/llvm-upgrade/UpgradeParser.y755
3 files changed, 708 insertions, 251 deletions
diff --git a/tools/llvm-upgrade/UpgradeInternals.h b/tools/llvm-upgrade/UpgradeInternals.h
index bbf6737828..0e00400796 100644
--- a/tools/llvm-upgrade/UpgradeInternals.h
+++ b/tools/llvm-upgrade/UpgradeInternals.h
@@ -21,6 +21,7 @@
#include "llvm/Instructions.h"
#include "llvm/ADT/StringExtras.h"
#include <list>
+#include <iostream>
// Global variables exported from the lexer.
@@ -32,12 +33,10 @@ extern int Upgradelineno;
namespace llvm {
-
class Module;
Module* UpgradeAssembly(const std::string &infile, std::istream& in,
bool debug, bool addAttrs);
-
extern std::istream* LexInput;
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
@@ -59,6 +58,88 @@ struct InlineAsmDescriptor {
: AsmString(as), Constraints(c), HasSideEffects(HSE) {}
};
+/// This class keeps track of the signedness of a type or value. It allows the
+/// signedness of a composite type to be captured in a relatively simple form.
+/// This is needed in order to retain the signedness of pre LLVM 2.0 types so
+/// they can be upgraded properly. Signedness of composite types must be
+/// captured in order to accurately get the signedness of a value through a
+/// GEP instruction.
+/// @brief Class to track signedness of types and values.
+struct Signedness {
+ /// The basic kinds of signedness values.
+ enum Kind {
+ Signless, ///< The type doesn't have any sign.
+ Unsigned, ///< The type is an unsigned integer.
+ Signed, ///< The type is a signed integer.
+ Named, ///< The type is a named type (probably forward ref or up ref).
+ Composite ///< The type is composite (struct, array, pointer).
+ };
+
+private:
+ /// @brief Keeps track of Signedness for composite types
+ typedef std::vector<Signedness> SignVector;
+ Kind kind; ///< The kind of signedness node
+ union {
+ SignVector *sv; ///< The vector of Signedness for composite types
+ std::string *name; ///< The name of the type for named types.
+ };
+public:
+ /// The Signedness class is used as a member of a union so it cannot have
+ /// a constructor or assignment operator. This function suffices.
+ /// @brief Copy one signedness value to another
+ void copy(const Signedness &that);
+ /// The Signedness class is used as a member of a union so it cannot have
+ /// a destructor.
+ /// @brief Release memory, if any allocated.
+ void destroy();
+
+ /// @brief Make a Signless node.
+ void makeSignless() { kind = Signless; sv = 0; }
+ /// @brief Make a Signed node.
+ void makeSigned() { kind = Signed; sv = 0; }
+ /// @brief Make an Unsigned node.
+ void makeUnsigned() { kind = Unsigned; sv = 0; }
+ /// @brief Make a Named node.
+ void makeNamed(const std::string& nm){
+ kind = Named; name = new std::string(nm);
+ }
+ /// @brief Make an empty Composite node.
+ void makeComposite() { kind = Composite; sv = new SignVector(); }
+ /// @brief Make an Composite node, with the first element given.
+ void makeComposite(const Signedness &S) {
+ kind = Composite;
+ sv = new SignVector();
+ sv->push_back(S);
+ }
+ /// @brief Add an element to a Composite node.
+ void add(const Signedness &S) {
+ assert(isComposite() && "Must be composite to use add");
+ sv->push_back(S);
+ }
+ bool operator<(const Signedness &that) const;
+ bool operator==(const Signedness &that) const;
+ bool isSigned() const { return kind == Signed; }
+ bool isUnsigned() const { return kind == Unsigned; }
+ bool isSignless() const { return kind == Signless; }
+ bool isNamed() const { return kind == Named; }
+ bool isComposite() const { return kind == Composite; }
+ /// This is used by GetElementPtr to extract the sign of an element.
+ /// @brief Get a specific element from a Composite node.
+ Signedness get(uint64_t idx) const {
+ assert(isComposite() && "Invalid Signedness type for get()");
+ assert(sv && idx < sv->size() && "Invalid index");
+ return (*sv)[idx];
+ }
+ /// @brief Get the name from a Named node.
+ const std::string& getName() const {
+ assert(isNamed() && "Can't get name from non-name Sign");
+ return *name;
+ }
+#ifndef NDEBUG
+ void dump() const;
+#endif
+};
+
// ValID - Represents a reference of a definition of some sort. This may either
// be a numeric reference or a symbolic (%var) reference. This is just a
@@ -82,41 +163,58 @@ struct ValID {
Constant *ConstantValue; // Fully resolved constant for ConstantVal case.
InlineAsmDescriptor *IAD;
};
+ Signedness S;
static ValID create(int Num) {
- ValID D; D.Type = NumberVal; D.Num = Num; return D;
+ ValID D; D.Type = NumberVal; D.Num = Num; D.S.makeSignless();
+ return D;
}
static ValID create(char *Name) {
- ValID D; D.Type = NameVal; D.Name = Name; return D;
+ ValID D; D.Type = NameVal; D.Name = Name; D.S.makeSignless();
+ return D;
}
static ValID create(int64_t Val) {
- ValID D; D.Type = ConstSIntVal; D.ConstPool64 = Val; return D;
+ ValID D; D.Type = ConstSIntVal; D.ConstPool64 = Val;
+ D.S.makeSigned();
+ return D;
}
static ValID create(uint64_t Val) {
- ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val; return D;
+ ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val;
+ D.S.makeUnsigned();
+ return D;
}
static ValID create(double Val) {
- ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val; return D;
+ ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val;
+ D.S.makeSignless();
+ return D;
}
static ValID createNull() {
- ValID D; D.Type = ConstNullVal; return D;
+ ValID D; D.Type = ConstNullVal;
+ D.S.makeSignless();
+ return D;
}
static ValID createUndef() {
- ValID D; D.Type = ConstUndefVal; return D;
+ ValID D; D.Type = ConstUndefVal;
+ D.S.makeSignless();
+ return D;
}
static ValID createZeroInit() {
- ValID D; D.Type = ConstZeroVal; return D;
+ ValID D; D.Type = ConstZeroVal;
+ D.S.makeSignless();
+ return D;
}
static ValID create(Constant *Val) {
- ValID D; D.Type = ConstantVal; D.ConstantValue = Val; return D;
+ ValID D; D.Type = ConstantVal; D.ConstantValue = Val;
+ D.S.makeSignless();
+ return D;
}
static ValID createInlineAsm(const std::string &AsmString,
@@ -125,6 +223,7 @@ struct ValID {
ValID D;
D.Type = InlineAsmVal;
D.IAD = new InlineAsmDescriptor(AsmString, Constraints, HasSideEffects);
+ D.S.makeSignless();
return D;
}
@@ -221,10 +320,6 @@ namespace OldCallingConv {
};
}
-/// An enumeration for defining the Signedness of a type or value. Signless
-/// means the signedness is not relevant to the type or value.
-enum Signedness { Signless, Unsigned, Signed };
-
/// These structures are used as the semantic values returned from various
/// productions in the grammar. They simply bundle an LLVM IR object with
/// its Signedness value. These help track signedness through the various
@@ -232,31 +327,67 @@ enum Signedness { Signless, Unsigned, Signed };
struct TypeInfo {
const llvm::Type *T;
Signedness S;
+ bool operator<(const TypeInfo& that) const {
+ if (this == &that)
+ return false;
+ if (T < that.T)
+ return true;
+ if (T == that.T) {
+ bool result = S < that.S;
+//#define TYPEINFO_DEBUG
+#ifdef TYPEINFO_DEBUG
+ std::cerr << (result?"true ":"false ") << T->getDescription() << " (";
+ S.dump();
+ std::cerr << ") < " << that.T->getDescription() << " (";
+ that.S.dump();
+ std::cerr << ")\n";
+#endif
+ return result;
+ }
+ return false;
+ }
+ bool operator==(const TypeInfo& that) const {
+ if (this == &that)
+ return true;
+ return T == that.T && S == that.S;
+ }
+ void destroy() { S.destroy(); }
};
struct PATypeInfo {
llvm::PATypeHolder* PAT;
Signedness S;
+ void destroy() { S.destroy(); delete PAT; }
};
struct ConstInfo {
llvm::Constant* C;
Signedness S;
+ void destroy() { S.destroy(); }
};
struct ValueInfo {
llvm::Value* V;
Signedness S;
+ void destroy() { S.destroy(); }
};
struct InstrInfo {
llvm::Instruction *I;
Signedness S;
+ void destroy() { S.destroy(); }
+};
+
+struct TermInstInfo {
+ llvm::TerminatorInst *TI;
+ Signedness S;
+ void destroy() { S.destroy(); }
};
struct PHIListInfo {
std::list<std::pair<llvm::Value*, llvm::BasicBlock*> > *P;
Signedness S;
+ void destroy() { S.destroy(); delete P; }
};
} // End llvm namespace
diff --git a/tools/llvm-upgrade/UpgradeLexer.l b/tools/llvm-upgrade/UpgradeLexer.l
index ebab6db9c0..300cf5cc1a 100644
--- a/tools/llvm-upgrade/UpgradeLexer.l
+++ b/tools/llvm-upgrade/UpgradeLexer.l
@@ -51,7 +51,12 @@
#define RET_TY(sym,NewTY,sign) \
Upgradelval.PrimType.T = NewTY; \
- Upgradelval.PrimType.S = sign; \
+ switch (sign) { \
+ case 0: Upgradelval.PrimType.S.makeSignless(); break; \
+ case 1: Upgradelval.PrimType.S.makeUnsigned(); break; \
+ case 2: Upgradelval.PrimType.S.makeSigned(); break; \
+ default: assert(0 && "Invalid sign kind"); break; \
+ }\
return sym
namespace llvm {
@@ -238,24 +243,24 @@ coldcc { return COLDCC_TOK; }
x86_stdcallcc { return X86_STDCALLCC_TOK; }
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
-sbyte { RET_TY(SBYTE, Type::Int8Ty, Signed); }
-ubyte { RET_TY(UBYTE, Type::Int8Ty, Unsigned); }
-i8 { RET_TY(UBYTE, Type::Int8Ty, Unsigned); }
-short { RET_TY(SHORT, Type::Int16Ty, Signed); }
-ushort { RET_TY(USHORT, Type::Int16Ty, Unsigned); }
-i16 { RET_TY(USHORT, Type::Int16Ty, Unsigned); }
-int { RET_TY(INT, Type::Int32Ty, Signed); }
-uint { RET_TY(UINT, Type::Int32Ty, Unsigned); }
-i32 { RET_TY(UINT, Type::Int32Ty, Unsigned); }
-long { RET_TY(LONG, Type::Int64Ty, Signed); }
-ulong { RET_TY(ULONG, Type::Int64Ty, Unsigned); }
-i64 { RET_TY(ULONG, Type::Int64Ty, Unsigned); }
-void { RET_TY(VOID, Type::VoidTy, Signless ); }
-bool { RET_TY(BOOL, Type::Int1Ty, Unsigned ); }
-i1 { RET_TY(BOOL, Type::Int1Ty, Unsigned ); }
-float { RET_TY(FLOAT, Type::FloatTy, Signless ); }
-double { RET_TY(DOUBLE, Type::DoubleTy,Signless); }
-label { RET_TY(LABEL, Type::LabelTy, Signless ); }
+sbyte { RET_TY(SBYTE, Type::Int8Ty, 2); }
+ubyte { RET_TY(UBYTE, Type::Int8Ty, 1); }
+i8 { RET_TY(UBYTE, Type::Int8Ty, 1); }
+short { RET_TY(SHORT, Type::Int16Ty, 2); }
+ushort { RET_TY(USHORT, Type::Int16Ty, 1); }
+i16 { RET_TY(USHORT, Type::Int16Ty, 1); }
+int { RET_TY(INT, Type::Int32Ty, 2); }
+uint { RET_TY(UINT, Type::Int32Ty, 1); }
+i32 { RET_TY(UINT, Type::Int32Ty, 1); }
+long { RET_TY(LONG, Type::Int64Ty, 2); }
+ulong { RET_TY(ULONG, Type::Int64Ty, 1); }
+i64 { RET_TY(ULONG, Type::Int64Ty, 1); }
+void { RET_TY(VOID, Type::VoidTy, 0); }
+bool { RET_TY(BOOL, Type::Int1Ty, 1); }
+i1 { RET_TY(BOOL, Type::Int1Ty, 1); }
+float { RET_TY(FLOAT, Type::FloatTy, 0); }
+double { RET_TY(DOUBLE, Type::DoubleTy,0); }
+label { RET_TY(LABEL, Type::LabelTy, 0); }
type { return TYPE; }
opaque { return OPAQUE; }
diff --git a/tools/llvm-upgrade/UpgradeParser.y b/tools/llvm-upgrade/UpgradeParser.y
index 75d85e3369..9dabc23d75 100644
--- a/tools/llvm-upgrade/UpgradeParser.y
+++ b/tools/llvm-upgrade/UpgradeParser.y
@@ -67,7 +67,7 @@ static GlobalVariable *CurGV;
//
typedef std::vector<Value *> ValueList; // Numbered defs
-typedef std::pair<std::string,const Type*> RenameMapKey;
+typedef std::pair<std::string,TypeInfo> RenameMapKey;
typedef std::map<RenameMapKey,std::string> RenameMapType;
static void
@@ -78,7 +78,10 @@ static struct PerModuleInfo {
Module *CurrentModule;
std::map<const Type *, ValueList> Values; // Module level numbered definitions
std::map<const Type *,ValueList> LateResolveValues;
- std::vector<PATypeHolder> Types;
+ std::vector<PATypeHolder> Types;
+ std::vector<Signedness> TypeSigns;
+ std::map<std::string,Signedness> NamedTypeSigns;
+ std::map<std::string,Signedness> NamedValueSigns;
std::map<ValID, PATypeHolder> LateResolveTypes;
static Module::Endianness Endian;
static Module::PointerSize PointerSize;
@@ -135,6 +138,9 @@ static struct PerModuleInfo {
Values.clear(); // Clear out function local definitions
Types.clear();
+ TypeSigns.clear();
+ NamedTypeSigns.clear();
+ NamedValueSigns.clear();
CurrentModule = 0;
}
@@ -208,6 +214,24 @@ static struct PerFunctionInfo {
static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
+/// This function is just a utility to make a Key value for the rename map.
+/// The Key is a combination of the name, type, Signedness of the original
+/// value (global/function). This just constructs the key and ensures that
+/// named Signedness values are resolved to the actual Signedness.
+/// @brief Make a key for the RenameMaps
+static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty,
+ const Signedness &Sign) {
+ TypeInfo TI;
+ TI.T = Ty;
+ if (Sign.isNamed())
+ // Don't allow Named Signedness nodes because they won't match. The actual
+ // Signedness must be looked up in the NamedTypeSigns map.
+ TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]);
+ else
+ TI.S.copy(Sign);
+ return std::make_pair(Name, TI);
+}
+
//===----------------------------------------------------------------------===//
// Code to handle definitions of all the types
@@ -233,7 +257,6 @@ static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
break;
case ValID::NameVal: // Is it a named definition?
if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
- D.destroy(); // Free old strdup'd memory...
return N;
}
break;
@@ -248,7 +271,6 @@ static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
//
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
-
if (inFunctionScope()) {
if (D.Type == ValID::NameVal) {
error("Reference to an undefined type: '" + D.getName() + "'");
@@ -266,13 +288,94 @@ static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
Type *Typ = OpaqueType::get();
CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
return Typ;
- }
+}
+
+/// This is like the getType method except that instead of looking up the type
+/// for a given ID, it looks up that type's sign.
+/// @brief Get the signedness of a referenced type
+static Signedness getTypeSign(const ValID &D) {
+ switch (D.Type) {
+ case ValID::NumberVal: // Is it a numbered definition?
+ // Module constants occupy the lowest numbered slots...
+ if ((unsigned)D.Num < CurModule.TypeSigns.size()) {
+ return CurModule.TypeSigns[(unsigned)D.Num];
+ }
+ break;
+ case ValID::NameVal: { // Is it a named definition?
+ std::map<std::string,Signedness>::const_iterator I =
+ CurModule.NamedTypeSigns.find(D.Name);
+ if (I != CurModule.NamedTypeSigns.end())
+ return I->second;
+ // Perhaps its a named forward .. just cache the name
+ Signedness S;
+ S.makeNamed(D.Name);
+ return S;
+ }
+ default:
+ break;
+ }
+ // If we don't find it, its signless
+ Signedness S;
+ S.makeSignless();
+ return S;
+}
+
+/// This function is analagous to getElementType in LLVM. It provides the same
+/// function except that it looks up the Signedness instead of the type. This is
+/// used when processing GEP instructions that need to extract the type of an
+/// indexed struct/array/ptr member.
+/// @brief Look up an element's sign.
+static Signedness getElementSign(const ValueInfo& VI,
+ const std::vector<Value*> &Indices) {
+ const Type *Ptr = VI.V->getType();
+ assert(isa<PointerType>(Ptr) && "Need pointer type");
+
+ unsigned CurIdx = 0;
+ Signedness S(VI.S);
+ while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
+ if (CurIdx == Indices.size())
+ break;
+
+ Value *Index = Indices[CurIdx++];
+ assert(!isa<PointerType>(CT) || CurIdx == 1 && "Invalid type");
+ Ptr = CT->getTypeAtIndex(Index);
+ if (const Type* Ty = Ptr->getForwardedType())
+ Ptr = Ty;
+ assert(S.isComposite() && "Bad Signedness type");
+ if (isa<StructType>(CT)) {
+ S = S.get(cast<ConstantInt>(Index)->getZExtValue());
+ } else {
+ S = S.get(0UL);
+ }
+ if (S.isNamed())
+ S = CurModule.NamedTypeSigns[S.getName()];
+ }
+ Signedness Result;
+ Result.makeComposite(S);
+ return Result;
+}
+
+/// This function just translates a ConstantInfo into a ValueInfo and calls
+/// getElementSign(ValueInfo,...). Its just a convenience.
+/// @brief ConstantInfo version of getElementSign.
+static Signedness getElementSign(const ConstInfo& CI,
+ const std::vector<Constant*> &Indices) {
+ ValueInfo VI;
+ VI.V = CI.C;
+ VI.S.copy(CI.S);
+ std::vector<Value*> Idx;
+ for (unsigned i = 0; i < Indices.size(); ++i)
+ Idx.push_back(Indices[i]);
+ Signedness result = getElementSign(VI, Idx);
+ VI.destroy();
+ return result;
+}
/// This function determines if two function types differ only in their use of
/// the sret parameter attribute in the first argument. If they are identical
/// in all other respects, it returns true. Otherwise, it returns false.
-bool FuncTysDifferOnlyBySRet(const FunctionType *F1,
- const FunctionType *F2) {
+static bool FuncTysDifferOnlyBySRet(const FunctionType *F1,
+ const FunctionType *F2) {
if (F1->getReturnType() != F2->getReturnType() ||
F1->getNumParams() != F2->getNumParams() ||
F1->getParamAttrs(0) != F2->getParamAttrs(0))
@@ -287,10 +390,27 @@ bool FuncTysDifferOnlyBySRet(const FunctionType *F1,
return true;
}
+/// This function determines if the type of V and Ty differ only by the SRet
+/// parameter attribute. This is a more generalized case of
+/// FuncTysDIfferOnlyBySRet since it doesn't require FunctionType arguments.
+static bool TypesDifferOnlyBySRet(Value *V, const Type* Ty) {
+ if (V->getType() == Ty)
+ return true;
+ const PointerType *PF1 = dyn_cast<PointerType>(Ty);
+ const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
+ if (PF1 && PF2) {
+ const FunctionType* FT1 = dyn_cast<FunctionType>(PF1->getElementType());
+ const FunctionType* FT2 = dyn_cast<FunctionType>(PF2->getElementType());
+ if (FT1 && FT2)
+ return FuncTysDifferOnlyBySRet(FT1, FT2);
+ }
+ return false;
+}
+
// The upgrade of csretcc to sret param attribute may have caused a function
// to not be found because the param attribute changed the type of the called
// function. This helper function, used in getExistingValue, detects that
-// situation and returns V if it occurs and 0 otherwise.
+// situation and bitcasts the function to the correct type.
static Value* handleSRetFuncTypeMerge(Value *V, const Type* Ty) {
// Handle degenerate cases
if (!V)
@@ -298,23 +418,21 @@ static Value* handleSRetFuncTypeMerge(Value *V, const Type* Ty) {
if (V->getType() == Ty)
return V;
- Value* Result = 0;
const PointerType *PF1 = dyn_cast<PointerType>(Ty);
const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
if (PF1 && PF2) {
- const FunctionType *FT1 =
- dyn_cast<FunctionType>(PF1->getElementType());
- const FunctionType *FT2 =
- dyn_cast<FunctionType>(PF2->getElementType());
+ const FunctionType *FT1 = dyn_cast<FunctionType>(PF1->getElementType());
+ const FunctionType *FT2 = dyn_cast<FunctionType>(PF2->getElementType());
if (FT1 && FT2 && FuncTysDifferOnlyBySRet(FT1, FT2))
if (FT2->paramHasAttr(1, FunctionType::StructRetAttribute))
- Result = V;
+ return V;
else if (Constant *C = dyn_cast<Constant>(V))
- Result = ConstantExpr::getBitCast(C, PF1);
+ return ConstantExpr::getBitCast(C, PF1);
else
- Result = new BitCastInst(V, PF1, "upgrd.cast", CurBB);
+ return new BitCastInst(V, PF1, "upgrd.cast", CurBB);
+
}
- return Result;
+ return 0;
}
// getExistingValue - Look up the value specified by the provided type and
@@ -350,9 +468,8 @@ static Value *getExistingValue(const Type *Ty, const ValID &D) {
case ValID::NameVal: { // Is it a named definition?
// Get the name out of the ID
- std::string Name(D.Name);
- Value* V = 0;
- RenameMapKey Key = std::make_pair(Name, Ty);
+ RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S);
+ Value *V = 0;
if (inFunctionScope()) {
// See if the name was renamed
RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
@@ -360,10 +477,12 @@ static Value *getExistingValue(const Type *Ty, const ValID &D) {
if (I != CurFun.RenameMap.end())
LookupName = I->second;
else
- LookupName = Name;
+ LookupName = D.Name;
ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
V = SymTab.lookup(LookupName);
- V = handleSRetFuncTypeMerge(V, Ty);
+ if (V && V->getType() != Ty)
+ V = handleSRetFuncTypeMerge(V, Ty);
+ assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
}
if (!V) {
RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
@@ -371,9 +490,11 @@ static Value *getExistingValue(const Type *Ty, const ValID &D) {
if (I != CurModule.RenameMap.end())
LookupName = I->second;
else
- LookupName = Name;
+ LookupName = D.Name;
V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName);
- V = handleSRetFuncTypeMerge(V, Ty);
+ if (V && V->getType() != Ty)
+ V = handleSRetFuncTypeMerge(V, Ty);
+ assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
}
if (!V)
return 0;
@@ -506,14 +627,13 @@ static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
break;
case ValID::NameVal: // Is it a named definition?
Name = ID.Name;
- if (Value *N = CurFun.CurrentFunction->
- getValueSymbolTable().lookup(Name)) {
+ if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) {
if (N->getType() != Type::LabelTy) {
// Register names didn't use to conflict with basic block names
// because of type planes. Now they all have to be unique. So, we just
// rename the register and treat this name as if no basic block
// had been found.
- RenameMapKey Key = std::make_pair(N->getName(),N->getType());
+ RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S);
N->setName(makeNameUnique(N->getName()));
CurModule.RenameMap[Key] = N->getName();
BB = 0;
@@ -624,19 +744,33 @@ ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
LateResolvers.clear();
}
-// ResolveTypeTo - A brand new type was just declared. This means that (if
-// name is not null) things referencing Name can be resolved. Otherwise, things
-// refering to the number can be resolved. Do this now.
-//
-static void ResolveTypeTo(char *Name, const Type *ToTy) {
+/// This function is used for type resolution and upref handling. When a type
+/// becomes concrete, this function is called to adjust the signedness for the
+/// concrete type.
+static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) {
+ std::string TyName = CurModule.CurrentModule->getTypeName(oldTy);
+ if (!TyName.empty())
+ CurModule.NamedTypeSigns[TyName] = Sign;
+}
+
+/// ResolveTypeTo - A brand new type was just declared. This means that (if
+/// name is not null) things referencing Name can be resolved. Otherwise,
+/// things refering to the number can be resolved. Do this now.
+static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){
ValID D;
- if (Name) D = ValID::create(Name);
- else D = ValID::create((int)CurModule.Types.size());
+ if (Name)
+ D = ValID::create(Name);
+ else
+ D = ValID::create((int)CurModule.Types.size());
+ D.S.copy(Sign);
+
+ CurModule.NamedTypeSigns[Name] = Sign;
std::map<ValID, PATypeHolder>::iterator I =
CurModule.LateResolveTypes.find(D);
if (I != CurModule.LateResolveTypes.end()) {
- ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
+ const Type *OldTy = I->second.get();
+ ((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy);
CurModule.LateResolveTypes.erase(I);
}
}
@@ -696,12 +830,12 @@ static inline bool TypeHasInteger(const Type *Ty) {
// null potentially, in which case this is a noop. The string passed in is
// assumed to be a malloc'd string buffer, and is free'd by this function.
//
-static void setValueName(Value *V, char *NameStr) {
+static void setValueName(const ValueInfo &V, char *NameStr) {
if (NameStr) {
std::string Name(NameStr); // Copy string
free(NameStr); // Free old string
- if (V->getType() == Type::VoidTy) {
+ if (V.V->getType() == Type::VoidTy) {
error("Can't assign name '" + Name + "' to value with void type");
return;
}
@@ -714,13 +848,13 @@ static void setValueName(Value *V, char *NameStr) {
if (Existing) {
// An existing value of the same name was found. This might have happened
// because of the integer type planes collapsing in LLVM 2.0.
- if (Existing->getType() == V->getType() &&
+ if (Existing->getType() == V.V->getType() &&
!TypeHasInteger(Existing->getType())) {
// If the type does not contain any integers in them then this can't be
// a type plane collapsing issue. It truly is a redefinition and we
// should error out as the assembly is invalid.
error("Redefinition of value named '" + Name + "' of type '" +
- V->getType()->getDescription() + "'");
+ V.V->getType()->getDescription() + "'");
return;
}
// In LLVM 2.0 we don't allow names to be re-used for any values in a
@@ -734,13 +868,13 @@ static void setValueName(Value *V, char *NameStr) {
// We're changing the name but it will probably be used by other
// instructions as operands later on. Consequently we have to retain
// a mapping of the renaming that we're doing.
- RenameMapKey Key = std::make_pair(Name,V->getType());
+ RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S);
CurFun.RenameMap[Key] = NewName;
Name = NewName;
}
// Set the name.
- V->setName(Name);
+ V.V->setName(Name);
}
}
@@ -749,7 +883,8 @@ static void setValueName(Value *V, char *NameStr) {
static GlobalVariable *
ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
bool isConstantGlobal, const Type *Ty,
- Constant *Initializer) {
+ Constant *Initializer,
+ const Signedness &Sign) {
if (isa<FunctionType>(Ty))
error("Cannot declare global vars of function type");
@@ -769,6 +904,7 @@ ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
} else {
ID = ValID::create((int)CurModule.Values[PTy].size());
}
+ ID.S.makeComposite(Sign);
if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
// Move the global to the end of the list, from whereever it was
@@ -794,13 +930,7 @@ ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
// There is alread a global of the same name which means there is a
// conflict. Let's see what we can do about it.
std::string NewName(makeNameUnique(Name));
- if (Linkage == GlobalValue::InternalLinkage) {
- // The linkage type is internal so just warn about the rename without
- // invoking "scarey language" about linkage failures. GVars with
- // InternalLinkage can be renamed at will.
- warning("Global variable '" + Name + "' was renamed to '"+
- NewName + "'");
- } else {
+ if (Linkage != GlobalValue::InternalLinkage) {
// The linkage of this gval is external so we can't reliably rename
// it because it could potentially create a linking problem.
// However, we can't leave the name conflict in the output either or
@@ -811,7 +941,7 @@ ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
}
// Put the renaming in the global rename map
- RenameMapKey Key = std::make_pair(Name,PointerType::get(Ty));
+ RenameMapKey Key = makeRenameMapKey(Name, PointerType::get(Ty), ID.S);
CurModule.RenameMap[Key] = NewName;
// Rename it
@@ -824,6 +954,8 @@ ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
CurModule.CurrentModule);
InsertValue(GV, CurModule.Values);
+ // Remember the sign of this global.
+ CurModule.NamedValueSigns[Name] = ID.S;
return GV;
}
@@ -834,21 +966,26 @@ ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
// This function returns true if the type has already been defined, but is
// allowed to be redefined in the specified context. If the name is a new name
// for the type plane, it is inserted and false is returned.
-static bool setTypeName(const Type *T, char *NameStr) {
+static bool setTypeName(const PATypeInfo& TI, char *NameStr) {
assert(!inFunctionScope() && "Can't give types function-local names");
if (NameStr == 0) return false;
std::string Name(NameStr); // Copy string
free(NameStr); // Free old string
+ const Type* Ty = TI.PAT->get();
+
// We don't allow assigning names to void type
- if (T == Type::VoidTy) {
+ if (Ty == Type::VoidTy) {
error("Can't assign name '" + Name + "' to the void type");
return false;
}
// Set the type name, checking for conflicts as we do so.
- bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
+ bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty);
+
+ // Save the sign information for later use
+ CurModule.NamedTypeSigns[Name] = TI.S;
if (AlreadyExists) { // Inserting a name that is already defined???
const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
@@ -858,7 +995,7 @@ static bool setTypeName(const Type *T, char *NameStr) {
// opaque type. In this case, Existing will be an opaque type.
if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
// We ARE replacing an opaque type!
- const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
+ const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(Ty);
return true;
}
@@ -866,11 +1003,11 @@ static bool setTypeName(const Type *T, char *NameStr) {
// the redefinition is identical to the original. This will be so if
// Existing and T point to the same Type object. In this one case we
// allow the equivalent redefinition.
- if (Existing == T) return true; // Yes, it's equal.
+ if (Existing == Ty) return true; // Yes, it's equal.
// Any other kind of (non-equivalent) redefinition is an error.
error("Redefinition of type named '" + Name + "' in the '" +
- T->getDescription() + "' type plane");
+ Ty->getDescription() + "' type plane");
}
return false;
@@ -902,7 +1039,7 @@ namespace {
OpaqueType *UpRefTy;
UpRefRecord(unsigned NL, OpaqueType *URTy)
- : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
+ : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { }
};
}
@@ -916,7 +1053,7 @@ static std::vector<UpRefRecord> UpRefs;
/// count reaches zero, the upreferenced type is the type that is passed in:
/// thus we can complete the cycle.
///
-static PATypeHolder HandleUpRefs(const Type *ty) {
+static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) {
// If Ty isn't abstract, or if there are no up-references in it, then there is
// nothing to resolve here.
if (!ty->isAbstract() || UpRefs.empty()) return ty;
@@ -932,10 +1069,11 @@ static PATypeHolder HandleUpRefs(const Type *ty) {
// this variable.
OpaqueType *TypeToResolve = 0;
- for (unsigned i = 0; i != UpRefs.size(); ++i) {
+ unsigned i = 0;
+ for (; i != UpRefs.size(); ++i) {
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
- << UpRefs[i].second->getDescription() << ") = "
- << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
+ << UpRefs[i].UpRefTy->getDescription() << ") = "
+ << (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n");
if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
// Decrement level of upreference
unsigned Level = --UpRefs[i].NestingLevel;
@@ -946,8 +1084,9 @@ static PATypeHolder HandleUpRefs(const Type *ty) {
TypeToResolve = UpRefs[i].UpRefTy;
} else {
UR_OUT(" * Resolving upreference for "
- << UpRefs[i].second->getDescription() << "\n";
- std::string OldName = UpRefs[i].UpRefTy->getDescription());
+ << UpRefs[i].UpRefTy->getDescription() << "\n";
+ std::string OldName = UpRefs[i].UpRefTy->getDescription());
+ ResolveTypeSign(UpRefs[i].UpRefTy, Sign);
UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
<< (const void*)Ty << ", " << Ty->getDescription() << "\n");
@@ -960,14 +1099,113 @@ static PATypeHolder HandleUpRefs(const Type *ty) {
if (TypeToResolve) {
UR_OUT(" * Resolving upreference for "
- << UpRefs[i].second->getDescription() << "\n";
+ << UpRefs[i].UpRefTy->getDescription() << "\n";
std::string OldName = TypeToResolve->getDescription());
+ ResolveTypeSign(TypeToResolve, Sign);
TypeToResolve->refineAbstractTypeTo(Ty);
}
return Ty;
}
+bool Signedness::operator<(const Signedness &that) const {
+ if (isNamed()) {
+ if (that.isNamed())
+ return *(this->name) < *(that.name);
+ else
+ return CurModule.NamedTypeSigns[*name] < that;
+ } else if (that.isNamed()) {
+ return *this < CurModule.NamedTypeSigns[*that.name];
+ }
+
+ if (isComposite() && that.isComposite()) {
+ if (sv->size() == that.sv->size()) {
+ SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
+ SignVector::const_iterator thatI = that.sv->begin(),
+ thatE = that.sv->end();
+ for (; thisI != thisE; ++thisI, ++thatI) {
+ if (*thisI < *thatI)
+ return true;
+ else if (!(*thisI == *thatI))
+ return false;
+ }
+ return false;
+ }
+ return sv->size() < that.sv->size();
+ }
+ return kind < that.kind;
+}
+
+bool Signedness::operator==(const Signedness &that) const {
+ if (isNamed())
+ if (that.isNamed())
+ return *(this->name) == *(that.name);
+ else
+ return CurModule.NamedTypeSigns[*(this->name)] == that;
+ else if (that.isNamed())
+ return *this == CurModule.NamedTypeSigns[*(that.name)];
+ if (isComposite() && that.isComposite()) {
+ if (sv->size() == that.sv->size()) {
+ SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
+ SignVector::const_iterator thatI = that.sv->begin(),
+ thatE = that.sv->end();
+ for (; thisI != thisE; ++thisI, ++thatI) {
+ if (!(*thisI == *thatI))
+ return false;