diff options
-rw-r--r-- | include/llvm/CodeGen/SelectionDAG.h | 23 | ||||
-rw-r--r-- | include/llvm/Target/TargetLowering.h | 22 | ||||
-rw-r--r-- | lib/CodeGen/SelectionDAG/DAGCombiner.cpp | 46 | ||||
-rw-r--r-- | lib/CodeGen/SelectionDAG/LegalizeDAG.cpp | 6 | ||||
-rw-r--r-- | lib/CodeGen/SelectionDAG/SelectionDAG.cpp | 546 | ||||
-rw-r--r-- | lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp | 4 | ||||
-rw-r--r-- | lib/CodeGen/SelectionDAG/TargetLowering.cpp | 561 | ||||
-rw-r--r-- | lib/Target/ARM/ARMISelLowering.cpp | 16 | ||||
-rw-r--r-- | lib/Target/ARM/ARMISelLowering.h | 1 | ||||
-rw-r--r-- | lib/Target/Alpha/AlphaISelDAGToDAG.cpp | 2 | ||||
-rw-r--r-- | lib/Target/PowerPC/PPCISelDAGToDAG.cpp | 4 | ||||
-rw-r--r-- | lib/Target/PowerPC/PPCISelLowering.cpp | 9 | ||||
-rw-r--r-- | lib/Target/PowerPC/PPCISelLowering.h | 1 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcISelDAGToDAG.cpp | 8 | ||||
-rw-r--r-- | lib/Target/X86/X86ISelDAGToDAG.cpp | 2 | ||||
-rw-r--r-- | lib/Target/X86/X86ISelLowering.cpp | 1 | ||||
-rw-r--r-- | lib/Target/X86/X86ISelLowering.h | 1 |
17 files changed, 633 insertions, 620 deletions
diff --git a/include/llvm/CodeGen/SelectionDAG.h b/include/llvm/CodeGen/SelectionDAG.h index 9d8024b86d..56cb17dee6 100644 --- a/include/llvm/CodeGen/SelectionDAG.h +++ b/include/llvm/CodeGen/SelectionDAG.h @@ -465,6 +465,29 @@ public: SDOperand FoldSetCC(MVT::ValueType VT, SDOperand N1, SDOperand N2, ISD::CondCode Cond); + /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We + /// use this predicate to simplify operations downstream. Op and Mask are + /// known to be the same type. + bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0) + const; + + /// ComputeMaskedBits - Determine which of the bits specified in Mask are + /// known to be either zero or one and return them in the KnownZero/KnownOne + /// bitsets. This code only analyzes bits in Mask, in order to short-circuit + /// processing. Targets can implement the computeMaskedBitsForTargetNode + /// method in the TargetLowering class to allow target nodes to be understood. + void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero, + uint64_t &KnownOne, unsigned Depth = 0) const; + + /// ComputeNumSignBits - Return the number of times the sign bit of the + /// register is replicated into the other bits. We know that at least 1 bit + /// is always equal to the sign bit (itself), but other cases can give us + /// information. For example, immediately after an "SRA X, 2", we know that + /// the top 3 bits are all equal to each other, so we return 3. Targets can + /// implement the ComputeNumSignBitsForTarget method in the TargetLowering + /// class to allow target nodes to be understood. + unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const; + private: void RemoveNodeFromCSEMaps(SDNode *N); SDNode *AddNonLeafNodeToCSEMaps(SDNode *N); diff --git a/include/llvm/Target/TargetLowering.h b/include/llvm/Target/TargetLowering.h index de51945ae4..5b98667602 100644 --- a/include/llvm/Target/TargetLowering.h +++ b/include/llvm/Target/TargetLowering.h @@ -494,20 +494,6 @@ public: bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded); }; - /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We - /// use this predicate to simplify operations downstream. Op and Mask are - /// known to be the same type. - bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0) - const; - - /// ComputeMaskedBits - Determine which of the bits specified in Mask are - /// known to be either zero or one and return them in the KnownZero/KnownOne - /// bitsets. This code only analyzes bits in Mask, in order to short-circuit - /// processing. Targets can implement the computeMaskedBitsForTargetNode - /// method, to allow target nodes to be understood. - void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero, - uint64_t &KnownOne, unsigned Depth = 0) const; - /// SimplifyDemandedBits - Look at Op. At this point, we know that only the /// DemandedMask bits of the result of Op are ever used downstream. If we can /// use this information to simplify Op, create a new simplified DAG node and @@ -527,15 +513,9 @@ public: uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, + const SelectionDAG &DAG, unsigned Depth = 0) const; - /// ComputeNumSignBits - Return the number of times the sign bit of the - /// register is replicated into the other bits. We know that at least 1 bit - /// is always equal to the sign bit (itself), but other cases can give us - /// information. For example, immediately after an "SRA X, 2", we know that - /// the top 3 bits are all equal to each other, so we return 3. - unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const; - /// ComputeNumSignBitsForTargetNode - This method can be implemented by /// targets that want to expose additional information about sign bits to the /// DAG Combiner. diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp index cfc52d9c5c..32ab5d323e 100644 --- a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp +++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp @@ -896,9 +896,9 @@ SDOperand DAGCombiner::visitADD(SDNode *N) { uint64_t LHSZero, LHSOne; uint64_t RHSZero, RHSOne; uint64_t Mask = MVT::getIntVTBitMask(VT); - TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); + DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); if (LHSZero) { - TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); + DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. @@ -957,9 +957,9 @@ SDOperand DAGCombiner::visitADDC(SDNode *N) { uint64_t LHSZero, LHSOne; uint64_t RHSZero, RHSOne; uint64_t Mask = MVT::getIntVTBitMask(VT); - TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); + DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); if (LHSZero) { - TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); + DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. @@ -1120,8 +1120,8 @@ SDOperand DAGCombiner::visitSDIV(SDNode *N) { // If we know the sign bits of both operands are zero, strength reduce to a // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); - if (TLI.MaskedValueIsZero(N1, SignBit) && - TLI.MaskedValueIsZero(N0, SignBit)) + if (DAG.MaskedValueIsZero(N1, SignBit) && + DAG.MaskedValueIsZero(N0, SignBit)) return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1); // fold (sdiv X, pow2) -> simple ops after legalize if (N1C && N1C->getValue() && !TLI.isIntDivCheap() && @@ -1214,8 +1214,8 @@ SDOperand DAGCombiner::visitSREM(SDNode *N) { // If we know the sign bits of both operands are zero, strength reduce to a // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); - if (TLI.MaskedValueIsZero(N1, SignBit) && - TLI.MaskedValueIsZero(N0, SignBit)) + if (DAG.MaskedValueIsZero(N1, SignBit) && + DAG.MaskedValueIsZero(N0, SignBit)) return DAG.getNode(ISD::UREM, VT, N0, N1); // Unconditionally lower X%C -> X-X/C*C. This allows the X/C logic to hack on @@ -1357,7 +1357,7 @@ SDOperand DAGCombiner::visitAND(SDNode *N) { if (N1C && N1C->isAllOnesValue()) return N0; // if (and x, c) is known to be zero, return 0 - if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) + if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) return DAG.getConstant(0, VT); // reassociate and SDOperand RAND = ReassociateOps(ISD::AND, N0, N1); @@ -1371,7 +1371,7 @@ SDOperand DAGCombiner::visitAND(SDNode *N) { // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType()); - if (TLI.MaskedValueIsZero(N0.getOperand(0), + if (DAG.MaskedValueIsZero(N0.getOperand(0), ~N1C->getValue() & InMask)) { SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(), N0.getOperand(0)); @@ -1442,7 +1442,7 @@ SDOperand DAGCombiner::visitAND(SDNode *N) { MVT::ValueType EVT = LN0->getLoadedVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. - if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && + if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), @@ -1461,7 +1461,7 @@ SDOperand DAGCombiner::visitAND(SDNode *N) { MVT::ValueType EVT = LN0->getLoadedVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. - if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && + if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), @@ -1542,7 +1542,7 @@ SDOperand DAGCombiner::visitOR(SDNode *N) { return N1; // fold (or x, c) -> c iff (x & ~c) == 0 if (N1C && - TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)))) + DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)))) return N1; // reassociate or SDOperand ROR = ReassociateOps(ISD::OR, N0, N1); @@ -1611,8 +1611,8 @@ SDOperand DAGCombiner::visitOR(SDNode *N) { uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue(); - if (TLI.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && - TLI.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { + if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && + DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0)); return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT)); } @@ -1914,7 +1914,7 @@ SDOperand DAGCombiner::visitSHL(SDNode *N) { if (N1C && N1C->isNullValue()) return N0; // if (shl x, c) is known to be zero, return 0 - if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) + if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) return DAG.getConstant(0, VT); if (N1C && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); @@ -2005,7 +2005,7 @@ SDOperand DAGCombiner::visitSRA(SDNode *N) { // If the sign bit is known to be zero, switch this to a SRL. - if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT))) + if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT))) return DAG.getNode(ISD::SRL, VT, N0, N1); return SDOperand(); } @@ -2031,7 +2031,7 @@ SDOperand DAGCombiner::visitSRL(SDNode *N) { if (N1C && N1C->isNullValue()) return N0; // if (srl x, c) is known to be zero, return 0 - if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) + if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) return DAG.getConstant(0, VT); // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) @@ -2068,7 +2068,7 @@ SDOperand DAGCombiner::visitSRL(SDNode *N) { if (N1C && N0.getOpcode() == ISD::CTLZ && N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) { uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT); - TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); + DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); // If any of the input bits are KnownOne, then the input couldn't be all // zeros, thus the result of the srl will always be zero. @@ -2270,7 +2270,7 @@ SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) { unsigned OpBits = MVT::getSizeInBits(Op.getValueType()); unsigned MidBits = MVT::getSizeInBits(N0.getValueType()); unsigned DestBits = MVT::getSizeInBits(VT); - unsigned NumSignBits = TLI.ComputeNumSignBits(Op); + unsigned NumSignBits = DAG.ComputeNumSignBits(Op); if (OpBits == DestBits) { // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign @@ -2634,7 +2634,7 @@ SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1); // If the input is already sign extended, just drop the extension. - if (TLI.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1) + if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1) return N0; // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 @@ -2644,7 +2644,7 @@ SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { } // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. - if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1))) + if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1))) return DAG.getZeroExtendInReg(N0, EVT); // fold operands of sext_in_reg based on knowledge that the top bits are not @@ -2666,7 +2666,7 @@ SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) { // We can turn this into an SRA iff the input to the SRL is already sign // extended enough. - unsigned InSignBits = TLI.ComputeNumSignBits(N0.getOperand(0)); + unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits) return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1)); } diff --git a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp index 0584d6ed6e..57357442fb 100644 --- a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp +++ b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp @@ -1449,7 +1449,7 @@ SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { // The top bits of the promoted condition are not necessarily zero, ensure // that the value is properly zero extended. - if (!TLI.MaskedValueIsZero(Tmp2, + if (!DAG.MaskedValueIsZero(Tmp2, MVT::getIntVTBitMask(Tmp2.getValueType())^1)) Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); break; @@ -2041,7 +2041,7 @@ SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. // Make sure the condition is either zero or one. - if (!TLI.MaskedValueIsZero(Tmp1, + if (!DAG.MaskedValueIsZero(Tmp1, MVT::getIntVTBitMask(Tmp1.getValueType())^1)) Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); break; @@ -4209,7 +4209,7 @@ bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, // Okay, the shift amount isn't constant. However, if we can tell that it is // >= 32 or < 32, we can still simplify it, without knowing the actual value. uint64_t Mask = NVTBits, KnownZero, KnownOne; - TLI.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); + DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); // If we know that the high bit of the shift amount is one, then we can do // this as a couple of simple shifts. diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp index 0ac77f99a3..d70823379a 100644 --- a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp +++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp @@ -936,6 +936,552 @@ SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1, return SDOperand(); } +/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use +/// this predicate to simplify operations downstream. Mask is known to be zero +/// for bits that V cannot have. +bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask, + unsigned Depth) const { + // The masks are not wide enough to represent this type! Should use APInt. + if (Op.getValueType() == MVT::i128) + return false; + + uint64_t KnownZero, KnownOne; + ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + return (KnownZero & Mask) == Mask; +} + +/// ComputeMaskedBits - Determine which of the bits specified in Mask are +/// known to be either zero or one and return them in the KnownZero/KnownOne +/// bitsets. This code only analyzes bits in Mask, in order to short-circuit +/// processing. +void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask, + uint64_t &KnownZero, uint64_t &KnownOne, + unsigned Depth) const { + KnownZero = KnownOne = 0; // Don't know anything. + if (Depth == 6 || Mask == 0) + return; // Limit search depth. + + // The masks are not wide enough to represent this type! Should use APInt. + if (Op.getValueType() == MVT::i128) + return; + + uint64_t KnownZero2, KnownOne2; + + switch (Op.getOpcode()) { + case ISD::Constant: + // We know all of the bits for a constant! + KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; + KnownZero = ~KnownOne & Mask; + return; + case ISD::AND: + // If either the LHS or the RHS are Zero, the result is zero. + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + Mask &= ~KnownZero; + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-1 bits are only known if set in both the LHS & RHS. + KnownOne &= KnownOne2; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + KnownZero |= KnownZero2; + return; + case ISD::OR: + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + Mask &= ~KnownOne; + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-0 bits are only known if clear in both the LHS & RHS. + KnownZero &= KnownZero2; + // Output known-1 are known to be set if set in either the LHS | RHS. + KnownOne |= KnownOne2; + return; + case ISD::XOR: { + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); + KnownZero = KnownZeroOut; + return; + } + case ISD::SELECT: + ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + return; + case ISD::SELECT_CC: + ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + return; + case ISD::SETCC: + // If we know the result of a setcc has the top bits zero, use this info. + if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) + KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); + return; + case ISD::SHL: + // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), + KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero <<= SA->getValue(); + KnownOne <<= SA->getValue(); + KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. + } + return; + case ISD::SRL: + // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + MVT::ValueType VT = Op.getValueType(); + unsigned ShAmt = SA->getValue(); + + uint64_t TypeMask = MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, + KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero &= TypeMask; + KnownOne &= TypeMask; + KnownZero >>= ShAmt; + KnownOne >>= ShAmt; + + uint64_t HighBits = (1ULL << ShAmt)-1; + HighBits <<= MVT::getSizeInBits(VT)-ShAmt; + KnownZero |= HighBits; // High bits known zero. + } + return; + case ISD::SRA: + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + MVT::ValueType VT = Op.getValueType(); + unsigned ShAmt = SA->getValue(); + + // Compute the new bits that are at the top now. + uint64_t TypeMask = MVT::getIntVTBitMask(VT); + + uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; + // If any of the demanded bits are produced by the sign extension, we also + // demand the input sign bit. + uint64_t HighBits = (1ULL << ShAmt)-1; + HighBits <<= MVT::getSizeInBits(VT) - ShAmt; + if (HighBits & Mask) + InDemandedMask |= MVT::getIntVTSignBit(VT); + + ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, + Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero &= TypeMask; + KnownOne &= TypeMask; + KnownZero >>= ShAmt; + KnownOne >>= ShAmt; + + // Handle the sign bits. + uint64_t SignBit = MVT::getIntVTSignBit(VT); + SignBit >>= ShAmt; // Adjust to where it is now in the mask. + + if (KnownZero & SignBit) { + KnownZero |= HighBits; // New bits are known zero. + } else if (KnownOne & SignBit) { + KnownOne |= HighBits; // New bits are known one. + } + } + return; + case ISD::SIGN_EXTEND_INREG: { + MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + + // Sign extension. Compute the demanded bits in the result that are not + // present in the input. + uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; + + uint64_t InSignBit = MVT::getIntVTSignBit(EVT); + int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); + + // If the sign extended bits are demanded, we know that the sign + // bit is demanded. + if (NewBits) + InputDemandedBits |= InSignBit; + + ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, + KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + if (KnownZero & InSignBit) { // Input sign bit known clear + KnownZero |= NewBits; + KnownOne &= ~NewBits; + } else if (KnownOne & InSignBit) { // Input sign bit known set + KnownOne |= NewBits; + KnownZero &= ~NewBits; + } else { // Input sign bit unknown + KnownZero &= ~NewBits; + KnownOne &= ~NewBits; + } + return; + } + case ISD::CTTZ: + case ISD::CTLZ: + case ISD::CTPOP: { + MVT::ValueType VT = Op.getValueType(); + unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; + KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); + KnownOne = 0; + return; + } + case ISD::LOAD: { + if (ISD::isZEXTLoad(Op.Val)) { + LoadSDNode *LD = cast<LoadSDNode>(Op); + MVT::ValueType VT = LD->getLoadedVT(); + KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; + } + return; + } + case ISD::ZERO_EXTEND: { + uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); + uint64_t NewBits = (~InMask) & Mask; + ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, + KnownOne, Depth+1); + KnownZero |= NewBits & Mask; + KnownOne &= ~NewBits; + return; + } + case ISD::SIGN_EXTEND: { + MVT::ValueType InVT = Op.getOperand(0).getValueType(); + unsigned InBits = MVT::getSizeInBits(InVT); + uint64_t InMask = MVT::getIntVTBitMask(InVT); + uint64_t InSignBit = 1ULL << (InBits-1); + uint64_t NewBits = (~InMask) & Mask; + uint64_t InDemandedBits = Mask & InMask; + + // If any of the sign extended bits are demanded, we know that the sign + // bit is demanded. + if (NewBits & Mask) + InDemandedBits |= InSignBit; + + ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, + KnownOne, Depth+1); + // If the sign bit is known zero or one, the top bits match. + if (KnownZero & InSignBit) { + KnownZero |= NewBits; + KnownOne &= ~NewBits; + } else if (KnownOne & InSignBit) { + KnownOne |= NewBits; + KnownZero &= ~NewBits; + } else { // Otherwise, top bits aren't known. + KnownOne &= ~NewBits; + KnownZero &= ~NewBits; + } + return; + } + case ISD::ANY_EXTEND: { + MVT::ValueType VT = Op.getOperand(0).getValueType(); + ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), + KnownZero, KnownOne, Depth+1); + return; + } + case ISD::TRUNCATE: { + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); + KnownZero &= OutMask; + KnownOne &= OutMask; + break; + } + case ISD::AssertZext: { + MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + uint64_t InMask = MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, + KnownOne, Depth+1); + KnownZero |= (~InMask) & Mask; + return; + } + case ISD::ADD: { + // If either the LHS or the RHS are Zero, the result is zero. + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-0 bits are known if clear or set in both the low clear bits + // common to both LHS & RHS. For example, 8+(X<<3) is known to have the + // low 3 bits clear. + uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), + CountTrailingZeros_64(~KnownZero2)); + + KnownZero = (1ULL << KnownZeroOut) - 1; + KnownOne = 0; + return; + } + case ISD::SUB: { + ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); + if (!CLHS) return; + + // We know that the top bits of C-X are clear if X contains less bits + // than C (i.e. no wrap-around can happen). For example, 20-X is + // positive if we can prove that X is >= 0 and < 16. + MVT::ValueType VT = CLHS->getValueType(0); + if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear + unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); + uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit + MaskV = ~MaskV & MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); + + // If all of the MaskV bits are known to be zero, then we know the output + // top bits are zero, because we now know that the output is from [0-C]. + if ((KnownZero & MaskV) == MaskV) { + unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); + KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. + KnownOne = 0; // No one bits known. + } else { + KnownZero = KnownOne = 0; // Otherwise, nothing known. + } + } + return; + } + default: + // Allow the target to implement this method for its nodes. + if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_VOID: + TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this); + } + return; + } +} + +/// ComputeNumSignBits - Return the number of times the sign bit of the +/// register is replicated into the other bits. We know that at least 1 bit +/// is always equal to the sign bit (itself), but other cases can give us +/// information. For example, immediately after an "SRA X, 2", we know that +/// the top 3 bits are all equal to each other, so we return 3. +unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ + MVT::ValueType VT = Op.getValueType(); + assert(MVT::isInteger(VT) && "Invalid VT!"); + unsigned VTBits = MVT::getSizeInBits(VT); + unsigned Tmp, Tmp2; + + if (Depth == 6) + return 1; // Limit search depth. + + switch (Op.getOpcode()) { + default: break; + case ISD::AssertSext: + Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); + return VTBits-Tmp+1; + case ISD::AssertZext: + Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); + return VTBits-Tmp; + + case ISD::Constant: { + uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); + // If negative, invert the bits, then look at it. + if (Val & MVT::getIntVTSignBit(VT)) + Val = ~Val; + + // Shift the bits so they are the leading bits in the int64_t. + Val <<= 64-VTBits; + + // Return # leading zeros. We use 'min' here in case Val was zero before + // shifting. We don't want to return '64' as for an i32 "0". + return std::min(VTBits, CountLeadingZeros_64(Val)); + } + + case ISD::SIGN_EXTEND: + Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); + return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; + + case ISD::SIGN_EXTEND_INREG: + // Max of the input and what this extends. + Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); + Tmp = VTBits-Tmp+1; + + Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); + return std::max(Tmp, Tmp2); + + case ISD::SRA: + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + // SRA X, C -> adds C sign bits. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Tmp += C->getValue(); + if (Tmp > VTBits) Tmp = VTBits; + } + return Tmp; + case ISD::SHL: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + // shl destroys sign bits. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (C->getValue() >= VTBits || // Bad shift. + C->getValue() >= Tmp) break; // Shifted all sign bits out. + return Tmp - C->getValue(); + } + break; + case ISD::AND: + case ISD::OR: + case ISD::XOR: // NOT is handled here. + // Logical binary ops preserve the number of sign bits. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + return std::min(Tmp, Tmp2); + + case ISD::SELECT: + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + return std::min(Tmp, Tmp2); + + case ISD::SETCC: + // If setcc returns 0/-1, all bits are sign bits. + if (TLI.getSetCCResultContents() == + TargetLowering::ZeroOrNegativeOneSetCCResult) + return VTBits; + break; + case ISD::ROTL: + case ISD::ROTR: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned RotAmt = C->getValue() & (VTBits-1); + + // Handle rotate right by N like a rotate left by 32-N. + if (Op.getOpcode() == ISD::ROTR) + RotAmt = (VTBits-RotAmt) & (VTBits-1); + + // If we aren't rotating out all of the known-in sign bits, return the + // number that are left. This handles rotl(sext(x), 1) for example. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp > RotAmt+1) return Tmp-RotAmt; + } + break; + case ISD::ADD: + // Add can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. |