diff options
-rw-r--r-- | include/llvm/Analysis/SparsePropagation.h | 178 | ||||
-rw-r--r-- | lib/Analysis/SparsePropagation.cpp | 320 |
2 files changed, 498 insertions, 0 deletions
diff --git a/include/llvm/Analysis/SparsePropagation.h b/include/llvm/Analysis/SparsePropagation.h new file mode 100644 index 0000000000..cad18d79bf --- /dev/null +++ b/include/llvm/Analysis/SparsePropagation.h @@ -0,0 +1,178 @@ +//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements an abstract sparse conditional propagation algorithm, +// modeled after SCCP, but with a customizable lattice function. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_SPARSE_PROPAGATION_H +#define LLVM_ANALYSIS_SPARSE_PROPAGATION_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include <vector> +#include <set> + +namespace llvm { + class Value; + class Constant; + class Instruction; + class PHINode; + class TerminatorInst; + class BasicBlock; + class Function; + class SparseSolver; + +/// AbstractLatticeFunction - This class is implemented by the dataflow instance +/// to specify what the lattice values are and what how they handle merges etc. +/// This gives the client the power to compute lattice values from instructions, +/// constants, etc. The requirement is that lattice values must all fit into +/// a void*. If a void* is not sufficient, the implementation should use this +/// pointer to be a pointer into a uniquing set or something. +/// +class AbstractLatticeFunction { +public: + typedef void *LatticeVal; +private: + LatticeVal UndefVal, OverdefinedVal, UntrackedVal; +public: + AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, + LatticeVal untrackedVal) { + UndefVal = undefVal; + OverdefinedVal = overdefinedVal; + UntrackedVal = untrackedVal; + } + virtual ~AbstractLatticeFunction(); + + LatticeVal getUndefVal() const { return UndefVal; } + LatticeVal getOverdefinedVal() const { return OverdefinedVal; } + LatticeVal getUntrackedVal() const { return UntrackedVal; } + + /// IsUntrackedValue - If the specified Value is something that is obviously + /// uninteresting to the analysis (and would always return UntrackedVal), + /// this function can return true to avoid pointless work. + virtual bool IsUntrackedValue(Value *V) { + return false; + } + + /// ComputeConstant - Given a constant value, compute and return a lattice + /// value corresponding to the specified constant. + virtual LatticeVal ComputeConstant(Constant *C) { + return getOverdefinedVal(); // always safe + } + + /// GetConstant - If the specified lattice value is representable as an LLVM + /// constant value, return it. Otherwise return null. The returned value + /// must be in the same LLVM type as Val. + virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) { + return 0; + } + + /// MergeValues - Compute and return the merge of the two specified lattice + /// values. Merging should only move one direction down the lattice to + /// guarantee convergence (toward overdefined). + virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { + return getOverdefinedVal(); // always safe, never useful. + } + + /// ComputeInstructionState - Given an instruction and a vector of its operand + /// values, compute the result value of the instruction. + virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) { + return getOverdefinedVal(); // always safe, never useful. + } + + /// PrintValue - Render the specified lattice value to the specified stream. + virtual void PrintValue(LatticeVal V, std::ostream &OS); +}; + + +/// SparseSolver - This class is a general purpose solver for Sparse Conditional +/// Propagation with a programmable lattice function. +/// +class SparseSolver { + typedef AbstractLatticeFunction::LatticeVal LatticeVal; + + /// LatticeFunc - This is the object that knows the lattice and how to do + /// compute transfer functions. + AbstractLatticeFunction *LatticeFunc; + + DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. + SmallPtrSet<BasicBlock*, 16> BBExecutable; // The bbs that are executable. + + std::vector<Instruction*> InstWorkList; // Worklist of insts to process. + + std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list + + /// KnownFeasibleEdges - Entries in this set are edges which have already had + /// PHI nodes retriggered. + typedef std::pair<BasicBlock*,BasicBlock*> Edge; + std::set<Edge> KnownFeasibleEdges; + + SparseSolver(const SparseSolver&); // DO NOT IMPLEMENT + void operator=(const SparseSolver&); // DO NOT IMPLEMENT +public: + SparseSolver(AbstractLatticeFunction *Lattice) : LatticeFunc(Lattice) {} + ~SparseSolver() { + delete LatticeFunc; + } + + /// Solve - Solve for constants and executable blocks. + /// + void Solve(Function &F); + + void Print(Function &F, std::ostream &OS); + + /// getLatticeState - Return the LatticeVal object that corresponds to the + /// value. If an value is not in the map, it is returned as untracked, + /// unlike the getOrInitValueState method. + LatticeVal getLatticeState(Value *V) const { + DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); + return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); + } + + /// getOrInitValueState - Return the LatticeVal object that corresponds to the + /// value, initializing the value's state if it hasn't been entered into the + /// map yet. This function is necessary because not all values should start + /// out in the underdefined state... Arguments should be overdefined, and + /// constants should be marked as constants. + /// + LatticeVal getOrInitValueState(Value *V); + +private: + /// UpdateState - When the state for some instruction is potentially updated, + /// this function notices and adds I to the worklist if needed. + void UpdateState(Instruction &Inst, LatticeVal V); + + /// MarkBlockExecutable - This method can be used by clients to mark all of + /// the blocks that are known to be intrinsically live in the processed unit. + void MarkBlockExecutable(BasicBlock *BB); + + /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB + /// work list if it is not already executable. + void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); + + /// getFeasibleSuccessors - Return a vector of booleans to indicate which + /// successors are reachable from a given terminator instruction. + void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs); + + /// isEdgeFeasible - Return true if the control flow edge from the 'From' + /// basic block to the 'To' basic block is currently feasible... + bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); + + void visitInst(Instruction &I); + void visitPHINode(PHINode &I); + void visitTerminatorInst(TerminatorInst &TI); + +}; + +} // end namespace llvm + +#endif // LLVM_ANALYSIS_SPARSE_PROPAGATION_H diff --git a/lib/Analysis/SparsePropagation.cpp b/lib/Analysis/SparsePropagation.cpp new file mode 100644 index 0000000000..9c18751ed6 --- /dev/null +++ b/lib/Analysis/SparsePropagation.cpp @@ -0,0 +1,320 @@ +//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements an abstract sparse conditional propagation algorithm, +// modeled after SCCP, but with a customizable lattice function. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "sparseprop" +#include "llvm/Analysis/SparsePropagation.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Streams.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// AbstractLatticeFunction Implementation +//===----------------------------------------------------------------------===// + +AbstractLatticeFunction::~AbstractLatticeFunction() {} + +/// PrintValue - Render the specified lattice value to the specified stream. +void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) { + if (V == UndefVal) + OS << "undefined"; + else if (V == OverdefinedVal) + OS << "overdefined"; + else if (V == UntrackedVal) + OS << "untracked"; + else + OS << "unknown lattice value"; +} + +//===----------------------------------------------------------------------===// +// SparseSolver Implementation +//===----------------------------------------------------------------------===// + +/// getOrInitValueState - Return the LatticeVal object that corresponds to the +/// value, initializing the value's state if it hasn't been entered into the +/// map yet. This function is necessary because not all values should start +/// out in the underdefined state... Arguments should be overdefined, and +/// constants should be marked as constants. +/// +SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { + DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); + if (I != ValueState.end()) return I->second; // Common case, in the map + + LatticeVal LV; + if (LatticeFunc->IsUntrackedValue(V)) + return LatticeFunc->getUntrackedVal(); + else if (Constant *C = dyn_cast<Constant>(V)) + LV = LatticeFunc->ComputeConstant(C); + else if (!isa<Instruction>(V)) + // Non-instructions (e.g. formal arguments) are overdefined. + LV = LatticeFunc->getOverdefinedVal(); + else + // All instructions are underdefined by default. + LV = LatticeFunc->getUndefVal(); + + // If this value is untracked, don't add it to the map. + if (LV == LatticeFunc->getUntrackedVal()) + return LV; + return ValueState[V] = LV; +} + +/// UpdateState - When the state for some instruction is potentially updated, +/// this function notices and adds I to the worklist if needed. +void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { + DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); + if (I != ValueState.end() && I->second == V) + return; // No change. + + // An update. Visit uses of I. + ValueState[&Inst] = V; + InstWorkList.push_back(&Inst); +} + +/// MarkBlockExecutable - This method can be used by clients to mark all of +/// the blocks that are known to be intrinsically live in the processed unit. +void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { + DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n"; + BBExecutable.insert(BB); // Basic block is executable! + BBWorkList.push_back(BB); // Add the block to the work list! +} + +/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB +/// work list if it is not already executable... +void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { + if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) + return; // This edge is already known to be executable! + + if (BBExecutable.count(Dest)) { + DOUT << "Marking Edge Executable: " << Source->getNameStart() + << " -> " << Dest->getNameStart() << "\n"; + + // The destination is already executable, but we just made an edge + // feasible that wasn't before. Revisit the PHI nodes in the block + // because they have potentially new operands. + for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) + visitPHINode(*cast<PHINode>(I)); + + } else { + MarkBlockExecutable(Dest); + } +} + + +/// getFeasibleSuccessors - Return a vector of booleans to indicate which +/// successors are reachable from a given terminator instruction. +void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, + SmallVectorImpl<bool> &Succs) { + Succs.resize(TI.getNumSuccessors()); + if (TI.getNumSuccessors() == 0) return; + + if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { + if (BI->isUnconditional()) { + Succs[0] = true; + return; + } + + LatticeVal BCValue = getOrInitValueState(BI->getCondition()); + if (BCValue == LatticeFunc->getOverdefinedVal() || + BCValue == LatticeFunc->getUntrackedVal()) { + // Overdefined condition variables can branch either way. + Succs[0] = Succs[1] = true; + return; + } + + // If undefined, neither is feasible yet. + if (BCValue == LatticeFunc->getUndefVal()) + return; + + Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); + if (C == 0 || !isa<ConstantInt>(C)) { + // Non-constant values can go either way. + Succs[0] = Succs[1] = true; + return; + } + + // Constant condition variables mean the branch can only go a single way + Succs[C == ConstantInt::getFalse()] = true; + return; + } + + if (isa<InvokeInst>(TI)) { + // Invoke instructions successors are always executable. + // TODO: Could ask the lattice function if the value can throw. + Succs[0] = Succs[1] = true; + return; + } + + SwitchInst &SI = cast<SwitchInst>(TI); + LatticeVal SCValue = getOrInitValueState(SI.getCondition()); + if (SCValue == LatticeFunc->getOverdefinedVal() || + SCValue == LatticeFunc->getUntrackedVal()) { + // All destinations are executable! + Succs.assign(TI.getNumSuccessors(), true); + return; + } + + // If undefined, neither is feasible yet. + if (SCValue == LatticeFunc->getUndefVal()) + return; + + Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); + if (C == 0 || !isa<ConstantInt>(C)) { + // All destinations are executable! + Succs.assign(TI.getNumSuccessors(), true); + return; + } + + Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true; +} + + +/// isEdgeFeasible - Return true if the control flow edge from the 'From' +/// basic block to the 'To' basic block is currently feasible... +bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { + SmallVector<bool, 16> SuccFeasible; + TerminatorInst *TI = From->getTerminator(); + getFeasibleSuccessors(*TI, SuccFeasible); + + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + if (TI->getSuccessor(i) == To && SuccFeasible[i]) + return true; + + return false; +} + +void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { + SmallVector<bool, 16> SuccFeasible; + getFeasibleSuccessors(TI, SuccFeasible); + + BasicBlock *BB = TI.getParent(); + + // Mark all feasible successors executable... + for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) + if (SuccFeasible[i]) + markEdgeExecutable(BB, TI.getSuccessor(i)); +} + +void SparseSolver::visitPHINode(PHINode &PN) { + LatticeVal PNIV = getOrInitValueState(&PN); + LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); + + // If this value is already overdefined (common) just return. + if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) + return; // Quick exit + + // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, + // and slow us down a lot. Just mark them overdefined. + if (PN.getNumIncomingValues() > 64) { + UpdateState(PN, Overdefined); + return; + } + + // Look at all of the executable operands of the PHI node. If any of them + // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the + // transfer function to give us the merge of the incoming values. + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { + // If the edge is not yet known to be feasible, it doesn't impact the PHI. + if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) + continue; + + // Merge in this value. + LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); + if (OpVal != PNIV) + PNIV = LatticeFunc->MergeValues(PNIV, OpVal); + + if (PNIV == Overdefined) + break; // Rest of input values don't matter. + } + + // Update the PHI with the compute value, which is the merge of the inputs. + UpdateState(PN, PNIV); +} + + +void SparseSolver::visitInst(Instruction &I) { + // PHIs are handled by the propagation logic, they are never passed into the + // transfer functions. + if (PHINode *PN = dyn_cast<PHINode>(&I)) + return visitPHINode(*PN); + + // Otherwise, ask the transfer function what the result is. If this is + // something that we care about, remember it. + LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); + if (IV != LatticeFunc->getUntrackedVal()) + UpdateState(I, IV); + + if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) + visitTerminatorInst(*TI); +} + +void SparseSolver::Solve(Function &F) { + MarkBlockExecutable(F.begin()); + + // Process the work lists until they are empty! + while (!BBWorkList.empty() || !InstWorkList.empty()) { + // Process the instruction work list. + while (!InstWorkList.empty()) { + Instruction *I = InstWorkList.back(); + InstWorkList.pop_back(); + + DOUT << "\nPopped off I-WL: " << *I; + + // "I" got into the work list because it made a transition. See if any + // users are both live and in need of updating. + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) { + Instruction *U = cast<Instruction>(*UI); + if (BBExecutable.count(U->getParent())) // Inst is executable? + visitInst(*U); + } + } + + // Process the basic block work list. + while (!BBWorkList.empty()) { + BasicBlock *BB = BBWorkList.back(); + BBWorkList.pop_back(); + + DOUT << "\nPopped off BBWL: " << *BB; + + // Notify all instructions in this basic block that they are newly + // executable. + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + visitInst(*I); + } + } +} + +void SparseSolver::Print(Function &F, std::ostream &OS) { + OS << "\nFUNCTION: " << F.getNameStr() << "\n"; + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + if (!BBExecutable.count(BB)) + OS << "INFEASIBLE: "; + OS << "\t"; + if (BB->hasName()) + OS << BB->getNameStr() << ":\n"; + else + OS << "; anon bb\n"; + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + LatticeFunc->PrintValue(getLatticeState(I), OS); + OS << *I; + } + + OS << "\n"; + } +} + |