aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--docs/CommandGuide/llvm2cpp.pod217
-rw-r--r--tools/llvm2cpp/CppWriter.cpp1968
-rw-r--r--tools/llvm2cpp/CppWriter.h18
-rw-r--r--tools/llvm2cpp/Makefile15
-rw-r--r--tools/llvm2cpp/llvm2cpp.cpp122
5 files changed, 0 insertions, 2340 deletions
diff --git a/docs/CommandGuide/llvm2cpp.pod b/docs/CommandGuide/llvm2cpp.pod
deleted file mode 100644
index 4b86ae0fea..0000000000
--- a/docs/CommandGuide/llvm2cpp.pod
+++ /dev/null
@@ -1,217 +0,0 @@
-=pod
-
-=head1 NAME
-
-llvm2xpp - LLVM bitcode to LLVM C++ IR translator
-
-=head1 SYNOPSIS
-
-B<llvm2cpp> [I<options>] [I<filename>]
-
-=head1 DESCRIPTION
-
-B<llvm2cpp> translates from LLVM bitcode (.bc files) to a
-corresponding C++ source file that will make calls against the LLVM C++ API to
-build the same module as the input. By default, the C++ output is a complete
-program that builds the module, verifies it and then emits the module as
-LLVM assembly. This technique assists with testing because the input to
-B<llvm2cpp> and the output of the generated C++ program should be identical.
-
-If F<filename> is omitted or is C<->, then B<llvm2cpp> reads its input from
-standard input.
-
-If an output file is not specified with the B<-o> option, then
-B<llvm2cpp> sends its output to a file or standard output by following
-these rules:
-
-=over
-
-=item *
-
-If the input is standard input, then the output is standard output.
-
-=item *
-
-If the input is a file that ends with C<.bc>, then the output file is of
-the same name, except that the suffix is changed to C<.cpp>.
-
-=item *
-
-If the input is a file that does not end with the C<.bc> suffix, then the
-output file has the same name as the input file, except that the C<.cpp>
-suffix is appended.
-
-=back
-
-=head1 OPTIONS
-
-=over
-
-=item B<-f>
-
-Force overwrite. Normally, B<llvm2cpp> will refuse to overwrite an
-output file that already exists. With this option, B<llvm2cpp>
-will overwrite the output file and replace it with new C++ source code.
-
-=item B<--help>
-
-Print a summary of command line options.
-
-=item B<-f>
-
-Normally, B<llvm2cpp> will not overwrite an existing output file. With this
-option, that default behavior is changed and the program will overwrite existing
-output files.
-
-=item B<-o> F<filename>
-
-Specify the output file name. If F<filename> is C<->, then B<llvm2cpp>
-sends its output to standard output.
-
-=item B<-funcname> F<functionName>
-
-Specify the name of the function to be generated. The generated code contains a
-single function that produces the input module. By default its name is
-I<makeLLVMModule>. The B<-funcname> option overrides this default and allows
-you to control the name of the generated function. This is handy in conjunction
-with the B<-fragment> option when you only want B<llvm2cpp> to generate a
-single function that produces the module. With both options, such generated code
-could be I<#included> into another program.
-
-=item B<-for>
-
-Specify the name of the thing for which C++ code should be generated. By default
-the entire input module is re-generated. However, use of the various B<-gen-*>
-options can restrict what is produced. This option indicates what that
-restriction is.
-
-=item B<-gen-program>
-
-Specify that the output should be a complete program. Such program will recreate
-B<llvm2cpp>'s input as an LLVM module, verify that module, and then write out
-the module in LLVM assembly format. This is useful for doing identity tests
-where the output of the generated program is identical to the input to
-B<llvm2cpp>. The LLVM DejaGnu test suite can make use of this fact. This is the
-default form of generated output.
-
-If the B<-for> option is given with this option, it specifies the module
-identifier to use for the module created.
-
-=item B<-gen-module>
-
-Specify that the output should be a function that regenerates the module. It is
-assumed that this output will be #included into another program that has already
-arranged for the correct header files to be #included. The function generated
-takes no arguments and returns a I<Module*>.
-
-If the B<-for> option is given with this option, it specifies the module
-identifier to use in creating the module returned by the generated function.
-
-=item B<-gen-contents>
-
-Specify that the output should be a function that adds the contents of the input
-module to another module. It is assumed that the output will be #included into
-another program that has already arranged for the correct header files to be
-#included. The function generated takes a single argument of type I<Module*> and
-returns that argument. Note that Module level attributes such as endianess,
-pointer size, target triple and inline asm are not passed on from the input
-module to the destination module. Only the sub-elements of the module (types,
-constants, functions, global variables) will be added to the input module.
-
-If the B<-for> option is given with this option, it specifies the module
-identifier to set in the input module by the generated function.
-
-=item B<-gen-function>
-
-Specify that the output should be a function that produces the definitions
-necessary for a specific function to be added to a module. It is assumed that
-the output will be #included into another program that has already arranged
-for the correct header files to be #included. The function generated takes a
-single argument of type I<Module*> and returns the I<Function*> that it added to
-the module. Note that only those things (types, constants, etc.) directly
-needed in the definition of the function will be placed in the generated
-function.
-
-The B<-for> option must be given with this option or an error will be produced.
-The value of the option must be the name of a function in the input module for
-which code should be generated. If the named function does not exist an error
-will be produced.
-
-=item B<-gen-inline>
-
-This option is very analagous to B<-gen-function> except that the generated
-function will not re-produce the target function's definition. Instead, the body
-of the target function is inserted into some other function passed as an
-argument to the generated function. Similarly any arguments to the function must
-be passed to the generated function. The result of the generated function is the
-first basic block of the target function.
-
-The B<-for> option works the same way as it does for B<-gen-function>.
-
-=item B<-gen-variable>
-
-Specify that the output should be a function that produces the definitions
-necessary for a specific global variable to be added to a module. It is assumed
-that the output will be #included into another program that has already arranged
-for the correct header files to be #included. The function generated takes a
-single argument of type I<Module*> and returns the I<GlobalVariable*> that it
-added to the module. Note that only those things (types, constants, etc.)
-directly needed in the definition of the global variable will be placed in the
-generated function.
-
-The B<-for> option must be given with this option or an error will be produced.
-THe value of the option must be the name of a global variable in the input
-module for which code should be generated. If the named global variable does not
-exist an error will be produced.
-
-=item B<-gen-type>
-
-Specify that the output should be a function that produces the definitions
-necessary for specific type to be added to a module. It is assumed that the
-otuput will be #included into another program that has already arranged for the
-correct header files to be #included. The function generated take a single
-argument of type I<Module*> and returns the I<Type*> that it added to the
-module. Note that the generated function will only add the necessary type
-definitions to (possibly recursively) define the requested type.
-
-The B<-for> option must be given with this option or an error will be produced.
-The value of the option must be the name of a global type in the input module
-for which code should be generated. If the named type does not exist an error
-will be produced.
-
-=item B<-stats>
-
-Show pass statistics (not interesting in this program).
-
-=item B<-time-passes>
-
-Show pass timing statistics (not interesting in this program).
-
-=item B<-version>
-
-Show the version number of this program.
-
-=back
-
-
-=head1 EXIT STATUS
-
-If B<llvm2cpp> succeeds, it will exit with 0. Otherwise, if an error
-occurs, it will exit with a non-zero value.
-
-=head1 SEE ALSO
-
-L<llvm-as|llvm-as> L<tblgen|tblgen>
-
-=head1 NOTES
-
-This tool may be removed from a future version of LLVM. Instead, its
-functionality may be incorporated into the llc tool. It would then act similarly
-to other targets except its output would be C++ source that could be compiled to
-construct the input program.
-
-=head1 AUTHORS
-
-Written by Reid Spencer (L<http://hlvm.org>).
-
-=cut
diff --git a/tools/llvm2cpp/CppWriter.cpp b/tools/llvm2cpp/CppWriter.cpp
deleted file mode 100644
index b724b9c871..0000000000
--- a/tools/llvm2cpp/CppWriter.cpp
+++ /dev/null
@@ -1,1968 +0,0 @@
-//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the writing of the LLVM IR as a set of C++ calls to the
-// LLVM IR interface. The input module is assumed to be verified.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Instruction.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/TypeSymbolTable.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Config/config.h"
-#include <algorithm>
-#include <iostream>
-#include <set>
-
-using namespace llvm;
-
-static cl::opt<std::string>
-FuncName("funcname", cl::desc("Specify the name of the generated function"),
- cl::value_desc("function name"));
-
-enum WhatToGenerate {
- GenProgram,
- GenModule,
- GenContents,
- GenFunction,
- GenFunctions,
- GenInline,
- GenVariable,
- GenType
-};
-
-static cl::opt<WhatToGenerate> GenerationType(cl::Optional,
- cl::desc("Choose what kind of output to generate"),
- cl::init(GenProgram),
- cl::values(
- clEnumValN(GenProgram, "gen-program", "Generate a complete program"),
- clEnumValN(GenModule, "gen-module", "Generate a module definition"),
- clEnumValN(GenContents, "gen-contents", "Generate contents of a module"),
- clEnumValN(GenFunction, "gen-function", "Generate a function definition"),
- clEnumValN(GenFunctions,"gen-functions", "Generate all function definitions"),
- clEnumValN(GenInline, "gen-inline", "Generate an inline function"),
- clEnumValN(GenVariable, "gen-variable", "Generate a variable definition"),
- clEnumValN(GenType, "gen-type", "Generate a type definition"),
- clEnumValEnd
- )
-);
-
-static cl::opt<std::string> NameToGenerate("for", cl::Optional,
- cl::desc("Specify the name of the thing to generate"),
- cl::init("!bad!"));
-
-namespace {
-typedef std::vector<const Type*> TypeList;
-typedef std::map<const Type*,std::string> TypeMap;
-typedef std::map<const Value*,std::string> ValueMap;
-typedef std::set<std::string> NameSet;
-typedef std::set<const Type*> TypeSet;
-typedef std::set<const Value*> ValueSet;
-typedef std::map<const Value*,std::string> ForwardRefMap;
-
-class CppWriter {
- const char* progname;
- std::ostream &Out;
- const Module *TheModule;
- uint64_t uniqueNum;
- TypeMap TypeNames;
- ValueMap ValueNames;
- TypeMap UnresolvedTypes;
- TypeList TypeStack;
- NameSet UsedNames;
- TypeSet DefinedTypes;
- ValueSet DefinedValues;
- ForwardRefMap ForwardRefs;
- bool is_inline;
-
-public:
- inline CppWriter(std::ostream &o, const Module *M, const char* pn="llvm2cpp")
- : progname(pn), Out(o), TheModule(M), uniqueNum(0), TypeNames(),
- ValueNames(), UnresolvedTypes(), TypeStack(), is_inline(false) { }
-
- const Module* getModule() { return TheModule; }
-
- void printProgram(const std::string& fname, const std::string& modName );
- void printModule(const std::string& fname, const std::string& modName );
- void printContents(const std::string& fname, const std::string& modName );
- void printFunction(const std::string& fname, const std::string& funcName );
- void printFunctions();
- void printInline(const std::string& fname, const std::string& funcName );
- void printVariable(const std::string& fname, const std::string& varName );
- void printType(const std::string& fname, const std::string& typeName );
-
- void error(const std::string& msg);
-
-private:
- void printLinkageType(GlobalValue::LinkageTypes LT);
- void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
- void printCallingConv(unsigned cc);
- void printEscapedString(const std::string& str);
- void printCFP(const ConstantFP* CFP);
-
- std::string getCppName(const Type* val);
- inline void printCppName(const Type* val);
-
- std::string getCppName(const Value* val);
- inline void printCppName(const Value* val);
-
- void printParamAttrs(const PAListPtr &PAL, const std::string &name);
- bool printTypeInternal(const Type* Ty);
- inline void printType(const Type* Ty);
- void printTypes(const Module* M);
-
- void printConstant(const Constant *CPV);
- void printConstants(const Module* M);
-
- void printVariableUses(const GlobalVariable *GV);
- void printVariableHead(const GlobalVariable *GV);
- void printVariableBody(const GlobalVariable *GV);
-
- void printFunctionUses(const Function *F);
- void printFunctionHead(const Function *F);
- void printFunctionBody(const Function *F);
- void printInstruction(const Instruction *I, const std::string& bbname);
- std::string getOpName(Value*);
-
- void printModuleBody();
-
-};
-
-static unsigned indent_level = 0;
-inline std::ostream& nl(std::ostream& Out, int delta = 0) {
- Out << "\n";
- if (delta >= 0 || indent_level >= unsigned(-delta))
- indent_level += delta;
- for (unsigned i = 0; i < indent_level; ++i)
- Out << " ";
- return Out;
-}
-
-inline void in() { indent_level++; }
-inline void out() { if (indent_level >0) indent_level--; }
-
-inline void
-sanitize(std::string& str) {
- for (size_t i = 0; i < str.length(); ++i)
- if (!isalnum(str[i]) && str[i] != '_')
- str[i] = '_';
-}
-
-inline std::string
-getTypePrefix(const Type* Ty ) {
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return "void_";
- case Type::IntegerTyID:
- return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
- "_";
- case Type::FloatTyID: return "float_";
- case Type::DoubleTyID: return "double_";
- case Type::LabelTyID: return "label_";
- case Type::FunctionTyID: return "func_";
- case Type::StructTyID: return "struct_";
- case Type::ArrayTyID: return "array_";
- case Type::PointerTyID: return "ptr_";
- case Type::VectorTyID: return "packed_";
- case Type::OpaqueTyID: return "opaque_";
- default: return "other_";
- }
- return "unknown_";
-}
-
-// Looks up the type in the symbol table and returns a pointer to its name or
-// a null pointer if it wasn't found. Note that this isn't the same as the
-// Mode::getTypeName function which will return an empty string, not a null
-// pointer if the name is not found.
-inline const std::string*
-findTypeName(const TypeSymbolTable& ST, const Type* Ty)
-{
- TypeSymbolTable::const_iterator TI = ST.begin();
- TypeSymbolTable::const_iterator TE = ST.end();
- for (;TI != TE; ++TI)
- if (TI->second == Ty)
- return &(TI->first);
- return 0;
-}
-
-void
-CppWriter::error(const std::string& msg) {
- std::cerr << progname << ": " << msg << "\n";
- exit(2);
-}
-
-// printCFP - Print a floating point constant .. very carefully :)
-// This makes sure that conversion to/from floating yields the same binary
-// result so that we don't lose precision.
-void
-CppWriter::printCFP(const ConstantFP *CFP) {
- APFloat APF = APFloat(CFP->getValueAPF()); // copy
- if (CFP->getType() == Type::FloatTy)
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
- Out << "ConstantFP::get(";
- if (CFP->getType() == Type::DoubleTy)
- Out << "Type::DoubleTy, ";
- else
- Out << "Type::FloatTy, ";
- Out << "APFloat(";
-#if HAVE_PRINTF_A
- char Buffer[100];
- sprintf(Buffer, "%A", APF.convertToDouble());
- if ((!strncmp(Buffer, "0x", 2) ||
- !strncmp(Buffer, "-0x", 3) ||
- !strncmp(Buffer, "+0x", 3)) &&
- APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
- if (CFP->getType() == Type::DoubleTy)
- Out << "BitsToDouble(" << Buffer << ")";
- else
- Out << "BitsToFloat((float)" << Buffer << ")";
- Out << ")";
- } else {
-#endif
- std::string StrVal = ftostr(CFP->getValueAPF());
-
- while (StrVal[0] == ' ')
- StrVal.erase(StrVal.begin());
-
- // Check to make sure that the stringized number is not some string like
- // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
- if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
- ((StrVal[0] == '-' || StrVal[0] == '+') &&
- (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
- (CFP->isExactlyValue(atof(StrVal.c_str())))) {
- if (CFP->getType() == Type::DoubleTy)
- Out << StrVal;
- else
- Out << StrVal << "f";
- }
- else if (CFP->getType() == Type::DoubleTy)
- Out << "BitsToDouble(0x" << std::hex
- << CFP->getValueAPF().convertToAPInt().getZExtValue()
- << std::dec << "ULL) /* " << StrVal << " */";
- else
- Out << "BitsToFloat(0x" << std::hex
- << (uint32_t)CFP->getValueAPF().convertToAPInt().getZExtValue()
- << std::dec << "U) /* " << StrVal << " */";
- Out << ")";
-#if HAVE_PRINTF_A
- }
-#endif
- Out << ")";
-}
-
-void
-CppWriter::printCallingConv(unsigned cc){
- // Print the calling convention.
- switch (cc) {
- case CallingConv::C: Out << "CallingConv::C"; break;
- case CallingConv::Fast: Out << "CallingConv::Fast"; break;
- case CallingConv::Cold: Out << "CallingConv::Cold"; break;
- case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
- default: Out << cc; break;
- }
-}
-
-void
-CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
- switch (LT) {
- case GlobalValue::InternalLinkage:
- Out << "GlobalValue::InternalLinkage"; break;
- case GlobalValue::LinkOnceLinkage:
- Out << "GlobalValue::LinkOnceLinkage "; break;
- case GlobalValue::WeakLinkage:
- Out << "GlobalValue::WeakLinkage"; break;
- case GlobalValue::AppendingLinkage:
- Out << "GlobalValue::AppendingLinkage"; break;
- case GlobalValue::ExternalLinkage:
- Out << "GlobalValue::ExternalLinkage"; break;
- case GlobalValue::DLLImportLinkage:
- Out << "GlobalValue::DLLImportLinkage"; break;
- case GlobalValue::DLLExportLinkage:
- Out << "GlobalValue::DLLExportLinkage"; break;
- case GlobalValue::ExternalWeakLinkage:
- Out << "GlobalValue::ExternalWeakLinkage"; break;
- case GlobalValue::GhostLinkage:
- Out << "GlobalValue::GhostLinkage"; break;
- }
-}
-
-void
-CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
- switch (VisType) {
- default: assert(0 && "Unknown GVar visibility");
- case GlobalValue::DefaultVisibility:
- Out << "GlobalValue::DefaultVisibility";
- break;
- case GlobalValue::HiddenVisibility:
- Out << "GlobalValue::HiddenVisibility";
- break;
- case GlobalValue::ProtectedVisibility:
- Out << "GlobalValue::ProtectedVisibility";
- break;
- }
-}
-
-// printEscapedString - Print each character of the specified string, escaping
-// it if it is not printable or if it is an escape char.
-void
-CppWriter::printEscapedString(const std::string &Str) {
- for (unsigned i = 0, e = Str.size(); i != e; ++i) {
- unsigned char C = Str[i];
- if (isprint(C) && C != '"' && C != '\\') {
- Out << C;
- } else {
- Out << "\\x"
- << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
- << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
- }
- }
-}
-
-std::string
-CppWriter::getCppName(const Type* Ty)
-{
- // First, handle the primitive types .. easy
- if (Ty->isPrimitiveType() || Ty->isInteger()) {
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return "Type::VoidTy";
- case Type::IntegerTyID: {
- unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
- return "IntegerType::get(" + utostr(BitWidth) + ")";
- }
- case Type::FloatTyID: return "Type::FloatTy";
- case Type::DoubleTyID: return "Type::DoubleTy";
- case Type::LabelTyID: return "Type::LabelTy";
- default:
- error("Invalid primitive type");
- break;
- }
- return "Type::VoidTy"; // shouldn't be returned, but make it sensible
- }
-
- // Now, see if we've seen the type before and return that
- TypeMap::iterator I = TypeNames.find(Ty);
- if (I != TypeNames.end())
- return I->second;
-
- // Okay, let's build a new name for this type. Start with a prefix
- const char* prefix = 0;
- switch (Ty->getTypeID()) {
- case Type::FunctionTyID: prefix = "FuncTy_"; break;
- case Type::StructTyID: prefix = "StructTy_"; break;
- case Type::ArrayTyID: prefix = "ArrayTy_"; break;
- case Type::PointerTyID: prefix = "PointerTy_"; break;
- case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
- case Type::VectorTyID: prefix = "VectorTy_"; break;
- default: prefix = "OtherTy_"; break; // prevent breakage
- }
-
- // See if the type has a name in the symboltable and build accordingly
- const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
- std::string name;
- if (tName)
- name = std::string(prefix) + *tName;
- else
- name = std::string(prefix) + utostr(uniqueNum++);
- sanitize(name);
-
- // Save the name
- return TypeNames[Ty] = name;
-}
-
-void
-CppWriter::printCppName(const Type* Ty)
-{
- printEscapedString(getCppName(Ty));
-}
-
-std::string
-CppWriter::getCppName(const Value* val) {
- std::string name;
- ValueMap::iterator I = ValueNames.find(val);
- if (I != ValueNames.end() && I->first == val)
- return I->second;
-
- if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
- name = std::string("gvar_") +
- getTypePrefix(GV->getType()->getElementType());
- } else if (isa<Function>(val)) {
- name = std::string("func_");
- } else if (const Constant* C = dyn_cast<Constant>(val)) {
- name = std::string("const_") + getTypePrefix(C->getType());
- } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
- if (is_inline) {
- unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
- Function::const_arg_iterator(Arg)) + 1;
- name = std::string("arg_") + utostr(argNum);
- NameSet::iterator NI = UsedNames.find(name);
- if (NI != UsedNames.end())
- name += std::string("_") + utostr(uniqueNum++);
- UsedNames.insert(name);
- return ValueNames[val] = name;
- } else {
- name = getTypePrefix(val->getType());
- }
- } else {
- name = getTypePrefix(val->getType());
- }
- name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
- sanitize(name);
- NameSet::iterator NI = UsedNames.find(name);
- if (NI != UsedNames.end())
- name += std::string("_") + utostr(uniqueNum++);
- UsedNames.insert(name);
- return ValueNames[val] = name;
-}
-
-void
-CppWriter::printCppName(const Value* val) {
- printEscapedString(getCppName(val));
-}
-
-void
-CppWriter::printParamAttrs(const PAListPtr &PAL, const std::string &name) {
- Out << "PAListPtr " << name << "_PAL = 0;";
- nl(Out);
- if (!PAL.isEmpty()) {
- Out << '{'; in(); nl(Out);
- Out << "SmallVector<ParamAttrsWithIndex, 4> Attrs;"; nl(Out);
- Out << "ParamAttrsWithIndex PAWI;"; nl(Out);
- for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
- uint16_t index = PAL.getSlot(i).Index;
- ParameterAttributes attrs = PAL.getSlot(i).Attrs;
- Out << "PAWI.index = " << index << "; PAWI.attrs = 0 ";
- if (attrs & ParamAttr::SExt)
- Out << " | ParamAttr::SExt";
- if (attrs & ParamAttr::ZExt)
- Out << " | ParamAttr::ZExt";
- if (attrs & ParamAttr::StructRet)
- Out << " | ParamAttr::StructRet";
- if (attrs & ParamAttr::InReg)
- Out << " | ParamAttr::InReg";
- if (attrs & ParamAttr::NoReturn)
- Out << " | ParamAttr::NoReturn";
- if (attrs & ParamAttr::NoUnwind)
- Out << " | ParamAttr::NoUnwind";
- if (attrs & ParamAttr::ByVal)
- Out << " | ParamAttr::ByVal";
- if (attrs & ParamAttr::NoAlias)
- Out << " | ParamAttr::NoAlias";
- if (attrs & ParamAttr::Nest)
- Out << " | ParamAttr::Nest";
- if (attrs & ParamAttr::ReadNone)
- Out << " | ParamAttr::ReadNone";
- if (attrs & ParamAttr::ReadOnly)
- Out << " | ParamAttr::ReadOnly";
- Out << ";";
- nl(Out);
- Out << "Attrs.push_back(PAWI);";
- nl(Out);
- }
- Out << name << "_PAL = PAListPtr::get(Attrs.begin(), Attrs.end());";
- nl(Out);
- out(); nl(Out);
- Out << '}'; nl(Out);
- }
-}
-
-bool
-CppWriter::printTypeInternal(const Type* Ty) {
- // We don't print definitions for primitive types
- if (Ty->isPrimitiveType() || Ty->isInteger())
- return false;
-
- // If we already defined this type, we don't need to define it again.
- if (DefinedTypes.find(Ty) != DefinedTypes.end())
- return false;
-
- // Everything below needs the name for the type so get it now.
- std::string typeName(getCppName(Ty));
-
- // Search the type stack for recursion. If we find it, then generate this
- // as an OpaqueType, but make sure not to do this multiple times because
- // the type could appear in multiple places on the stack. Once the opaque
- // definition is issued, it must not be re-issued. Consequently we have to
- // check the UnresolvedTypes list as well.
- TypeList::const_iterator TI = std::find(TypeStack.begin(),TypeStack.end(),Ty);
- if (TI != TypeStack.end()) {
- TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
- if (I == UnresolvedTypes.end()) {
- Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
- nl(Out);
- UnresolvedTypes[Ty] = typeName;
- }
- return true;
- }
-
- // We're going to print a derived type which, by definition, contains other
- // types. So, push this one we're printing onto the type stack to assist with
- // recursive definitions.
- TypeStack.push_back(Ty);
-
- // Print the type definition
- switch (Ty->getTypeID()) {
- case Type::FunctionTyID: {
- const FunctionType* FT = cast<FunctionType>(Ty);
- Out << "std::vector<const Type*>" << typeName << "_args;";
- nl(Out);
- FunctionType::param_iterator PI = FT->param_begin();
- FunctionType::param_iterator PE = FT->param_end();
- for (; PI != PE; ++PI) {
- const Type* argTy = static_cast<const Type*>(*PI);
- bool isForward = printTypeInternal(argTy);
- std::string argName(getCppName(argTy));
- Out << typeName << "_args.push_back(" << argName;
- if (isForward)
- Out << "_fwd";
- Out << ");";
- nl(Out);
- }
- bool isForward = printTypeInternal(FT->getReturnType());
- std::string retTypeName(getCppName(FT->getReturnType()));
- Out << "FunctionType* " << typeName << " = FunctionType::get(";
- in(); nl(Out) << "/*Result=*/" << retTypeName;
- if (isForward)
- Out << "_fwd";
- Out << ",";
- nl(Out) << "/*Params=*/" << typeName << "_args,";
- nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
- out();
- nl(Out);
- break;
- }
- case Type::StructTyID: {
- const StructType* ST = cast<StructType>(Ty);
- Out << "std::vector<const Type*>" << typeName << "_fields;";
- nl(Out);
- StructType::element_iterator EI = ST->element_begin();
- StructType::element_iterator EE = ST->element_end();
- for (; EI != EE; ++EI) {
- const Type* fieldTy = static_cast<const Type*>(*EI);
- bool isForward = printTypeInternal(fieldTy);
- std::string fieldName(getCppName(fieldTy));
- Out << typeName << "_fields.push_back(" << fieldName;
- if (isForward)
- Out << "_fwd";
- Out << ");";
- nl(Out);
- }
- Out << "StructType* " << typeName << " = StructType::get("
- << typeName << "_fields, /*isPacked=*/"
- << (ST->isPacked() ? "true" : "false") << ");";
- nl(Out);
- break;
- }
- case Type::ArrayTyID: {
- const ArrayType* AT = cast<ArrayType>(Ty);
- const Type* ET = AT->getElementType();
- bool isForward = printTypeInternal(ET);
- std::string elemName(getCppName(ET));
- Out << "ArrayType* " << typeName << " = ArrayType::get("
- << elemName << (isForward ? "_fwd" : "")
- << ", " << utostr(AT->getNumElements()) << ");";
- nl(Out);
- break;
- }
- case Type::PointerTyID: {
- const PointerType* PT = cast<PointerType>(Ty);
- const Type* ET = PT->getElementType();
- bool isForward = printTypeInternal(ET);
- std::string elemName(getCppName(ET));
- Out << "PointerType* " << typeName << " = PointerType::get("
- << elemName << (isForward ? "_fwd" : "")
- << ", " << utostr(PT->getAddressSpace()) << ");";
- nl(Out);
- break;
- }
- case Type::VectorTyID: {
- const VectorType* PT = cast<VectorType>(Ty);
- const Type* ET = PT->getElementType();
- bool isForward = printTypeInternal(ET);
- std::string elemName(getCppName(ET));
- Out << "VectorType* " << typeName << " = VectorType::get("
- << elemName << (isForward ? "_fwd" : "")
- << ", " << utostr(PT->getNumElements()) << ");";
- nl(Out);
- break;
- }
- case Type::OpaqueTyID: {
- Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
- nl(Out);
- break;
- }
- default:
- error("Invalid TypeID");
- }
-
- // If the type had a name, make sure we recreate it.
- const std::string* progTypeName =
- findTypeName(TheModule->getTypeSymbolTable(),Ty);
- if (progTypeName) {
- Out << "mod->addTypeName(\"" << *progTypeName << "\", "
- << typeName << ");";
- nl(Out);
- }
-
- // Pop us off the type stack
- TypeStack.pop_back();
-
- // Indicate that this type is now defined.
- DefinedTypes.insert(Ty);
-
- // Early resolve as many unresolved types as possible. Search the unresolved
- // types map for the type we just printed. Now that its definition is complete
- // we can resolve any previous references to it. This prevents a cascade of
- // unresolved types.
- TypeMap::iterator I = UnresolvedTypes.find(Ty);
- if (I != UnresolvedTypes.end()) {
- Out << "cast<OpaqueType>(" << I->second
- << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
- nl(Out);
- Out << I->second << " = cast<";
- switch (Ty->getTypeID()) {
- case Type::FunctionTyID: Out << "FunctionType"; break;
- case Type::ArrayTyID: Out << "ArrayType"; break;
- case Type::StructTyID: Out << "StructType"; break;
- case Type::VectorTyID: Out << "VectorType"; break;
- case Type::PointerTyID: Out << "PointerType"; break;
- case Type::OpaqueTyID: Out << "OpaqueType"; break;
- default: Out << "NoSuchDerivedType"; break;
- }
- Out << ">(" << I->second << "_fwd.get());";
- nl(Out); nl(Out);
- UnresolvedTypes.erase(I);
- }
-
- // Finally, separate the type definition from other with a newline.
- nl(Out);
-
- // We weren't a recursive type
- return false;
-}
-
-// Prints a type definition. Returns true if it could not resolve all the types
-// in the definition but had to use a forward reference.
-void
-CppWriter::printType(const Type* Ty) {
- assert(TypeStack.empty());
- TypeStack.clear();
- printTypeInternal(Ty);
- assert(TypeStack.empty());
-}
-
-void
-CppWriter::printTypes(const Module* M) {
-
- // Walk the symbol table and print out all its types
- const TypeSymbolTable& symtab = M->getTypeSymbolTable();
- for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
- TI != TE; ++TI) {
-
- // For primitive types and types already defined, just add a name
- TypeMap::const_iterator TNI = TypeNames.find(TI->second);
- if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
- TNI != TypeNames.end()) {
- Out << "mod->addTypeName(\"";
- printEscapedString(TI->first);
- Out << "\", " << getCppName(TI->second) << ");";
- nl(Out);
- // For everything else, define the type
- } else {
- printType(TI->second);
- }
- }
-
- // Add all of the global variables to the value table...
- for (Module::const_global_iterator I = TheModule->global_begin(),
- E = TheModule->global_end(); I != E; ++I) {
- if (I->hasInitializer())
- printType(I->getInitializer()->getType());
- printType(I->getType());
- }
-
- // Add all the functions to the table
- for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
- FI != FE; ++FI) {
- printType(FI->getReturnType());
- printType(FI->getFunctionType());
- // Add all the function arguments
- for(Function::const_arg_iterator AI = FI->arg_begin(),
- AE = FI->arg_end(); AI != AE; ++AI) {
- printType(AI->getType());
- }
-
- // Add all of the basic blocks and instructions
- for (Function::const_iterator BB = FI->begin(),
- E = FI->end(); BB != E; ++BB) {
- printType(BB->getType());
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
- ++I) {
- printType(I->getType());
- for (unsigned i = 0; i < I->getNumOperands(); ++i)
- printType(I->getOperand(i)->getType());